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Abstract: In this work, graphene oxide (GO) particles were modified with a nano-sized poly(butyl
acrylate) (PBA) layer to improve the hydrophobicity of the GO and improve compatibility with
PVDF. The improved hydrophobicity was elucidated using contact angle investigations, and exhibit
nearly 0◦ for neat GO and 102◦ for GO-PBA. Then, the neat GO and GO-PBA particles were mixed
with PVDF using a twin screw laboratory extruder. It was clearly shown that nano-sized PBA layer
acts as plasticizer and shifts glass transition temperature from −38.7 ◦C for neat PVDF to 45.2 ◦C
for PVDF/GO-PBA. Finally, the sensitivity to the vibrations of various frequencies was performed
and the piezoelectric constant in the thickness mode, d33, was calculated and its electrical load
independency were confirmed. Received values of the d33 were for neat PVDF 14.7 pC/N, for
PVDF/GO 20.6 pC/N and for PVDF/GO-PBA 26.2 pC/N showing significant improvement of the
vibration sensing and thus providing very promising systems for structural health monitoring and
data harvesting.

Keywords: SI-ATRP; graphene oxide; poly(vinylidene fluoride); dielectric properties; compatibility;
vibration sensing; d33

1. Introduction

Stimuli-responsive systems are of interest to the researcher, due to their smart and
in fact reversible behavior upon external input. For this purpose the electric field [1],
magnetic field [2], temperature [3], light [4–7] and pH stimulation [8] are in the majority
due to its rise in real-life applications. Another very important smart stimuli-responsive
behavior is generation of the electrical output under mechanical excitation also called
piezoelectric effect [9]. Such phenomenon finds an enormous application potential, in
the field of energy harvesting [10–12], tunable mechanical actuation [13,14] and various
sensors [15] including monitoring human actions [16–18]. In case of sensing applications,
the vibration control utilizing such piezo-active systems is very promising in the area
of structural health monitoring of civil structures such as bridges [19], they can also be
effectively used for aircraft main body structure control [20,21] and finally it seems to also
be applicable for controlling of unwanted vibrations of electrical machinery as a source of
certain defect exhibiting specific change in vibration profile [22].

For the aforementioned applications, piezoelectric materials such as various ceramics
based on lead zirconate titanate (PZT) [23], lead-free ceramics [24], are used in the majority
of cases. However, such materials are still very expensive, brittle and the durability
of such systems is short [25]. Therefore, the attention is focused on the more flexible
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materials with permanent piezoelectric properties. The main representative of this group
is poly(vinylidene difluoride) (PVDF) [26–28]. In this case their copolymers with trifluoro
ethylene (TrFE) [29] or hexafluoro propylene (HFP) [30,31] are also frequently used. In order
to improve the electro-active properties the addition of some fillers is usually employed,
i.e., zinc oxide (ZnO) [32], carbon nanotubes [33], graphene [13,34] or PZT [35]. Some
hybrid systems were also successfully applied [36]. Among these fillers, graphene oxide
(GO) PVDF composites showed very promising results of piezo-activity [37,38], even at low
filler loadings [39]. Generally, the piezo-activity of the PVDF and its copolymers is strongly
dependent on the crystalline phase, mainly on the β-phase content. Since the α-phase is
non-electroactive [40] the β and γ provide suitable electro-activity. [41] To obtain the PVDF
of desired piezoelectric properties the β-phase has to be developed. For this purpose, there
are various processing techniques to obtain such a PVDF system, i.e., stretching [42,43],
poling, electrospinning [44–46], melt-electrowriting [47] or a combination of them [48,49].

In agreement with the listed literature sources above, the compatibility of the par-
ticles and PVDF matrix seems to be crucial. In this respect the modification of the GO
particles with various polymers was already developed by our group, when enhanced
compatibility was obtained by grafting of poly(methyl methacrylate), poly(butyl methacry-
late), poly(styrene), poly(glycidyl methacrylate) and finally, poly(trimethylsilyloxyethyl
methacrylate) [50–52], and thus their stimuli-responsive capabilities were significantly
improved. Moreover, such approach provides a considerably softer and more flexible
composite than observed for composites consisting of neat particles [53].

