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y of impact damage on yellow
peaches based on reflectance, absorbance and
Kubelka–Munk spectral data†

Bin Li, Feng Zhang, Yande Liu, Hai Yin, Jiping Zou and Aiguo Ou-yang *

Impact damage is one of themain forms of damage during the postharvest transportation and processing of

yellow peaches. Thus, a quantitative prediction of the impact damage degree of yellow peaches is

significant for their postharvest grading. In the present study, mechanical parameters such as the

damage area, absorbed energy and maximum force were obtained based on a single pendulum collision

device and an intelligent data acquisition system. The reflection spectra (R) of the damaged areas of

yellow peaches were collected by a hyperspectral imaging system and transformed into absorbance (A)

spectra and Kubelka–Munk (K–M) spectra. The R, A and K–M spectra were preprocessed by standard

normal variables (SNV), moving average (MA) and Gaussian filtering (GF). Partial least squares regression

(PLSR) models and support vector regression (SVR) models based on original and preprocessed spectra

were established, respectively. By comparative analysis, the spectral data with better prediction

performance (raw or preprocessed spectra) were selected from all spectra, and the characteristic

wavelengths were selected by competitive adaptive reweighted sampling (CARS) and uninformative

variable elimination (UVE). The PLSR and SVR models based on characteristic wavelengths were

established. The results revealed that the prediction performance of the K–M-GF-CARS-PLSR model is

the best. For the damage area, absorbed energy and maximum force, the RP
2 and RMSEP of the K–M-

GF-CARS-PLSR model were 0.870 and 77.865 mm2, 0.772 and 1.065 J, 0.895 and 47.996 N, respectively.

Furthermore, the values of their RPD were 2.700, 1.768 and 3.050, respectively. The characteristic

wavelengths of the model were 18.8%, 10.2% and 21.6%, respectively. The results of this study showed

that there was a strong correlation between the mechanical parameters and K–M spectrum, which

demonstrates the feasibility of quantitatively predicting the damage degree of yellow peaches based on

the K–M spectrum. Therefore, the results of this work not only provide theoretical guidance for the

postharvest grading of fruits, but also enrich the theoretical system of biomechanics.
1. Introduction

Yellow peaches have become an important part of the human
dietary structure due to their delicious taste and rich nutri-
tion.1,2 With the continuous improvement of agricultural
mechanization, the mechanical damage of yellow peaches
usually occurs in the process of picking, transporting and
packing.3,4 Damaged yellow peaches are not only more suscep-
tible to rot but also affect other intact yellow peaches, resulting
in economic losses.5,6 Mechanical damage mainly includes
static pressure damage, vibration damage, puncture damage
and impact damage, among which impact damage is the most
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serious and prone to occur.7 If the damage degree of the fruit
can be quantitatively evaluated, the economic losses will be
reduced by grading fruit based on their damage degree.8–10

At present, mechanical parameters have become one of the
main methods to evaluate the damage degree of fruit. The
mechanical parameters that can be used to quantitatively assess
the damage degree of fruits mainly include damage area,
damage volume, impact energy, absorbed energy, impact
acceleration, peak force and maximum stress.11–13 A large
number of studies on the mechanical properties of fruit have
been reported. An et al.14 investigated the tissue damage
mechanism of strawberries by compression tests at different
velocities and found that the absorbed energy was a suitable
and easily measured mechanical parameter for evaluating the
damage degree of strawberries. Wang et al.15 used the modulus
of elasticity to characterize the damage degree of litchi, and the
effect of impact times and absorbed energy on the damage
degree of litchi was investigated. Yeşim et al.16 used electronic
fruit (IRD) to simulate impact tests on peaches, which recorded
© 2022 The Author(s). Published by the Royal Society of Chemistry
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the peak impact acceleration and velocity changes. The damage
thresholds for different varieties of peaches were determined by
evaluating the relationship between the peak acceleration and
velocity of peaches and the damage area of peaches. The above
studies conrmed that mechanical parameters can be used to
characterize the damage degree of fruit, and the relationship
between different mechanical parameters and damage degree
was analyzed. However, a quantitative prediction of the damage
degree has not been achieved in these studies.

