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Abstract

Background: Due to the advances of high throughput technology and data-collection approaches, we are now in an
unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes
responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level.
Modules, serving as the building blocks and operational units of biological systems, provide more information than
individual genes. Hence, the comparative analysis between species at the module level would shed more light on the
mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches.

Results: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we
detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all
of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel
quantity, ‘‘total constraint intensity,’’ a proxy of multiple constraints (of co-regulated genes and tissues where the co-
regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is
negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological
processes, while their gene contents have diverged extensively between human and mouse.

Conclusions: Our results suggest that unlike the composition of module, which exhibits a great difference between human
and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most
importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human
and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.
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Introduction

How phenotypes are determined by genotypes is of fundamental

importance for understanding the principles underlying the evolution

of organisms. Many insights have been gained by the traditional

comparative genomics approaches which often compare the

between-species difference at the sequence level [1,2]. So far,

researchers have identified a large body of conserved [3,4] or rapidly

evolving [5,6] protein-coding regions and cis-regulatory elements,

which are either involved in essential biological activities across multi-

organisms or contributing to species-specific phenotypes.

Thanks to the recent advances of high-throughput techniques, a

variety of biological data (including whole-genome expression

profile, protein-protein interaction, genetic interaction, DNA-

protein binding data etc.) are accumulating at a rapid pace in data

repositories, providing an invaluable resource from which data-

driven hypotheses have been proposed. The large-scale gene

expression profiles are especially useful for exploiting cell behavior

since they record the genome-wide tempo-spatial dynamics of

genes. Comparing the expression pattern between related species

[7,8] or among multiple organisms [9] provides an alternative

approach to investigate the inter-species divergence. In recent

years, some advanced methods have been developed to cope with

the large-scale gene expression data. For example, Segal et al. [10]

introduced a probabilistic method to identify modules from gene

expression data, which not only identifies the co-regulated genes

and the condition under which regulation occurs, but also their

regulators. Zhang and Horvath [11] proposed a weighted gene

coexpression network analysis (WGCNA) method which can

define modules according to a ‘‘weighted’’ topological overlap

measurement, a variant of topological overlap originally proposed

by Ravasz et al [12].

As one of the model organisms, mouse provides pivotal and rich

materials for understanding the biology of human, particularly in

the biopharmaceutical field. However, some fundamental prob-

lems such as how much evolutionary divergence separates human

from mouse and to what extent the experimental observations on

mouse can be applied to human are still poorly understood. A few
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studies have attempted to investigate these problems. For instance,

Tsaparas et al. [13] compared the genomic divergence of gene

expression between human and mouse by resolving the expression

profiles into species-specific coexpression networks. They revealed

that despite essentially identical at the global level, the human and

mouse coexpression networks are highly divergent at the local

level. Odom et al. [14] also demonstrated that the binding sites for

highly conserved transcriptional factors have diverged extremely

between human and mouse by mapping the binding of four

representative transcriptional factors to 4,000 human-mouse

orthologs.

The concept of module has been widely used in literatures;

however, its definition is relatively vague. The traditional

clustering approaches, such as K-means clustering [15], self-

organizing maps [16] and hierarchical clustering [17] often

associate a cluster of genes with a module, in which all the

involved genes display similar expression dynamics across

predefined conditions. Based on the idea that a group of genes

can only be co-regulated and function in certain conditions, e.g.

under environmental change, the stimuli of specific agents, special

developmental phase and specific tissues/organs, Ihmels et al. [18]

proposed a novel algorithm (signature algorithm) to detect the

modules from the gene expression profiles. They termed such a

combined group of genes and conditions that trigger the co-

regulation of the associated genes as a ‘‘transcription module’’.

Ihmels et al. devised the iterative signature algorithm (ISA), (an

improved version of the signature algorithm) that has more

rigorous mathematics and can capture the hierarchical structure of

modules [19].

In order to achieve a deeper understanding of the evolutionary

divergence between human and mouse in a higher order, we

compiled two gene expression matrixes, which included 6,200

pairs of one-to-one orthologs across 29 homologous tissues for

human and mouse. Inspired by the work of Ihmels and colleagues,

we identified the tissue-related modules in the two species using

the iterative signature algorithm (ISA) [20], and we characterized

these modules and compared the genomic divergence of human

and mouse in the context of modules.

Results and Discussion

Before we began to identify the modules, we examined the

distribution patterns of gene expression values. As shown in Figure

S1, despite of the consistently higher expression level (signal intensity)

in human than that in mouse (which is likely caused by the different

normalization processes or other factors), on the whole, the gene

expression patterns across the tissues are similar within each species

and the trends are also similar between species regardless of their

different absolute expression levels. The overall expression difference

between human and mouse does not create significant bias in our

analysis because, firstly, the strategy of our module analysis was a two-

step processes, first identifying modules in each species using ISA and

then comparing the modules of human and mouse; Secondly, the two

datasets were profiled by an united microarray platform of the same

lab, therefore, the two raw gene expression data (6200 genes629

tissues) should be comparable.