Therefore, our present study is mainly focused on the development of a flexible sensor
able to detect the vibrations at a wide range of frequencies and it is still independent of the
applied electrical load. Thus, GO grafted particles with poly(butyl acrylate) brushes were
synthesized and their effect on the physical as well as vibration sensing capabilities was
investigated.

2. Materials and Methods
2.1. Materials

Graphite (powder, <20 µm,) as a starting material was applied for fabrication of GO
particles. Sulfuric acid (H2SO4, reagent grade, 95–98%), sodium nitrate (NaNO3, ACS
reagent, ≥99%), potassium permanganate (KMnO4, 97%) and hydrogen peroxide (H2O2,
ACS reagent, 29.0–32.0 wt.% H2O2 basis). Double functional ATRP initiator 2-bromo
propionyl bromide (BPB, 98%) was covalently bonded to GO particles. Initiator functional-
ization was performed with triethyleneamine (TEA, ≥99%). n-butyl methacrylate (n-BA,
99%), ethyl 2-bromopropionate (EBP, 98%), N,N,N′,N”,N”-pentamethyldiethylenetriamine
(PMDETA, ≥99%), copper bromide (CuBr, ≥99%) and anisole (ACS reagent, 99%) were
also used. Dimethyl formamid (DMF) (ACS reagent, anhydrous, ≥99%) and diethyl ether
(ACS reagent, anhydrous, ≥99%) were used as purifying and drying agents. All chemicals
were received from (Sigma Aldrich, St. Louis, MO USA) and were used without further
purification (except for n-BA). n-BA was purified by passing through a neutral alumina
column to remove MEHQ inhibitor prior to its use. Tetrahydrofurane (THF, p.a.), acetone
(p.a.), ethanol (absolute anhydrous, p.a.), toluene (p.a.) and hydrochloric acid (HCl, 35%,
p.a.) were obtained from (Penta Labs, Prague, Czech Republic). Deionized water (DW) was
used during all experimental processes and washing routines. Poly(vinyl fluoride) (PVDF)
Mn = 107,000 g/mol (Sigma Aldrich, St. Louis, MO, USA) was used as received.

2.2. Fabrication of the GO-PBA Hybrid Particles

The GO particles were synthesized and functionalized with ATRP initiator and finally
grafted with PBA brushes according to our previously published papers [54–56] and is
properly described in Figure 1. The last step of modification (polymerization of PBA
from the surface of the GO particles) is described as follows. Three grams of GO particles
were placed to the 250 mL Schlenk flask and filled with argon. The monomer n-BA
(150 mmol), initiator EBP (1.5 mmol), PMDETA (6 mmol) and anisole (30 mL, 50 vol.% of
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whole mixture) were added under argon atmosphere. Reaction mixture was degassed and
4 freeze-pump-thaw cycles were performed. To the frozen mixture the CuBr was added
(1.5 mmol) again under argon flow. The molar ratio between the individual components
[n-BA][EPB]:[CuBr]:[PMDETA] was set to [100]:[1]:[1]:[4]. The reaction mixture was put
into the pre-heated oil bath and carried out for 16 h at 80 ◦C. Reaction was controlled over
2 h. The product was filtered using DMF and diethyl ether. Finally, the product was dried
using lyophilization upon constant weight and stored in a desiccator.
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2.3. Characterization of the Neat GO and GO-PBA Particles
1H nuclear magnetic resonance (NMR) spectra were recorded at 25 ◦C using an