In recent years, with the continuous development of hyper-
spectral imaging technology, an increasing number of people
have been using it to detect the internal quality and external
damage of fresh fruits.17 Hyperspectral imaging (HSI) is an
emerging technology that provides simultaneous spatial and
spectral information of the object being detected.18 A large
number of scholars have established classication models for
the quality of multiple fruits based on hyperspectral imaging.
Liu et al.19 utilized image information combined with spectral
information to identify strawberry damage defects, and PLS-DA,
SVM and BPNN models were established. The results showed
that SVM had the best classication effect. Tan et al.20 estab-
lished GS-SVM models based on the spectral information of
apple damage regions with a correct discrimination rate of over
95% for the four-damage degrees. Zhu et al.21 used near-infrared
hyperspectral imaging to rapidly detect slight bruises on apples
aer 1–3 days. Many researchers used spectral information
combined with the physicochemical properties of fruit (e.g.,
soluble solids content, titratable acids, sugar content, esh
color and rmness) to detect the bruise defects of fruit.22,23

However, there are few studies based on hyperspectral imaging
and mechanical parameters to characterize the damage degree
of fruit. Xu et al.24 measured the mechanical parameters of
apples during dropping by pressure sensitive lm technology
and collected hyperspectral data in the range of 900–1700 nm
and established a quantitative prediction model based on the
mechanical parameters of apples. Zhang et al.25 obtained the
absorbed energy, maximum force and damage area during
apple dropping by pressure-sensitive lm technique and high-
speed camera, and Full-SVM, PCA-SVM and SPA-SVM quanti-
tative prediction models were established. The results showed
that PCA-SVM had better prediction performance for mechan-
ical parameters. However, the above research only used reec-
tance spectra for the model, and the robustness of the model
remains to be improved.

In order to nd a model with better prediction accuracy,
three kinds of spectral data (R, A and K–M) are used to quan-
titatively predict the mechanical parameters of yellow peaches
in this study. The specic objectives of this work are to
preprocess three kinds of spectral data by standard normal
transform (SNV), moving average (MA) and Gaussian lter (GF),
and the characteristic wavelengths are selected by competitive
adaptive reweighting (CARS) and uninformative variable elimi-
nation (UVE). The partial least squares regression (PLSR) and
support vector regression (SVR) quantitative prediction models
based on the three spectral data are established. The best model
for predicting mechanical parameters is selected by comparing
the predictive performance of all models. The results of this
© 2022 The Author(s). Published by the Royal Society of Chemistry
study will not only provide theoretical guidance for fruit
grading, but also enrich the theoretical system of biomechanics.
2. Materials and methods
2.1 Yellow peach samples

Yellow peaches were purchased from the local fruit market in
Nanchang. These yellow peaches were stored at 4 �C for less
than 3 weeks. A total of 180 fresh yellow peaches of similar size
without any mechanical damage and disease were selected for
this experiment. In order to reduce the effect of the mass and
curvature radius of the yellow peaches on the impact damage,
the mass of all yellow peaches ranged from 243 to 253 g, and the
equatorial diameter range was 75 to 81 mm. Prior to the colli-
sion experiment, all yellow peaches were randomly divided into
six groups and numbered. All yellow peaches were stored at
room temperature of 20 �C and a relative humidity of 40% for 24
hours to reduce the effect of temperature on the experimental
results.
2.2 Collision experiment

In this study, a collision system for the impact test was designed
based on the pendulum principle.26 Its structure is shown in
Fig. 1. Fig. 1(a) shows the front view of the experimental device,
which is composed of a frame and base, and the force sensor is
installed on a steel plate that can be vertically adjusted. A sh
line with a length of 80 cm and non-elongation was selected as
the pendulum arm, and the fruit jig was made of a newmaterial
polylactic acid (PLA) by 3D printer. Therefore, the mass of the
fruit jig and the rotational inertia of the pendulum arm could be
neglected. A permanently xed protractor was installed on the
frame of this device, and the swing angle of the pendulum arm
was controlled within a range of 5� to 85�. In the collision
experiment, in order to avoid another impact, the yellow
peaches were grabbed by hand immediately aer impacting the
force sensor. During the impact process, the force variation with
time were recorded by means of a force sensor and intelligent
data acquisition instrument. The force sensor model HZC-H1
with a measuring range of 0–100 kg and an output sensitivity
of 2.00 mV V−1. The sampling frequency of the intelligent data
acquisition instrument was 51.2 kHz and the calibration value
was 0.02 mV N−1. The measurement was started when the
impact force exceeded 0.5 N. The yellow peaches were xed on
the fruit jig, and they were released from swing angles of 30�,
40�, 50�, 60�, 70� and 80� to obtain samples with different
degrees of damage.