The modules identified by ISA are threshold-dependent. Given

that the number of the tissues (29) is much less than that of the

genes (6,200) in the expression data, we first evaluated the

performance of module discovery by adjusting the condition

threshold (Tc = 1.0, 1.25, 1.5, 1.75 and 2.0), while the gene

threshold (Tg) was fixed at a somewhat arbitrary value, 3.0. The

results showed that the number of the refined post-merged

modules (RMP modules) in both species was maximized when Tc

was 1.5. We then refined the gene threshold while keeping

Tc = 1.5. Accordingly, we identified the maximal number of

modules under Tc = 1.5 and Tg = 3.0 (Figure S2), and we took

into account the following factors: 1) much more unrelated genes

might randomly wind up into modules simply due to noise under

non-stringent parameters; 2) the maximal number of modules is

more powerful for the statistical analysis of ‘‘evolutionary pattern’’

(because the analysis is based on the module context); 3) we believe

that it would better represent the overlapped structure of modules

under current thresholds; and 4) crucially, the module number

determined by alternative criterion are limited. All the other

analyses presented below were based on the RMP modules

identified by applying Tc = 1.5 and Tg = 3.0 (Actually, the

modules identified using other parameters showed similar results

regarding the interspecies differences, but these modules were not

suitable for the analysis of evolutionary pattern due to their limited

number).

The contents of modules diverge greatly between
human and mouse

Totally, from the two expression data including 6,200 pairs of

one-to-one orthologs, we identified 52 and 65 tissue-related

modules (Table S1 and S2) containing 509 and 528 genes in

human and mouse, respectively, among which 148 pairs of

orthologs are shared between species. The number of genes in a

human (mouse) module ranges from 11(10) to 58(63). On average,

a module is comprised of 29.5 genes associated with 3.3 tissues in

human and 27.3 genes associated with 3.4 tissues in mouse.

However, these modules are unevenly distributed in the 29 tissues.

Also, the distribution pattern of modules in the two species

diverges dramatically (see Figure 1). For example, the lung has the

largest number of modules in human, while in mouse it is the case

for the pancreas. There are only one or two modules identified in

the thymus in both species. No module was detected in the lymph

node in the two species and pancreas-associated modules were

discovered only in mouse, which is likely caused by the following

reasons: 1) the modules identified by ISA are threshold-dependent,

hence, it is possible that the current threshold is too strict to

identify a module in these tissues; 2) Sampling bias may have

uncertain effect on module’s identification simply due to the biased

expression of the 6,200 genes in different tissues; 3) we may

occasionally leave out some modules because the search space is

too large (given that 6,200 genes) though we have intended to

identify all the modules exhaustively; 4) as will be shown below, the

contents of the between-species modules have diverged greatly,

hence, we often cannot identify the mouse module even when we

input a human module (a list of human orthologs) to ISA, and vice

versa.

In a previous study, Su et al. [21] have investigated the effect of

chromosomal organization on the expression mode of genes and

determined hundreds of RCTs (chromosomal regions of correlated

transcription). They observed that RCTs harboring genes highly

expressed in the olfactory bulb presented in mouse but not in

human, and attributed it to different physiology between the two

species. We observed the similar pattern in the olfactory bulb-

expressed modules.

In comparison with traditional clustering methods, the modules

identified by ISA are associated with conditions. For our modules,

they are combinations of a group of genes and tissues where the

co-regulation occurs. We found that a variety of tissues often share

the same modules. For example, there are two mouse modules

(module 28, 29 in Table S2) co-regulated in kidney and liver,

which is consistent with a previous study by Freeman et al. [22],

who observed that these organs are near to or even connected in a

Modules in Human and Mouse
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graphic transcriptional networks in terms of clusters (a group of

inter-connected genes).

In order to further examine the difference of modules between

human and mouse, we compared the pair-wise modules derived

from human and mouse with the use of similarity measurement

calculated by Eqa. (1) (see Methods). As shown in Figure 2 and

Figure S3, we can hardly find any pairs of modules with high

similarity between species. Meanwhile, in order to further explore

the relationship of modules between the two species, we conducted

a hierarchical clustering of all the modules (Figure S4). The

dendrograph indicated that all of the modules were separated into

two ‘‘biggest’’ clusters, one harboring modules, the overwhelming

majority of which are human-derived, and the other containing all

but one mouse-derived modules. Taken together, the results

suggested that the composition of the modules diverged extensively

between the two species.

Considering that genes often ‘‘group’’ into gene sets and provide

mutual functional backups resulting from genetic redundancy

[23,24], we further investigated the modified similarity for each

pair of modules (one from human and the other from mouse) by

taking into account the paralogs (see Figure 3). We observe that

there is an increase for most of the original similarities, but the

majority of the modified similarities are still less than 0.3 (see

Figure 4). We then ask whether there are a few ‘‘conserved’’

modules among these modules. For each mouse module M, we

define its counterpart which has the maximal similarity to M in

human. As illustrated in Figure 5, the histograph of the maximal

similarity showed that more than half of the pairs share less than

15% genes, and there are only four pairs of modules with relatively

high between-species similarity. For instance, the first pair of

modules, which are specifically expressed in the liver, have 45%

similarity. The second pair showed ,28% similarity, both of

which are highly expressed in the lung, but highly suppressed in

the CD4+ and CD8+ T cell lines. Interestingly, the remaining two

pairs are composed of a human module associated with the

amygdale, cerebellum and hypothalamus, and two mouse

counterparts, which are either highly expressed in the amygdale,

cerebellum, hypothalamus, dorsal root ganglion and olfactory

bulb, or dominant in the dorsal root ganglion and trigeminal

ganglion. It is possible that the two mouse counterparts may

originate from one de facto module, which was artificially split into

two in the subsequent module-merging process because the

similarity between them is high(0.558).