instrument (400 MHz VNMRS Varian, Tokyo, Japan) with deuterated chloroform (CDCl3)
as a solvent. The molar mass and polydispersity (Ð) of PBA chains were investigated
using gel permeation chromatography (GPC) on the GPC instrument (PL-GPC220, Agilent,
Tokyo, Japan) equipped with GPC columns (Waters 515 pump, two PSS SDV 5 µm columns
(diameter of 8 mm, length of 300 mm, 500 Å + 105 Å)) and a Waters 410 differential refractive
index detector tempered to 30 ◦C. The samples for NMR spectroscopy and GPC analysis
were prepared by dilution with CDCl3 and THF, respectively, followed by the purification
process, in which they were passed through a neutral alumina column. Transmission
electron microscopy (TEM, JEM-2100Plus, Jeol, Tokyo, Japan) was used for investigation of
the proper GO and GO-PBA fabrication. The following procedure for sample preparation
was used: powders were dispersed in acetone using mechanical agitation for 5 min and
2 min of sonication with subsequent dropping of the dispersion onto a copper grid. Fourier
transform infrared (FTIR) spectra (64 scans, resolution of 4 cm−1) were recorded on a
Nicolet 6700 (Thermo Fisher Scientific, Waltham, MA, USA) within a wavenumber range
of 3600–600 cm−1, while the ATR technique with a germanium crystal was employed.
The spectra were recorded at room temperature. The thermo-oxidation decomposition of
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the samples was monitored on-line using a thermogravimetric analyzer (TGA) operating
in an oxygen atmosphere coupled with FTIR with a help of a Nicolet iS10 equipped
with TGA-IR module (Thermo Fisher Scientific, Waltham, MA, USA). The Raman spectra
(3 scans, resolution of 2 cm−1) were collected on a Nicolet DXR (Thermo Fisher Scientific,
Waltham, MA, USA) using an excitation wavelength of 532 nm. The integration time was
30 s, while the laser power on the surface was set to 1 mW. The powders were compressed
into the form of pellets (diameter of 13 mm, thickness of 1 mm) on a laboratory hydraulic
press (Trystom Olomouc, H-62, Olomouc, Czech Republic). The pellets were used for
electrical conductivity measurements as well as for contact angle (CA) determination. The
former investigation was performed by two-point method at laboratory temperature with
the help of an electrometer (Keithley 6517B, USA). The latter one was evaluated from the
static sessile drop method carried out on a surface energy evaluation system equipped
with a CCD camera (Advex Instruments, Brno-Komín, Czech Republic). A droplet (5 µL)
of PDMS was carefully dripped onto the surface and the CA value was recorded. The
presented CA results are the average values from 10 independent measurements.

2.4. Composites Fabrication and Poling Procedure

PVDF-based composites containing neat GO as well as GO-PBA particles were mixed
using a laboratory twin-screw extruder Brabender (Duisburg, Germany). The temperature
was set to 190 ◦C and 60 rpm of screws was used. Based on our previous research, as
the β-phase content in the GO-PVDF composites was significantly enhanced for low filler
contents [39], 1 vol. % of particles was utilized. The neat PVDF and GO-based composites
were then poled using high electric field (10 kV mm−1) by high voltage source (TREK,
Advanced Energy, Denver, CO, USA), two electrodes with 25 mm diameter were used to
achieve sufficient electric field strength.

2.5. Composites Characterization

The crystalline phase, namely, α-phase and β-phase, was investigated in the prepared
composites using a MiniFlex600 XRD diffractometer (Japan, RIGAKU) with Co Kα source
(operating at 40 kV and 20 mA) and scan range 2 θ between 5 and 45◦. The calculation of
the β-phase content present in the investigated samples was performed using FTIR spectra
and Equation (1) was used.

F(β) =
Aβ

κβ

κβ
Aα + Aβ

(1)

where Aα and Aβ are values of absorbance corresponding to the wavenumbers 762 cm−1

and 840 cm−1, respectively. The κα and κβ are absorption coefficients for α-crystalline
phase and β-crystalline phase, having values 6.1× 104 cm2 mol−1 and 7.7× 104 cm2 mol−1,
respectively [47]. The results from Equation (1) are summarized in Table 1. The spectra
were collected using a Nicolet 6700 (Thermo Fisher Scientific, Waltham, MA, USA) within
a wavenumber range of 3600–600 cm−1, ATR mode and germanium crystal. Differential
scanning calorimetry (DSC) was used to calculate the crystallinity, Xc, of the GO-based
PVDF composites using DSC 1 (Mettler Toledo, Switzerland) in the temperature range from
−60 to 230 ◦C and Equation (2) was employed for this purpose [45]. Results from the DSC
investigations are summarized in Table 1:

Table 1. Summarized values of the DSC for neat PVDF and PVDF GO-PBA.