Fig. 1(b) shows the side view of the experimental device. The
whole process of the yellow peach collision was recorded by
a digital high-speed camera (HXC20NIR) xed on a tripod and
a lens with a constant focal length of 35 mm. The distance
between the camera and the impact area was 0.3 m, and the
picture acquisition frequency was set as 1000 frames per s. Due
to the high shooting speed of the camera, high brightness and
strobe-free LED lights were installed on both sides of the
camera for illumination. The impact velocity and rebound
velocity of the yellow peach during the collision process could
RSC Adv., 2022, 12, 28152–28170 | 28153



Fig. 1 Schematic diagram of the impacting device: 1-protractor, 2-fishing line, 3-fruit fixture, 4-dynamic bumper plate, 5-pressure sensor, 6-
intelligent data acquisition and signal processing, 7-PC, 8-light source, 9- high-speed camera.
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be obtained by this method. In this experiment, the scale factor
was set as 0.13 mm per pixel when the image size was converted
from pixel to millimeter.
2.3 Calculation and measurement of the mechanical
parameters

2.3.1 Damage area. Aer the collision experiment, all
damaged yellow peaches were le at room temperature (20 �C)
for 24 hours to allow for browning of the damaged region, so
that they were more easily identied and measured. As the
collision surface between the force sensor and the yellow peach
is a smooth circular plane, the shape of the damaged region is
approximately circular. Therefore, for the damage area, the
diameter of the damage region was measured in two mutually
perpendicular directions by means of a digital vernier caliper
(accuracy of 0.01 mm), and the average value of the two diam-
eters was used as the diameter of the damage region. The value
of the damage area was calculated by eqn (1):

A ¼ pD2

4
(1)

where A is the damage area (mm2) and D is the damage diam-
eter (mm).

2.3.2 Maximum force and absorbed energy. The collected
data were time domain analyzed by the DASP-V11 soware.
Parameters, such as the maximum and average forces of the
yellow peaches during the collision, were obtained. In impact
collision experiments, part of the impact energy is absorbed due
to the plastic deformation of the yellow peaches. If the energy
loss during the collision is neglected, the absorbed energy of the
yellow peach is equal to the difference between the impact
energy and the rebound energy.27 The speed of the yellow peach
during impact and rebound is low, and the high-speed camera
can capture 1000 images in 1 s. Hence, the change in the spatial
position of the yellow peach in two consecutive frame images is
the displacement of the yellow peach in Dt time (in this exper-
iment, Dt ¼ 1 � 10−3 s). Two consecutive frame images of the
yellow peach before and aer the collision were selected, and
28154 | RSC Adv., 2022, 12, 28152–28170
the moving distance of the yellow peach in the image was
calculated by digital image correlation method.28,29 The impact
and rebound energy of the yellow peach were calculated by eqn
(2):

v ¼ S

t
(2)

where S is the actual displacement in Dt time, and Dt is the time
between adjacent images (t ¼ 0.001 s). The absorbed energy of
the yellow peaches was calculated by eqn (3):

DE ¼ 1

2
m
�
v1

2 � v2
2
�

(3)

where v1 is the impact velocity, v2 is the rebound velocity, andm
is the mass of the yellow peach.
2.4 Hyperspectral imaging system

The images of the samples were obtained using a hyperspectral
imaging system (spectral range 397.5–1014 nm), and the
structure diagram is shown in Fig. 2. The components of this
hyperspectral imaging system mainly include an imaging
spectrometer, a charge coupled device (CCD) camera, an illu-
mination unit with four tungsten halogen lamps with a power of
20 W, and a motor-controlled mobile platform. In order to
reduce the inuence of stray light on the sample, all compo-
nents are installed in a closed dark box. During the image
acquisition, the distance between the damaged region of the
yellow peach and the CCD camera was 48 cm, the exposure time
of the CCD camera was 6ms, the spectral resolution was 3.5 nm,
and the forward speed of the mobile platform was 3 cm s−1.
2.5 Extraction and conversion of the spectral data

Aer the impact test, the damaged yellow peach was scanned in
reectance mode using the hyperspectral imaging system. The
presence of dark currents in the CCD camera results in a lot of
noise in some bands of weak light intensity. Hence, the
acquired hyperspectral images need to be corrected with black
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Schematic illustration of the hyperspectral imaging system.
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and white references before extracting the spectral data.30 The
images were corrected by eqn (4):

I ¼ Ir � Id

Iw � Id
(4)

where I is the corrected hyperspectral image in units of relative
reectance (%), Ir is the original hyperspectral image, Id is the
dark reectance image and Iw is the white reectance image.
The ENVI 4.5 soware was used to identify the circular region of
interest (ROI) of the yellow peach, and the average spectrum of
the ROI was extracted.