Furthermore, in order to evaluate the significance of the

maximal similarity shown in Figure 5, we conducted a simulation

analysis according to the following rules: 1) we produced a

similarity matrix which was shown in Figure 2, with its row

corresponding to 65 mouse modules, and the column correspond-

ing to 52 ‘‘simulated’’ human modules, all of which were sampled

from the 509 module-associated human genes, while keeping the

number of genes per ‘‘simulated’’ module the same as the real

human data; 2) for every mouse module, we determined the

maximal similarity by virtue of the 52 ‘‘simulated’’ modules as

mentioned above; 3) We repeated 1) and 2) 1,000 times, and got

65,000 values totally, Our data showed that only less than one-

third of the maximal similarity has value larger than the 95%

quantile of the simulated dataset (Figure S5). Together, the results

presented suggest that the genome of human and mouse have

diverged dramatically at the module level, which is consisted with

a previous study [13] reporting that only less than 10% of co-

expressed gene pair relationships are conserved between human

and mouse.

High expression coherence of the modules
Functionally related genes are often co-expressed [25,26] and

co-regulated genes also tend to frequently interact with each other

[27]. To identify potentially functional associations with a group of

predefined genes, Pujana et al. [28] proposed the method of

assembling candidate genes which are highly co-regulated with

these target genes. As a proxy of expression coherence, the

averaged Pearson correlation coefficient (PCC) was evaluated for

each module. Following Wang and Zhang [29], we used z-score to

measure the deviation of the expression coherence of a module

from its random expectation. The results indicate that all the

identified modules have significant high expression coherence,

compared with the controls (see Figure 6). For example, the

Figure 1. Uneven distribution of the modules in the 29 tissues. The distribution pattern of modules diverges extensively between human and
mouse. For instance, in the pancreas, adipocyte, kidney, testis and so on, there are much more modules identified in mouse than that in human,
whereas the opposite observation is seen in the dorsal root ganglion, lung and trigeminal ganglion etc.
doi:10.1371/journal.pone.0011730.g001

Modules in Human and Mouse
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minimal z-score is 10.90 for the human modules, and 7.27 for the

mouse modules. Since the principle of ISA differs from the

traditional approaches, such as the hierarchical clustering method

[17], which group genes by taking into account the correlation

information measured over all conditions, the prevalent high

expression coherence of the modules identified herein suggests that

these modules have a high probability of acting as the tightly-

related functional entities.

Evolutionary pattern of genes in the module context
The basic activities in a cell are well conceptualized as a

complex network, where the immense genes and their products

interplay to execute different functions sequentially. Accordingly,

the evolutionary pattern of each gene may be restricted by its

‘‘niche’’, the neighbor genes which directly interact with the gene

and the conditions where the gene expresses.

We sought to investigate the relationship between the

evolutionary rate of a gene, i.e. the ratio of the rate of non-

synonymous substitutions (Ka) versus the rate of synonymous

substitutions (Ks), and its six characteristic quantities specified in a

framework of module context (see Materials and Methods). The

scatter plots (Figure 7) show that all these variables appear to be

negatively correlated with the evolutionary rate. Table 1 summa-

rizes the results with respect to correlation coefficients and the

corresponding P-values. Strikingly, the evolutionary rate of a gene

is negatively correlated (despite weakly) with its ‘‘total constraint

intensity’’, which is defined in the module context as a proxy of

Figure 2. All-to-all comparison of modules between human and mouse. The heat map (bi-clustered) displays a globally low similarity
between the inter-species modules. The similarity between a pair of module is calculated by Eqs. (1).
doi:10.1371/journal.pone.0011730.g002

Figure 3. Schematic illustration of the modified similarity. The
original similarity between modules H and M is 3/

ffiffiffiffiffiffiffiffiffiffi
7|8
p

= 0.401; while
the modified similarity, which integrates with the paralog information,
is equal to ((5+6)/2)/

ffiffiffiffiffiffiffiffiffiffi
7|8
p

= 0.735. The two big yellow ovals denote
two modules from human and mouse, respectively. The four middle
cycles highlight the paralogous relationship. Small cycles denote genes
and the arrows link the orthologs.
doi:10.1371/journal.pone.0011730.g003

Modules in Human and Mouse
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Figure 4. Comparison between the original and the modified module similarity. The scatter plot (including 52|65 points) displays a more
or less increase for most of the original similarities; while, on the whole, few inter-species module pairs have a relatively high modified similarity. The
similarity of the two points highlighted in the shadow rectangle displays a relatively big boost.
doi:10.1371/journal.pone.0011730.g004

Figure 5. Histograph of the maximal similarity for the 65 mouse modules to all the human modules. The trend line is fitted by the
lowess algorithm [54]. This plot displays a few pairs of human-mouse modules with relatively high similarity.
doi:10.1371/journal.pone.0011730.g005

Modules in Human and Mouse
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multiple constraints (of co-regulated genes and tissues where the

co-regulation occurs) on the evolution of genes. (Spearman’s

r= 20.086, P = 0.013 for human; r= 20.066, P = 0.049 for

mouse).

We further dissected the ‘‘total constraint intensity’’ of a gene

into two components, the condition complexity, for which we refer

to the number of environments (tissues) where the whole modules

of the gene actively expressed, and the scale of the neighbor genes.

We then examined their association with the evolutionary rate.

Our results show that the condition complexity of a gene—

whether calculated as ‘‘Number of tissues’’ or ‘‘Number of tissues

(repeated)’’—is significantly negatively correlated with its evolu-

tionary rate (see Figure 7 and Table 1), which is consistent with a

previous study [7]. Additionally, the previous study established an

association between the evolutionary rate of genes and the breadth

of expression, i.e. the number of tissues in which a gene is

expressed. Our data proposes a reasonable explanation that the

evolutionary constraint on genes by tissues may act through the

associated modules.

Simultaneously, we investigated the relationship between the

evolutionary rate of a gene and the number of its neighbor genes.