Sample code Tm (◦C) ∆Hm (J
g−1) Tc (◦C) ∆Hc (J g−1) Xc (%)

neat PVDF 171.7 42.0 134.1 51.7 40.2
PVDF/GO-PBA 173.2 54.6 132.8 62.4 52.3

Xc =
∆Hm

∆H0
m
× 100 (2)
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where ∆Hm is the heat of fusion for individual samples and ∆Hm
0 is the heat of fusion

obtained for 100% crystalline PVDF (104.5 J g−1).
Rheological properties were investigated using a MCR-502 rotational rheometer (An-

ton Paar, Graz, Austria). The viscoelastic properties were investigated in the linear vis-
coelastic region at 1% strain deformation. The frequency sweep was set from 0.1 to 10 Hz
and temperatures of 150, 170 and 190 ◦C. Dynamic mechanical analysis at frequency 1 Hz,
deformation 0.1% in broad temperature range from −40 up to 100 ◦C, was investigated
using DMA 1 (Mettler Toledo, Greifensee, Switzerland). The dielectric spectroscopy in
temperature range from −150 to 100 ◦C and in frequency range from 10−1 to 107 Hz was
employed to investigate the polymer chain dynamics using Novocontrol CONCEP 40
(Novocontrol, Montabaur, Germany).

The relaxation process of the side chains was evaluated through activation energies
calculated from Arrhenius equation Equation (3) [57]:

fβ = f∞ exp
(

Ea

kBT

)
(3)

where Ea is the activation energy and f ∞ is the pre-exponential factor and T is temperature
in Kelvin and kB is Boltzmann constant.

Other relaxation processes connected to the main backbone movement where calcu-
lated using the Vogel–Fulcher–Tamman equation Equation (4) [58]:

f = f0 exp
(

Ea

kB(T − T0)

)
(4)

where, f is the relaxation frequency, f 0 is the pre-exponential factor, Ea is the activation
energy, T is the thermodynamic temperature, T0 is Vogel temperature and kB is the Boltz-
mann’s constant.

Vibration sensing capability of the fabricated composite systems based on neat GO
and GO-PBA particles mixed with PVDF matrix was measured in the thickness mode and
d33 piezoelectric constant was performed similarly as in our previous publications [59,60].

3. Results and Discussion
3.1. Grafting of the Neat GO Particles with Poly(Butyl Acrylate) Brushes

The successful polymerization procedure was confirmed using 1HNMR from which
the presence of the polymer can be obvious (Figure 2a) and the corresponding amount
of unreacted monomer was also calculated. Then the PBA polymer was analyzed using
GPC and molecular weight and polydispersity index was elucidated (Figure 2b). It was
confirmed that, resulting Mn of the final PBA was 5400 g mol−1, which is in good agree-
ment with 44% calculated from 1HNMR spectra. Very narrow PDI, clearly indicated that
synthesized polymer is in the form of brushes. All results are summarized in the Table 2.

Table 2. Reaction conditions for the performed grafting of PBA from the GO surface.

Sample name M a I a L a CuBr Mn
b (g mol−1) Ð b Conversion c (%)

GO-PBA—2 h 100 1 4 1 5400 1.16 44
a M, I, L represents the monomer, sacrificial initiator and ligand; b according to GPC; c according to 1H NMR.