Aer extracting the average reectance spectra of the yellow
peaches, the average spectral data were transformed into
absorption spectral data (A) and Kubelka–Munk spectral data
(K–M) in order to investigate the potential of quantitative
prediction of mechanical parameters by absorption spectra (A)
and Kubelka–Munk spectra (K–M). Spectral data were trans-
formed using eqn (5) and (6):31

A ¼ −log R
10 (5)

K�M ¼ ð1� RÞ2
2R

(6)

Consequently, three kinds of spectral data with different
units (i.e., R, A and K–M) were obtained, and they were used to
quantitatively predict the mechanical parameters of yellow
peaches.
2.6 Spectral data preprocessing

The raw spectrum contains information about the sample itself,
as well as other extraneous information and noise, such as
electrical noise, sample background and stray light. At present,
there is no standard for the optimal pretreatment type of
© 2022 The Author(s). Published by the Royal Society of Chemistry
spectra.32 Accordingly, it is necessary to use different methods
to preprocess the original spectrum, so as to select the appro-
priate pretreatment method. In this study, standard normal
variables (SNV), moving average (MA) and Gaussian lter (GF)
were used to preprocess the original spectrum. Standard
normal variables (SNV) can eliminate the effects of the solid
particles, surface scattering and optical path changes on the
reection spectrum.33 Moving averages (MA) are one of themain
tools for smoothing data.34 Gaussian ltering (MF) can be
calculated by means of a Gaussian function to reduce the
original spectral noise.35
2.7 Characteristic wavelength selection

The acquired spectral data contains numerous wavelengths.
There are redundancy and collinearity problems between the
adjacent wavelength data points, which seriously affect the
prediction performance of the model. In order to simplify the
modelling process and improve the efficiency of the model, it is
necessary to select the characteristic wavelengths from all
wavelengths for modelling. In recent years, many wavelength
selection algorithms have been reported.36,37 In the present
study, competitive adaptive reweighted sampling (CARS) and
uninformative variable elimination algorithm (UVE) were used
to select the characteristic wavelengths.

The competitive adaptive reweighted sampling (CARS) algo-
rithm has been widely used in the selection of the spectral
wavelength, and it is based on the “survival of the ttest”
principle of Darwinian evolution.38 The process of selecting the
characteristic wavelengths by CARS is mainly divided into two
parts, i.e., (i) the variables in the PLS model with larger absolute
values of the regression coefficients are selected using the
adaptive reweighting technique (ARS) and the exponential
decay function (EDF), and (ii) the variables in the subset of the
RSC Adv., 2022, 12, 28152–28170 | 28155
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PLS model with the smallest RMSECV are selected as the
characteristic wavelengths by cross-validation.39

Uninformative variable elimination (UVE) is a variable
selection method based on the stability analysis of regression
coefficients. Its basic idea is to use partial least squares
regression (PLSR) coefficients as a measure of the importance of
wavelengths, which can effectively eliminate redundant infor-
mative variables.40
2.8 Regression model building and model evaluation

In spectral data analysis, it is important to use suitable
modelling algorithms to obtain good predictive models. Since it
is uncertain whether the relationship between the spectral data
and the mechanical parameters is linear or non-linear, at least
two algorithms are chosen to establish the quantitative
prediction model. In this study, a linear modelling algorithm
(PLSR) and a non-linear modelling algorithm (SVR) were used to
build the prediction models.41,42 The best model was selected by
comparing the predictive performance of different models.
Before modelling, the Kennard–Stone (KS) algorithm was used
to select 20 samples from each release angle, 120 samples as the
modelling set, and 60 samples as the prediction set. The partial
least squares regression (PLSR) model and support vector
regression (SVR) model were each established.