Contrary to our expectation, all the correlations are not

significant, though they display a week negative correlation. In

2002, Fraser et al. [30] pioneered a study reporting that the

proteins with more interactors evolve more slowly. Fraser

extended the study in view of the modularity, and revealed that

the intra-module hub genes evolve more slowly than the inter-

module ones in a yeast protein-protein interactome [31].

Considering that: 1) the interplay between genes and/or their

products is mediated, either by direct physical interaction, or

through indirect regulatory processes; 2) widespread modular

epistasis among genes may serve as a common principle

underpinning the genetic robustness of genomes (Segre et al. [32]

discovered that modular epistasis between genes is pervasive in the

yeast metabolism), we speculate that the correlation between the

evolutionary rate of genes and their corresponding ‘‘Number of

interactors’’ and ‘‘Number of interactions’’ which we defined in

the context of transcriptional module could be stronger and more

significant than what have been revealed in the previous studies.

However, we did not observe the preconceived results. There are

three possible reasons partially accounting for the observations: 1)

Modules are organized in a hierarchical manner. The higher

thresholds were applied in the ISA, the tighter modules would be

identified [9]. In this study, in order to assemble more modules, we

compromised the stringency of modules by adjusting the condition

threshold to a small value, 1.5. Theoretically, some of the modules

identified may either contain unrelated genes, or be a union of two

or more de facto modules, both of which may vitiate our results; 2)

The sampling bias, which has been frequently addressed in most of

the physical interaction networks [33], has undesirable effect on

results. It is also possible that the expression of the 6200 genes has

tissue sampling bias, leading to more modules identified in some of

the tissues. 3) Other factors, such as the pathway position [34],

gene compactness and gene essentiality [35] and the percentage of

Figure 7. Relationship between the evolutionary rate of a gene and its six characteristic quantities. The scatter plot shows that the
evolutionary rate of genes is negatively correlated with the corresponding ‘‘total constraint intensity’’ both for (A) human and (B) mouse.
doi:10.1371/journal.pone.0011730.g007

Figure 6. Expression coherence of modules compared with that of their random expectations. Both in human (A) and mouse (B), all the
modules identified here represent significant higher expression coherence than the random expectations. The minimal z-score for the mouse
modules is up to 7.27.
doi:10.1371/journal.pone.0011730.g006
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disordered residues of a protein [36] may have influences on the

evolutionary rate of the corresponding gene, which implicitly

complicated the relationship between the scale of neighbor genes

and the evolutionary pattern.

To address the concerns regarding saturation of evolutionary

rate, we first examined the distribution of synonymous substitution

rate per synonymous site along the human or mouse lineage. The

results showed that all the Ks values, both for human and mouse,

are less than one. (Figure S6). Then even after we removed 50

genes with the largest Ks value, the relationship between the

evolutionary rate and the characteristic quantities remains the

same (data not shown).

In summary, the obvious association between the evolutionary

rate of genes and the ‘‘total constraint intensity’’ highlights a

possible scenario that the evolutionary constraint on genes may

also act at the module level.

Functional analysis of modules
For each of these modules, we evaluated the functional

enrichment using the human or mouse gene ontology (GO)

categories for biological processes and molecular functions (see

Methods). Setting the cutoff of the corrected P-value at 0.05 and

using the default, we detected 47(42) and 52(37) modules which

are enriched with at least one GO category in terms of the

biological processes (molecular functions) in human and mouse,

respectively. Given that the background distribution of the GO

terms in our gene lists may differ from the default used by GO

Term Finder package [37], we reappraised the functional

enrichment and found 36 human and 42 mouse modules

indicative of functional enrichment in terms of the biological

processes. Overall, the results indicated that most of the modules

are organized into functional units.

Considering that the inter-species modules differ extensively in

their composition, we next ask whether these seemingly distinct

modules still code some common or even essential biological

processes in the genomes of human and mouse. First, we compared

five pairs of inter-species modules, each of which displays a relatively

high overlap. Table S3 lists some basic information of these modules

and the overlapped GO enrichment terms between the correspond-

ing modules. We can see that each pair of modules shared several GO

terms except for the last pair of modules for which we did not detect

overrepresented GO terms in the corresponding module of mouse.

Interestingly, the functional overlap (GO annotation: regulation of

muscle contraction) emerges in a pair of modules, one of which is

highly expressed in the heart and lung in human, while the other is

actively expressed in the skeletal muscle, tongue and trachea in

mouse. Then we compared the enriched GO terms in most of the

homologous tissues except for the lympy node, olfactory bulb and

pancreas. We combined all the over-represented GO terms

(corresponding to a module) pertaining to certain tissue and counted

the overlapped terms between each pair of homologous tissues. The

results showed that all the homologous tissues used for the

comparison but the pituitary hold at least one common GO term

with regard to the biological processes. For example, in testis, the

enriched genes in GO annotation are related to male gamete

generation and spermatogenesis both in human and mouse; and the

adrenal gland has significantly more genes related to the C21-steroid

hormone metabolic process and lipid metabolic process than the

random expectation. Additionally, the genes associated with

anatomical structure development, inflammatory response, multicel-

lular organismal development and response to external stimulus etc.

are over-represented in the placenta.

Overall, our results implied that unlike the composition of

module which exhibited a great divergence between the human

and mouse genomes, the functional organization of the modules

may evolve in a more conservative manner.

Robustness of modules
To address the concerns regarding the robustness of modules,

we conducted a sensitivity test by leaving out 5%, 10%, 15% and

20% of the genes from the raw data. Our results demonstrated

that the modules are robust. For example, even though we

removed up to 20% of the data of the human and mouse

expression matrixes, we can still recover modules with a mean

similarity of 0.80, and 0.86 to those identified by using the full

dataset, respectively (see Figure 8).