The successful fabrication of the neat GO from the graphite using modified Hummers
method is confirmed in the Figure 3a. The well-exfoliated GO can be clearly seen as only
a single sheet is present, similarly as that also shown by other research groups [61]. The
modification of the GO by PBA brushes grafted from the surface is visible as a flossy-like
coverage in Figure 3b and showing the successful coating.
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As another confirmation of the successfully synthesized GO and GO-PBA hybrid
sheets, TGA with online monitoring of FTIR during decomposition was performed and
evaluated (Figure 4). It can be seen that neat GO contains oxygen containing groups
whose decomposition temperatures start from 180 ◦C and finish at 260 ◦C, which was also
shown as absorption bands from FTIR for -OH (3510 cm−1), C=O (1723 cm−1) and C-OH
(1428 cm−1). The coating of the GO with PBA brushes can be clearly seen in the range from
240 to 420 ◦C, which is the typical range for decomposition of the PBA material [62]. In
this range the FTIR signal was also collected and provided information about the present
groups corresponding mainly to the PBA coating. Absorption bands for CH3 and CH2
are presented at 2965 cm−1 and 2742 cm−1, in the cases of C=O and C-O-C the signal at
1728 cm−1 and 1428 cm−1 was observed, respectively.
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Since sustainable morphology is very important for the application of the GO sheets
as well as their non-conducting nature, the Raman spectra of both powder systems were
performed. It can be seen, that in both cases, the 2D structure of the graphene was observed
as the absorption in the range from 2500 to 3000 cm−1. Thus, the modification of GO
with PBA polymer brushes does not significantly affect the morphology, which is in good
agreement with the TEM observations. Moreover, the conductivity of the GO systems
is very important from the vibration sensing applicability point of view. PVDF based
composites exhibiting conducting character are not capable of being efficient as electrome-
chanical actuators or sensors to collect sufficient signal from vibration. In our case, the
GO-PBA powder has conductivity only 9.6 × 10−6 S cm−1 indicating that if we use only
0.1 vol. % of powder in PVDF, we are still under percolation and therefore not providing the
conducting pathway, only just increasing the amount of the dipoles in the system, which
should positively contribute to the enhanced vibration sensing capability. However, as was
already observed in our group, the conductivity of the GO can be controllably tuned using
surface-initiated atom transfer radical polymerization (SI-ATRP) procedure in various
manners. For very fine tuning, to achieve the system with slightly higher conductivity
than GO, low ratio between catalyst and ligand and temperatures below 80 ◦C have to be
utilized [51]. On the other hand, when the conductivity needs to be decreased significantly
and the polymer shell needs to be well-developed, the temperature of 80 ◦C and high ratio
between the ligand and catalyst needs to be used [56]. The reduction of the GO can be
confirmed by the Raman spectra when absorption bands for D and G peaks highlighted in
Figure 5 are evaluated. In this case, the ratio between the ID to IG is usually less than one
for non-conducting and oxidized forms of graphene oxide and higher than one for reduced
forms. In our case, only a slight increase was observed from 0.92 to 1.05 for neat GO and
GO-PBA, respectively.
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Figure 5. Raman spectra and electrical conductivities for neat GO (a) and GO-PBA (b) particles.

Compatibility of the particles and polymer matrix plays a crucial role for the overall
performance of the prepared composites mainly from the mechanical point of view. In
this case, since the GO surface is strongly hydrophilic, the water drop was not able to
be measured. The drop which is present in Figure 6a is just to represent the place where
the drop was deposited. On the other hand, after the modification of the GO with PBA
brushes, the surfaces of the particles change rapidly and calculated contact angle was 102◦

(Figure 6b), showing the considerably changed surface properties and thus the proper
compatibility of the filler with PVDF can be expected and was investigated further using
rheological measurements.

Int. J. Mol. Sci. 2022, 23, x 9 of 18 
 

 

only a slight increase was observed from 0.92 to 1.05 for neat GO and GO-PBA, 
respectively. 

 

 
Figure 5. Raman spectra and electrical conductivities for neat GO (a) and GO-PBA (b) particles. 

Compatibility of the particles and polymer matrix plays a crucial role for the overall 
performance of the prepared composites mainly from the mechanical point of view. In 
this case, since the GO surface is strongly hydrophilic, the water drop was not able to be 
measured. The drop which is present in Figure 6a is just to represent the place where the 
drop was deposited. On the other hand, after the modification of the GO with PBA 
brushes, the surfaces of the particles change rapidly and calculated contact angle was 
102° (Figure 6b), showing the considerably changed surface properties and thus the 
proper compatibility of the filler with PVDF can be expected and was investigated 
further using rheological measurements. 