PLSR is a linear statistical algorithm, which incorporates
principal component analysis and canonical correlation anal-
ysis on the basis of ordinary multiple regression. It can be used
to solve the problem of multiple collinearity of independent
variables.43 The quantitative relationships of the PLSR model
can be calculated by eqn (7):
Fig. 3 Processingmethods of the spectral data: R¼ Reflectance; A¼ Abs
filter; SNV ¼ standard normal variate; CARS ¼ competitive adaptive rew
partial least squares regression; SVR ¼ support vector regression.

28156 | RSC Adv., 2022, 12, 28152–28170
Yn�1 ¼ Xn�k � bk�1 + En�1 (7)

where Y is the matrix of predicted values, X is the spectra matrix,
b is the matrix of coefficients, and E is the error matrix.

SVR is a non-linear statistical algorithm, which transforms
the non-linear variables in low-dimensional space into high-
dimensional space by means of kernel functions, and the rela-
tionship between the variables in high-dimensional space is
described through linear functions.44,45 When modelling using
support vector regression (SVR), different kernel functions have
signicant inuence on the predictive performance of the
model. In some previous studies, it has been found that the RBF
kernel function has better stability and predictive perfor-
mance.46,47 Thus, the RBF function is chosen as the kernel
function for the SVR model in this study. Additionally, the
performance of the SVR model is inuenced by some parame-
ters, including the penalty factor (C), insensitivity loss coeffi-
cient (3), and width coefficient of the kernel function (g). In the
present work, a grid search method is used to determine the
optimal parameters.

Model evaluation is an important part of modelling. The
performance of the model is evaluated using the determination
coefficient of the modelling set (RC

2), root mean square error of
the modelling set (RMSEC), determination coefficient of the
prediction set (RP

2), root mean square error of the prediction set
(RMSEP), and the prediction set prediction deviation (RPD). In
general, the higher the determination coefficient (R2), the more
stable the model is and the smaller the root mean square error
(RMSE), indicating that the model has a better t. A higher
value of RPD shows that the model has better predictive
performance.48,49 The relevant parameters were calculated by
eqn (8), (9) and (10):50,51
orbance; K–M¼ Kubelka–Munk; MA¼moving average; GF¼Gaussian
eighted sampling; UVE ¼ uninformative variable elimination; PLSR ¼

© 2022 The Author(s). Published by the Royal Society of Chemistry
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R2 ¼ 1�
Pn
i

ðy1 � y2Þ2

Pn
i

ðy1 � y1Þ2
(8)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i

ðy1 � y2Þ2
s

(9)

RPD ¼ SD

RMSEP
(10)

where y1 and y2 are the true and predicted values of the sample,
respectively, �y1 is the average of the true values of all samples, n
is the sample size, and SD is the standard deviation of the
prediction set.

Spectral data were preprocessed, and the PLSR and SVR
models were established using The Unscramble X 10.4. KS
classication. The characteristic wavelengths were selected by
CARS and UVE algorithms in MATLAB 2018b. Fig. 3 shows the
ow chart of the data processing.
3. Results and discussion
3.1 Statistical analysis of the mechanical parameters

Statistical analysis of the mechanical parameters was carried
out, and the results are shown in Table 1. It can be seen from
Table 1 that there is diversity in the statistics for the different
mechanical parameters. It is noteworthy that the values of all
mechanical parameters are positively correlated with the colli-
sion angle, which is consistent with the ndings of Zbigniew
et al.52 The average value of the absorbed energy varies consid-
erably when the collision angle is 60�, 70� and 80�. Aer anal-
ysis, the main reason is that the greater the angle of collision,
the faster the yellow peach is at its lowest point. However, the
Table 1 Statistical results of the mechanical parametersa

Mechanical parameters
Collision
angle Maximum

DA (mm2) 30� 199
40� 279
50� 378
60� 518
70� 698
80� 850

MF (N) 30� 176
40� 261
50� 401
60� 461
70� 574
80� 663

AE (J) 30� 0.95
40� 2.39
50� 3.88
60� 6.53
70� 9.47
80� 9.83

a DA ¼ damaged area; MF ¼ maximum force; AE ¼ absorbed energy; SD

© 2022 The Author(s). Published by the Royal Society of Chemistry
shooting speed of a high-speed camera is not fast enough,
resulting in a large deviation in the spatial displacement of the
yellow peach in the adjacent pictures. In future research
studies, a high-speed camera with faster shooting speed will be
used to shoot the whole motion process, so as to reduce the
calculation error of the absorbed energy. Overall, all mechanical
parameters show some regular variation, so it is feasible and
reasonable to use mechanical parameters to characterize the
degree of impact damage on the yellow peaches.
3.2 Spectral characteristics analysis