Concluding remarks
Here we systematically identified and characterized the tissue-

related modules of human and mouse using the ISA. All these

identified modules showed a significant high co-regulation,

suggesting a high possibility for them serving as real biological

modules. In addition, we investigated the relationship between the

evolutionary rate and the characteristic quantities defined in a

module context. Our results showed that the evolutionary rate of a

gene is significantly negatively related to its ‘‘total constraint

intensity’’, which was defined as a proxy of multiple constraints on

the evolution of genes in a module context, whereas the weak

negative correlation between the ‘‘number of interactors’’,

‘‘number of interactions’’ and the corresponding Ka/Ks ratios is

not significant. We believe that the availability of more genome-

wide measurements of the gene expression profiles across tissues

will allow researchers to gain more insights into the evolutionary

pattern of genes in the context of modules.

Table 1. Relationship between the evolutionary rate and the characteristic quantities.

Pearson’s r P-value Spearman’s r P-value

Human Mouse Human Mouse Human Mouse Human Mouse

#modules 20.084 20.036 0.101 0.470 20.089 20.031 0.018 0.404

#interactors 20.060 20.042 0.238 0.400 20.034 20.022 0.332 0.518

#interactions 20.075 20.046 0.144 0.359 20.039 20.031 0.255 0.357

#tissues 20.149 20.110 0.004 0.027 20.124 20.097 0.001 0.007

#tissues (repeated) 20.104 20.054 0.041 0.276 20.120 20.075 0.001 0.033

Total constraint intensity 20.101 20.067 0.049 0.183 20.086 20.066 0.013 0.049

#: number of; 384 human and 404 mouse genes were counted, respectively.
doi:10.1371/journal.pone.0011730.t001

Modules in Human and Mouse
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Exemplified by human and mouse, we demonstrated that the

inter-species modules may code some common or essential biological

processes, despite a relatively big difference between their contents.

Remarkably, according to the transcriptional program of mouse

hepatocytes carrying human chromosome 21, Wilson et al. [38] have

recently unraveled that the regulatory sequences between human and

mouse have greatly diverged. In a previous study [39], we have found

that rhesus macaque performs much better than mouse as an

outgroup in identifying human-specific selection, suggesting that a

relatively large genetic differences exist between human and mouse.

Consistent with these results, our findings have implications on the

use of mouse as a model when studying the biology of human,

reminding that we should be more cautious of applying the functional

data from mouse because the same biological processes in different

organisms may be carried out by a group of different genes.

Materials and Methods

Gene Expression Data
We downloaded the human and mouse gene expression datasets

from GNF Genome Informatics Applications & Data sets (http://

wombat.gnf.org) [21]. These datasets cover 79 human and 61 mouse

tissues, among which 29 tissues (adipocyte, adrenal gland, amygdala,

bone marrow, cerebellum, dorsal root ganglion, heart, hypothalamus,

kidney, liver, lung, lymph node, olfactory bulb, ovary, pancreas,

CD4+Tcells, CD8+Tcells, pituitary, placenta, prostate, salivary

gland, skeletal muscle, testis, thymus, thyroid, tongue, trachea,

trigeminal ganglion and uterus) are shared in the two datasets and

they are used as homologous tissues for subsequent inter-species

comparison. Independent studies have reported that the MAS5-

based [40] (an algorithm computing the gene expression values from

probe set intensity values) and GC-RMA-based [41] (GC content–

adjusted robust multi-array algorithm) gene expression level gave rise

to similar results [42,43], hence, we used the signal intensity (S)

computed from MAS 5.0 algorithm (MAS5) as gene expression level

detected by each probe set. The S values were averaged among

replicates before analysis. A series of processes were carried out to

filter out sub-optimal probe sets (including probe sets that target

multiple genes and those whose target gene has multiple probe sets).

After that, we screened out 6,200 one-to-one orthologs (and

corresponding probe sets) according to the human-mouse orthologs

map information downloaded from the Ensembl database (http://

www.ensembl.org/). Eventually, we generated a pair of gene

expression matrixes (6200 genes |29 tissues) in which the same

row and column represent the human-mouse orthologs and

homologous tissues, respectively.

Identification of modules
All the tissue-related modules were identified using the ISA

algorithm proposed by Bergmann et al. [20] which over-performs

many traditional clustering approaches in two main aspects: 1) the

modules identified by ISA are highly self-consistent; 2) the genes

within a module are allowed to be involved in alternative modules

[19]. We determined the modules of the two species, using an

exhaustive searching strategy in which a group of genes (the

number of these genes ranging from 20 to 50) sampled from the

6,200 orthologs were used as the input gene set both for human

and mouse in each round of run of ISA.

Mergence and refinement of modules
We denoted a module as M (G, T), where G and T are the gene

and tissue set of the corresponding module M, respectively. The

module similarity between Mi (Gi, Ti) and Mj (Gj, Tj) was defined

at three levels as:

S
g
i,j ~

D Gi \Gj Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D Gi D|D Gj D

p , ð1Þ

St
i,j ~

jTi \Tj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jTi j|jTj j

p ð2Þ

and

Sm
i,j ~

D Mi \Mj Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D Mi D|D Mj D

p ~ S
g
i,j | St

i,j , ð3Þ

where |…| refers to the size of a set and \ denotes intersection.