 
Figure 6. Contact angle measurements using sessile drop method of neat GO (a) and GO-PBA (b). 

For the investigation of the compatibility between the GO particles and PVDF 
matrix, rheological investigation was performed (Figure 7). In the previous study, we 
observed significantly improved compatibility for GO modified with poly(methyl 
methacrylate) in elastomeric matrix in comparison to neat GO by shifting of the 
crossover points to higher frequencies [63] which was also observed by other research 
groups. In our case, the crossover point is not visible, however, the trends at various 
temperatures are clearly observed and show that possible crossover points will appear 
for GO-PBA-based composite at the latest. Generally, the neat GO-based composites 
behave very similarly to that of the neat PVDF matrix, however, significant softening, 

Figure 6. Contact angle measurements using sessile drop method of neat GO (a) and GO-PBA (b).

For the investigation of the compatibility between the GO particles and PVDF matrix,
rheological investigation was performed (Figure 7). In the previous study, we observed
significantly improved compatibility for GO modified with poly(methyl methacrylate)
in elastomeric matrix in comparison to neat GO by shifting of the crossover points to
higher frequencies [63] which was also observed by other research groups. In our case,
the crossover point is not visible, however, the trends at various temperatures are clearly
observed and show that possible crossover points will appear for GO-PBA-based composite
at the latest. Generally, the neat GO-based composites behave very similarly to that of the
neat PVDF matrix, however, significant softening, due to the presence of short polymer
brushes, was observed for PVDF/GO-PBA composites.
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Changes in the compatibility between the GO-PBA and PVDF are reflected in the
primary crystalline structure. Especially, for the composites containing the PVDF, this crys-
tallinity is very crucial from the applicability point of view. Therefore, the transformation
of the α-phase to β-phase was calculated. In the case of all samples (Figure 8) the peaks
for these crystalline phases are assigned. The neat PVDF showed relatively high amount
of the α-phase since the peaks at 762 cm−1 and 795 cm−1 are clearly visible. On the other
hand, the neat GO added to the PVDF causes considerable enhancement of the β-phase
as was already published [34,39] and the α-phase was suppressed as well. However, the
modification of the GO with PBA brushes provides more restricted development of the
α-phase and on the other hand, even enhanced β-phase in comparison to PVDF/GO com-
posite. In this case, the β-phase was calculated to be 39%, which is slightly lower than
published by others [45,47], however, still very close. However, the PVDF composites
showing considerable increase to 76% and 85% for neat PVDF-GO and PVDF/GO-PBA,
respectively.
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In order to confirm that the transformation of the crystalline α-phase to β-phase was
successfully performed, the XRD as a comparative method to FTIR was used and presented
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as is usual for similar PVDF-based systems [44,45]. As can be seen in the Figure 9, in
the neat PVDF sample the peaks for α-phase are present at 20.8◦ and 21.6◦ while for the
β-phase they are present at 23.4◦. However, after the addition of the neat GO particles
into the PVDF, the peaks for α-phase were considerably suppressed and peak for β-phase
was slightly shifted to the higher angles. Moreover, such phenomenon was even enhanced
for composites containing GO-PBA particles and the β-phase peak appeared as more
significant, due to the presence of the GO-PBA particles as an active filler. The values of
the peaks for β-phase were found to be 23.7◦ and 24.1 for PVDF/GO and PVDF/GO-PBA,
respectively.
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3.1.1. Differential Scanning Calorimetry

To confirm the improvement in the development of the crystallinity which is a crucial
factor influencing the d33 coefficient, the calorimetric properties (Table 2) of the prepared
samples were investigated. As can be seen the amount of the crystalline phase was en-
hanced, due to the presence of the GO-PBA particles, these act as nucleating agents. The
melting enthalpy, ∆Hm, increased from 42.0 to 54.6 J g−1. Moreover, the enthalpy of crystal-
lization increased as well. Final crystallinity, Xc, increased significantly from 40.2% for neat
PVDF to 52.2% for PVDF/GO-PBA. Therefore, also as expected, that higher amount of the
β-phase will finally be transformed as was confirmed by XRD and FTIR investigations.