The average spectral curves of the reectance spectrum (R),
absorbance spectrum (A) and Kubelka–Munk (K–M) spectrum
are shown in Fig. 4(a), (b) and (c) respectively. As shown in
Fig. 4(a), the spectral reectance of sound yellow peaches was
signicantly higher than that of damaged yellow peaches. This
is consistent with the results of research on apples and
pears.53,54 According to the literature, 705 nm is mainly the
absorption band of carbohydrates.55 The wave valley at 995 nm
is due to the O–H bond in the water molecule.56 The more
severely damaged yellow peaches are, the lower the spectral
reectance is. This indicates that spectral information can
reect the damage degree of yellow peaches. The reectance
spectrum and absorbance spectrum have differences in the
wave crests and troughs. This may be attributed to the rupture
of pulp cells in the injured part of the yellow peach and the
release of a large amount of cell uids, resulting in different
water contents, and thus differences between the wave peaks
and troughs.57 As shown in Fig. 4(c), the K–M spectral curve has
fewer wave peaks and troughs. This is probably due to the fact
that the process of transforming the R spectrum into a K–M
spectrum removes most of the spectra signal information,
especially that of the wave peaks and troughs. Three kinds of
Minimum Mean SD

133 161 14.46
207 237 20.30
227 324 36.18
382 460 35.76
527 623 40.31
719 783 40.01
135 153 10.85
171 223 22.84
216 316 37.86
308 396 36.37
388 482 42.97
492 575 47.44
0.04 0.36 0.24
0.25 1.31 0.61
1.32 2.65 0.67
2.62 4.02 1.20
3.22 4.96 1.60
3.13 6.44 1.90

¼ standard deviation.

RSC Adv., 2022, 12, 28152–28170 | 28157



Fig. 4 Three spectral curves of yellow peaches: (a) average reflectance spectral curves of healthy and damaged yellow peaches; (b) average
absorbance spectral curves of healthy and damaged yellow peaches; (c) average Kubelka–Munk spectral curves of healthy and damaged yellow
peaches.
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spectra overlap in some bands, so further processing of the raw
spectra was required.
3.3 Modelling based on original and preprocessed spectra

3.3.1 Modelling based on reectance spectral data. In this
research, the K–S algorithm was used to partition the sample set
(modelling set: prediction set ¼ 2 : 1), and the results of the
partition are shown in Table 2. It can be seen in Table 2 that the
maximum and minimum values of all mechanical parameters
were divided into the modelling set. The average values of the
mechanical parameters in the modelling and prediction sets
Table 2 Modelling set and prediction set of samples

Mechanical parameters Samples set Number

DA (mm2) Modelling 120
Prediction 60

AE (J) Modelling 120
Prediction 60

MF (N) Modelling 120
Prediction 60

28158 | RSC Adv., 2022, 12, 28152–28170
were very close to each other. Therefore, the K–S algorithm is
reasonable for the results of the dividing of the sample set.

Partial least squares regression (PLSR) models and support
vector regression (SVR) models were developed using the raw
and preprocessed reectance spectral data, respectively, and the
results are shown in Table 3. Through comparative analysis, it
was found that the PLSR and SVR models based on different
spectral data had different predictive performance for
mechanical parameters. For the damage area, absorbed energy
and maximum force, the prediction performance of the PLSR
model outperformed the SVR model.
Maximum Minimum Mean

850 133 433
849 139 429
9.83 0.04 3.36
9.45 0.05 3.15
663 135 357
633 136 357

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 3 PLSR and SVR model predictions of the reflectance spectra after preprocessing with different methodsa

Model Spectra Mechanical parameter Parameter

Model set Prediction set

RMSEC RC
2 RMSEP RP

2 RPD

PLSR Raw DA (mm2) 9 80.303 0.866 93.077 0.821 2.403
AE (J) 8 1.351 0.677 1.203 0.660 1.705
MF (N) 9 64.096 0.818 71.455 0.765 1.970