We proposed an iterative graph-based module-merging ap-

proach (IGMM) to merge a group of modules. The similarity

Figure 8. Sensitivity of the modules with respect to the size of the dataset. Shown in the plot are the mean and standard deviation of the
similarity between the modules identified when a fraction of data is removed from the raw dataset and those identified with the full dataset.
doi:10.1371/journal.pone.0011730.g008
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among modules is described as a module relationship graph

(MRG) in which the nodes signify modules and an edge links two

nodes if their corresponding modules have a similarity above a

predefined threshold (for example, all the results in the main text

are based on 0.7). The IGMM method is simply stated as follows:

1. All of the pair-wise module similarity between module i and j

included in an initial module set MS0 = {M0
1,M0

2,M0
3,…} are

measured according to S
g
i,j;

2. We searched all of the cliques from the MRG, which are

defined as fully connected subgraphs of a graph mathematically

[44].

3. For each clique, the corresponding modules are coalesce to

form a single united module in which genes and tissues remain

if they are involved in no less than 80% members of the pre-

merged modules.

4. Through the above-mentioned steps, the module set is updated

from MSk21 to MSk = {Mk
1 ,Mk

2 ,Mk
3 ,…}. Repeat from step 1

until convergence: MSk21 = MSk.

To strictly meet the requirement of consistency, we further

refined the post-merged modules. We first computed the similarity

between the post-merged modules and its ISA-outputted counter-

parts using equations (4–6).

S
g
i,j ~

D Gi \Gj D
min(D Gi D,D Gj D)

ð4Þ

St
i,j ~

D Ti \Tj D
min(D Ti D,D Tj D)

ð5Þ

Sm
i,j ~ S

g
i,j | St

i,j ð6Þ

It is worth noting that the formula of module similarity differs from

Eqs. (1–3) in which the denominator of Eqs. (1–3) is reformatted

as the minimal cardinality of the two sets in Eqs. (4–6). We then

selected those post-merged modules which have 100% similarity

measured by Eqs. (4–6), when compared with their ISA-outputted

counterparts.

Expression coherence
The module expression coherence is defined as the average of

Pearson correlation coefficients of all pair-wise gene expression

profiles pertaining to the corresponding module across the 29

common tissues. The statistical significance is assessed by 10,000

independent gene sets randomly sampled from the 6,200

orthologs. To cover the different sizes of these modules, we

constructed five controls, four of which are composed of the gene

sets with an invariable size, the number of genes in each gene set in

the four controls ranging from 20 to 50 in ascending order; while

the fifth control consisted of the gene sets with variable size from

20 to 50 which was randomly determined. We observed that all

the controls gave rise to similar results; hence, all the analysis in

the main text is based on the fifth control data set.

Characteristic quantities in the context of module
For each gene involved in at least one module, we defined six

corresponding characteristic quantities in the context of module.

Without loss of generality, we assumed that a gene i (gi)

participates in n modules Mi
1,Mi

2,Mi
3,… and Mi

n, where the

superscript refers to the corresponding gene and the symbol Mi

denotes the module Mi (Gi, Ti) as defined before. Note that Ti

includes only those tissues which have a positive tissue score and a

module Mi
j is counted only if its corresponding Tj is not null. The

six variables are formulized as:

1. Number of modules = n, which define the number of modules

which contain the corresponding gene.

2. Number of interactors = |Gi
1 \Gi

2 \:::\Gi
n|, which count

how many neighbor genes interact with the corresponding

gene.

3. Number of interactions = |Gi
1|+|Gi

2|+…+|Gi
n|, which spec-

ify how many interactions between the neighbor genes and the

corresponding gene. This can be considered as the ‘‘weighted’’

version of ‘‘Number of interactors’’.

4. Number of tissues = |Ti
1 \Ti

2 \:::\Ti
n|, which measure the

number of tissues in which the corresponding gene is highly

expressed.

5. Number of tissues (repeated) = |Ti
1|+|Ti

2|+…+|Ti
n|, which

may be viewed as the ‘‘repeatable’’ Number of tissues. Note: a

tissue is counted k times only if it is associated with k different

modules which contain the corresponding gene.

6. Total constraint intensity = |Gi
1|||Ti

1|+|Gi
2|||Ti

2|+…+
|Gi

n|||Ti
n|, which calculates the total constraint force on a

gene as the summation of the constraint intensity exerted by

each module. And the constraint force of a module upon a

gene is conducted as the product of the size of corresponding

gene set and that of the corresponding tissue set.

Calculation of Ka/Ks
All the sequences of protein-coding genes of human (Build

NCBI36), mouse (Build NCBI37) and cow (Build NCBI3.1) were

retrieved from the Ensembl website [45]. The human-mouse-cow

orthologous (HMC triplex) relationship is specified by a mapping

file downloaded with the use of the BioMart tool [46]. For each

HMC triplex, we run the transAlign.pl script [47] which

implicitly invokes the ClustalW [48] tool to output aligned

sequences. Then, for each aligned HMC triplex, we infer the

human-mouse ancestral sequence using the cow ortholog as

outgroup by the baseml program [49] implemented in the PAML

package [50]. Synonymous (Ks) and nonsynonymous (Ka)

substitution rates were calculated for alignments of protein-

coding sequences using the LPB93 method [51] imbedded in the

yn00 program [52]. The lineage-specific Ka/Ks ratios were

computed by the comparison between the inferred sequences at

the human–mouse ancestral node and the sequences at the

human or mouse node.

Gene ontology analysis
GO provides three controlled vocabularies (ontologies) that

describe gene products in terms of their associated biological

processes, cellular components and molecular functions into

structured directed acyclic graphs (DAGs) [53]. To determine

the enriched GO terms of genes within a module, we conducted

GO enrichment analysis using the GO Term Finder package [37].