3.1.2. Dynamic Mechanical Analysis

The mechanical properties are very important for the application of the PVDF as struc-
tural health monitoring sensors, since those sensors are exposed to significant vibrations,
and thus dynamic mechanical stimulation. In this respect, the DMA investigation was
performed and evaluated in a broad temperature range from −150 to 100 ◦C (Figure 10).
This range was chosen, due to the possible investigation of the Tg and impact of the grafting
on the dynamic mechanical capability. It is not expected that PVDF-based sensors will be
applied below −60 ◦C and above 80 ◦C; even though the storage modulus is very stable
up to −145 ◦C. Generally, the storage modulus is very similar for all investigated samples.
Below the Tg, the highest values were obtained for sample PVDF/GO-PBA, and this trend
continued above and from approximately 25 ◦C, the storage moduli (Figure 10a) starts
to drop but in a similar way for all investigated samples. In case of tan δ investigations,
the position of the Tg was mainly estimated. Neat PVDF exhibits Tg at −38.7 ◦C, which
is in agreement with other literature sources [64]. The slight shift to lower temperatures
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was also obtained for sample PVDF/GO, however, significant shift of lower temperatures
to −45.2 ◦C (Figure 10b) is visible in sample PVDF/GO-PBA, due to the presence of the
short polymer brushes, those acting as a plasticizer. Similar behavior was also already
published by our group in the case of carbonyl iron [53] as well as carbon nanotubes [65].
Furthermore, the value of the tan δ is significantly higher, showing that samples are more
ductile in the whole investigated temperature range. Finally, it can be seen that sample
PVDF/GO-PBA exhibits more plasticized structure, and thus can provide better sensing
capability upon vibration stimulation as is shown in the last part of this paper.
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3.1.3. Dielectric Properties

Broadband dielectric spectroscopy was used as a useful tool for characterization of the
polymer chain dynamic for neat PVDF as well as composites containing GO and GO-PBA
particles. For all investigated systems the main three relaxations were found (Figure 11a–c),
similarly as was published elsewhere [66] in the case of PVDF (α and β relaxations) and
also that such kinds of semicrystalline polymers exhibit interfacial, also called Maxwell–
Wagner–Sillars (MWS) [67]. The β relaxation is connected to the side fluorine groups
and can be visible in the temperature range −90 up to −60 ◦C. The relaxation as a main
polymer chain relaxation is visible close to −50–0 ◦C depends on the applied temperature.
Finally, MWS relaxation, which is very usual for PVDF-based materials and composites,
are present at high temperatures and low frequencies [68,69]. However, to be able to clearly
see this MWS relaxation, the relative permittivity and dielectric losses were recalculated
to the dielectric loss modulus expression similarly as in our previous publications [70,71].
As can be seen from Table 3, the activation energy calculated from the dielectric map
(Figure 11d), β relaxation increases with addition of the neat GO particles and reaches
the highest values 25.9 kJ mol−1 for PVDF/GO-PBA, indicating that the motion of the
fluorine side groups are significantly restricted and fixed in the β-phase position as was
confirmed by XRD and FTIR. In the case of the main polymer chain, the activation energy
decreases with GO addition indicating a more flexible polymer chain and is the lowest
(6.0 kJ mol−1) for the PVDF/GO-PBA sample, showing that Tg was significantly decreased,
due to the presence of the short PBA chains, those acting as plasticizers. These results are
in agreement with those obtained in the case of results from dynamic mechanical analysis.
Finally, the activation energy calculated for MWS relaxation is the highest for the neat
PVDF, most probably due to the presence of the α-crystalline phase. Further, development
and suppression of the α-phase substantially decrease the value of activation energy and
allow the ion more intensified transport and reaction of the electric field since the relaxation
time is the lowest for sample PVDF/GO-PBA.
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Table 3. Summarized parameters of the Arrhenius and VFT model fit for fabricated samples.

Sample Name VFT α-Relaxation PVDF VFT MWS-Relaxation PVDF Arrhenius
β-Relaxation -CF2

τ0 (s−1) T0 (K) B
(kJ mol−1) τo (s−1) T0 (K) B

(kJ mol−1)
Ea

(kJ mol−1)

Neat PVDF 2.1·10−11 187 6.5 2.84·10−11 125 31.0 21.0
PVDF/GO 2.1·10−11 185 6.4 2.66·10−11 136 29.9 22.2

PVDF/GO-PBA 2.1·10−11 182 6.0 2.53·10−11 153 26.7 25.9

3.1.4. Vibration Sensing

In the framework of all the performed experiments and characterizations in this paper
and to show that SI-ATRP modification of the GO is a useful tool for the implementation
of this techniques for vibration sensor fabrication, vibration sensing capabilities were
investigated. It can be seen that neat PVDF showing the lowest response to the vibration
(Figure 12a) in comparison to the PVDG/GO (Figure 12b) and PVDF/GO-PBA (Figure 12c).
However, the response can be intensified by increased used resistance. Furthermore, the
response on the samples is smaller for low applied frequencies of vibration and further
increases. This phenomenon is similar to those obtained is our previous work [60,72].
Finally, the d33 piezoelectric constant was calculated and it can be seen (Figure 13) that neat
PVDF shows 14.7 ± 0.1 pC/N. The presence of the neat GO as the filler slightly improves it
up to 20.6± 0.4 pC/N, due to the possible larger amount of charges present on the interface
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of GO. Finally, the PVDF/GO-PBA shows very promising 26.2 ± 0.1 pC/N, mainly due to
the proper polymer dispersion due to the enhanced contact angle, better charge transport
and also electromechanical properties due to the well-developed β-crystalline phase. All
these benefits were possible due to the application of the short PBA brushes on the surface
of GO particles.
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4. Conclusions

In this paper, the GO-PBA hybrid particles were synthesized using the SI-ATRP ap-
proach and provide nanometer scale coating on the surface of GO. The nature of polymer
and basic characterizations were performed using NMR and GPC techniques. The confir-
mation of the presence of the PBA coating on the GO particles was done using a TGA-FTIR
coupled device and TEM microscopy. The main changes in the electrical conductivity after
coating with PBA was investigated using a four-probe method and Raman spectroscopy.
The significant change of the surface properties and thus improved compatibility between
GO-PBA particles and PVDF was due to the significantly enhanced water contact angle
from nearly 0◦ for GO and 102◦ for GO-PBA particles. The fabricated composites of GO and
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GO-PBA and PVDF using a twin-screw extrusion process were analyzed from the structural
and physical properties point of view. It was investigated that due to the presence of the
GO-PBA containing short polymer brushes and more restricted situation in PVDF, the
β-phase transformation was more successful (85%) in comparison to neat PVDF (39%) and
PVDF/GO (76%). This observation was also confirmed by XRD and moreover DSC results
showed increased crystallinity from 40.2% for neat PVDF to 52.3% for PVDF/GO-PBA. The
one main finding in this paper is that nano-sized PBA layers act as plasticizers in the case
of PVDF matrix and shift the glass transition temperature from −38.7 to −45.2 ◦C for neat
PVDF and PVDF/GO-PBA, respectively. Similar findings were confirmed by dielectric
spectroscopy, where the activation energy of α relaxation for PVDF/GO-PBA is the lowest
and reaches 6.0 kJ mol−1. Finally, the vibration sensing in the broad frequency range and
various load resistances were investigated and it was shown that due to the proper GO-PBA
dispersion, a more flexible composite based on GO-PBA was prepared; the highest d33
piezoelectric constant (26.2 pC/N) in comparison to neat PVDF (14.7 pC/N) and PVDF/GO
(20.6 pC/N) was obtained.
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