GO annotation files were downloaded from ftp://ftp.ebi.ac.uk/

pub/databases/GO/goa/ on December 10, 2008. GO ontology

file was downloaded from http://www.geneontology.org/ on

December 22, 2008.

Sensitivity test of modules
We created four groups of datasets (each group includes 20

human and 20 mouse gene expression matrixes) by randomly
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removing 5%, 10%, 15% and 20% genes of the original datasets,

we then identified the modules using the above-mentioned

approach. For each dataset, we obtained a similarity matrix by

calculating the pair-wise similarities by Eqa. (1). between the

whole modules and those identified when the full data were used

given Tc = 1.5 and Tg = 3.0. For the similarity matrix, we got the

maximal similarity value row-by-row (if the number of rows is less

than that of columns, otherwise we transpose the matrix) and

computed their mean (S). Then for each group, we calculated the

mean and the standard deviation of S, from which the robustness

of modules was evaluated.

Supporting Information

Table S1 List of 52 human modules.

Found at: doi:10.1371/journal.pone.0011730.s001 (0.04 MB

DOC)

Table S2 List of 65 mouse modules.

Found at: doi:10.1371/journal.pone.0011730.s002 (0.05 MB

DOC)

Table S3 Overlapped GO functional terms in five pairs of inter-

species modules.

Found at: doi:10.1371/journal.pone.0011730.s003 (0.04 MB

DOC)

Figure S1 Gene expression pattern across tissues. The y-axis

value is the logarithm of the gene expression level to the base 10.

Found at: doi:10.1371/journal.pone.0011730.s004 (1.54 MB

TIF)

Figure S2 Relationship between the number of modules and the

ISA thresholds used. (A) Human; (B) mouse. The number of

modules is proportional to the area of the ‘‘Ball.’’

Found at: doi:10.1371/journal.pone.0011730.s005 (0.14 MB

TIF)

Figure S3 Similarity of modules within and between species.

The heat map prominently displays a highly low similarity of

modules from between species in contrast to those within each

species. Rows and columns numbered 0–51 and 52–116 represent

the human and mouse modules, respectively.

Found at: doi:10.1371/journal.pone.0011730.s006 (0.42 MB TIF)

Figure S4 Hierarchical clustering graph of 117 (52 human and

65 mouse) modules. The tree indicates that only few pairs of the

modules, which are derived from the two species respectively, have

a relatively high overlap of genes. The filled cycles denote the

human modules, and the unfilled cycles denote the human mouse

modules.

Found at: doi:10.1371/journal.pone.0011730.s007 (0.87 MB TIF)

Figure S5 The statistical significance of the observed maximal

similarity. The plot shows that a majarity of the interspecies

modules have a low gene overlap. Note that a largest maximial

simialrity (0.451) is not shown only for aesthetics.

Found at: doi:10.1371/journal.pone.0011730.s008 (0.47 MB TIF)

Figure S6 Histograph of the Ks in human or mouse lineage.

Found at: doi:10.1371/journal.pone.0011730.s009 (0.11 MB TIF)

Acknowledgments

We thank the two anonymous reviewers for their insightful suggestions. We

are grateful to Zhenqing Ye for his kind help on the ISA code (python

language version) used in this study.

Author Contributions

Conceived and designed the experiments: RY BS. Performed the

experiments: RY. Analyzed the data: RY. Wrote the paper: RY BS.

References

1. Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, et al. (2005) A

scan for positively selected genes in the genomes of humans and chimpanzees.
PLoS Biol 3: e170.

2. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, et al.
(2000) Comparative genomics of the eukaryotes. Science 287: 2204–2215.

3. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, et al. (2004)
Ultraconserved elements in the human genome. Science 304: 1321–1325.

4. Glazov EA, Pheasant M, McGraw EA, Bejerano G, Mattick JS (2005)
Ultraconserved elements in insect genomes: a highly conserved intronic

sequence implicated in the control of homothorax mRNA splicing. Genome
Res 15: 800–808.

5. Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, et al. (2002) Molecular

evolution of FOXP2, a gene involved in speech and language. Nature 418:
869–872.

6. Wang YQ, Su B (2004) Molecular evolution of microcephalin, a gene
determining human brain size. Hum Mol Genet 13: 1131–1137.

7. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, et al. (2005)
Parallel patterns of evolution in the genomes and transcriptomes of humans and

chimpanzees. Science 309: 1850–1854.

8. Rifkin SA, Kim J, White KP (2003) Evolution of gene expression in the

Drosophila melanogaster subgroup. Nat Genet 33: 138–144.

9. Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome-

wide expression data of six organisms. PLoS Biol 2: E9.

10. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module

networks: identifying regulatory modules and their condition-specific regulators

from gene expression data. Nat Genet 34: 166–176.

11. Zhang B, Horvath S (2005) A general framework for weighted gene co-

expression network analysis. Stat Appl Genet Mol Biol 4: Article17.

12. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002)

Hierarchical organization of modularity in metabolic networks. Science 297:
1551–1555.

13. Tsaparas P, Marino-Ramirez L, Bodenreider O, Koonin EV, Jordan IK (2006)
Global similarity and local divergence in human and mouse gene co-expression

networks. BMC Evol Biol 6: 70.

14. Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW, et al. (2007)

Tissue-specific transcriptional regulation has diverged significantly between
human and mouse. Nat Genet 39: 730–732.

15. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic

determination of genetic network architecture. Nat Genet 22: 281–285.

16. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, et al. (1999) Interpreting

patterns of gene expression with self-organizing maps: methods and application
to hematopoietic differentiation. Proc Natl Acad Sci U S A 96: 2907–2912.

17. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:

14863–14868.

18. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, et al. (2002) Revealing

modular organization in the yeast transcriptional network. Nat Genet 31:
370–377.

19. Ihmels J, Bergmann S, Barkai N (2004) Defining transcription modules using

large-scale gene expression data. Bioinformatics 20: 1993–2003.

20. Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the

analysis of large-scale gene expression data. Phys Rev E Stat Nonlin Soft Matter
Phys 67: 031902.

21. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of
the mouse and human protein-encoding transcriptomes. Proc Natl Acad

Sci U S A 101: 6062–6067.

22. Freeman TC, Goldovsky L, Brosch M, van Dongen S, Maziere P, et al. (2007)

Construction, visualisation, and clustering of transcription networks from
microarray expression data. PLoS Comput Biol 3: 2032–2042.

23. Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout
analysis of genetic robustness in the yeast metabolic network. Nat Genet 38:

993–998.

24. Kitano H (2004) Biological robustness. Nat Rev Genet 5: 826–837.

25. Ihmels J, Bergmann S, Berman J, Barkai N (2005) Comparative gene expression

analysis by differential clustering approach: application to the Candida albicans
transcription program. PLoS Genet 1: e39.

26. Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the
metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22: 86–92.

27. Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome
and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29:

482–486.

28. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, et al. (2007) Network

modeling links breast cancer susceptibility and centrosome dysfunction. Nat
Genet 39: 1338–1349.

Modules in Human and Mouse

PLoS ONE | www.plosone.org 11 July 2010 | Volume 5 | Issue 7 | e11730



29. Wang Z, Zhang J (2007) In search of the biological significance of modular

structures in protein networks. PLoS Comput Biol 3: e107.
30. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002)

Evolutionary rate in the protein interaction network. Science 296: 750–752.

31. Fraser HB (2005) Modularity and evolutionary constraint on proteins. Nat
Genet 37: 351–352.

32. Segre D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast
metabolism. Nat Genet 37: 77–83.

33. Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, et al. (2008) A genomewide

functional network for the laboratory mouse. PLoS Comput Biol 4: e1000165.
34. Ramsay H, Rieseberg LH, Ritland K (2009) The correlation of evolutionary rate

with pathway position in plant terpenoid biosynthesis. Mol Biol Evol 26(5):
1045–1053.

35. Liao BY, Scott NM, Zhang J (2006) Impacts of gene essentiality, expression
pattern, and gene compactness on the evolutionary rate of mammalian proteins.

Mol Biol Evol 23: 2072–2080.

36. Kim PM, Sboner A, Xia Y, Gerstein M (2008) The role of disorder in
interaction networks: a structural analysis. Mol Syst Biol 4: 179.

37. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, et al. (2004) GO::TermFinder–
open source software for accessing Gene Ontology information and finding

significantly enriched Gene Ontology terms associated with a list of genes.

Bioinformatics 20: 3710–3715.
38. Wilson MD, Barbosa-Morais NL, Schmidt D, Conboy CM, Vanes L, et al.

(2008) Species-specific transcription in mice carrying human chromosome 21.
Science 322: 434–438.

39. Yu XJ, Zheng HK, Wang J, Wang W, Su B (2006) Detecting lineage-specific
adaptive evolution of brain-expressed genes in human using rhesus macaque as

outgroup. Genomics 88: 745–751.

40. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis.
Bioinformatics 18: 1585–1592.

41. Wu Z, Irizarry R, Gentleman R, Martinez-Murillo F, Spencer FA (2004) Model-
Based Background Adjustment for Oligonucleotide Expression Arrays. Journal

of the American Statistical Association 99: 909.

42. Yang J, Su AI, Li WH (2005) Gene expression evolves faster in narrowly than in

broadly expressed mammalian genes. Mol Biol Evol 22: 2113–2118.

43. Liao BY, Zhang J (2006) Low rates of expression profile divergence in highly

expressed genes and tissue-specific genes during mammalian evolution. Mol Biol

Evol 23: 1119–1128.

44. Chartrand G, Zhang P (2005) Introduction to graph theory. Boston: McGraw-

Hill Higher Education. xii, 449 p.

45. Glasner ME, Bergman NH, Bartel DP (2002) Metal ion requirements for

structure and catalysis of an RNA ligase ribozyme. Biochemistry 41: 8103–8112.

46. Smedley D, Haider S, Ballester B, Holland R, London D, et al. (2009) BioMart–

biological queries made easy. BMC Genomics 10: 22.

47. Bininda-Emonds OR (2005) transAlign: using amino acids to facilitate the

multiple alignment of protein-coding DNA sequences. BMC Bioinformatics 6:

156.

48. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673–4680.

49. Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral

nucleotide and amino acid sequences. Genetics 141: 1641–1650.

50. Yang Z (1997) PAML: a program package for phylogenetic analysis by

maximum likelihood. Comput Appl Biosci 13: 555–556.

51. Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and

interdependence between the genes. Mol Biol Evol 10: 271–281.

52. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous

substitution rates under realistic evolutionary models. Mol Biol Evol 17: 32–43.

53. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene

ontology: tool for the unification of biology. The Gene Ontology Consortium.

Nat Genet 25: 25–29.

54. Cleveland WS (1979) Robust locally weighted regression and smoothing

scatterplots. Journal of the American Statistical Association 74: 859–836.

Modules in Human and Mouse

PLoS ONE | www.plosone.org 12 July 2010 | Volume 5 | Issue 7 | e11730