SNV DA (mm2) 11 74.512 0.886 92.252 0.823 2.509
AE (J) 14 1.243 0.733 1.288 0.712 1.525
MF (N) 12 58.966 0.845 64.331 0.812 2.372

MA DA (mm2) 10 81.768 0.862 92.877 0.821 2.334
AE (J) 9 1.305 0.699 1.498 0.628 1.342
MF (N) 9 65.299 0.811 91.583 0.764 1.963

GF DA (mm2) 9 81.475 0.863 91.583 0.826 2.351
AE (J) 8 1.361 0.672 1.430 0.661 1.437
MF (N) 9 64.388 0.817 71.344 0.766 1.971

SVR Raw DA (mm2) (100,0.1,0.01) 74.599 0.887 96.399 0.825 2.225
AE (J) (100,0.1,0.01) 1.176 0.773 1.498 0.635 1.146
MF (N) (100,0.1,0.01) 58.303 0.852 74.886 0.748 1.852

SNV DA (mm2) (10,0.1,0.01) 88.060 0.852 115.644 0.725 1.566
AE (J) (10,0.1,0.01) 1.353 0.700 1.470 0.628 1.173
MF (N) (1,0.1,0.01) 65.440 0.825 83.012 0.713 1.566

MA DA (mm2) (10,0.1,0.01) 112.973 0.738 130.255 0.665 1.517
AE (J) (100,0.1,0.01) 1.247 0.739 1.535 0.612 1.139
MF (N) (100,0.1,0.01) 65.934 0.809 75.607 0.746 1.786

GF DA (mm2) (100,0.1,0.01) 77.017 0.878 113.728 0.746 1.843
AE (J) (100,0.1,0.01) 1.194 0.764 1.505 0.630 1.153
MF (N) (100,0.1,0.01) 60.112 0.843 75.148 0.746 1.808

a The parameter of the PLSR model is the optimal number of PCs; the parameter of the SVR model is the penalty factor (C), insensitivity loss
coefficient (3) and width coefficient of kernel function (g), shown as (C, 3, g).

Table 4 PLSR and SVR model predictions of the absorbance spectra after preprocessing with different methods

Model Spectra Mechanical parameter Parameter

Model set Prediction set

RMSEC RC
2 RMSEP RP

2 RPD

PLSR Raw DA (mm2) 10 83.074 0.858 89.882 0.832 2.538
AE (J) 14 1.237 0.728 1.296 0.723 1.687
MF (N) 13 54.531 0.868 67.223 0.792 2.199

SNV DA (mm2) 8 93.175 0.821 98.665 0.797 2.146
AE (J) 8 1.422 0.653 1.417 0.647 1.510
MF (N) 9 66.048 0.806 70.847 0.770 2.119

MA DA (mm2) 11 84.084 0.854 89.204 0.834 2.435
AE (J) 16 1.250 0.722 1.338 0.705 1.667
MF (N) 11 65.596 0.809 72.703 0.757 2.039

GF DA (mm2) 10 87.121 0.844 94.684 0.813 2.236
AE (J) 15 1.234 0.730 1.305 0.719 1.727
MF (N) 11 63.375 0.822 70.974 0.769 2.090

SVR Raw DA (mm2) (100,0.1,0.01) 80.939 0.865 99.731 0.809 2.170
AE (J) (100,0.1,0.01) 1.276 0.725 1.582 0.586 1.209
MF (N) (100,0.1,0.01) 64.704 0.817 72.891 0.759 1.818

SNV DA (mm2) (10,0.1,0.01) 90.587 0.837 123.104 0.759 1.486
AE (J) (10,0.1,0.01) 1.314 0.733 1.529 0.590 1.079
MF (N) (10,0.1,0.01) 64.802 0.817 81.325 0.718 1.707

MA DA (mm2) (100,0.1,0.01) 91.056 0.830 116.470 0.741 1.806
AE (J) (100,0.1,0.01) 1.311 0.701 1.610 0.574 1.216
MF (N) (100,0.1,0.01) 71.883 0.773 75.862 0.737 1.732

GF DA (mm2) (100,0.1,0.01) 83.867 0.856 110.517 0.763 1.887
AE (J) (100,0.1,0.01) 1.287 0.719 1.589 0.583 1.200
MF (N) (100,0.1,0.01) 66.573 0.806 73.956 0.751 1.786

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 28152–28170 | 28159
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In the PLSR model, the SNV-PLSR model showed the best
prediction performance on the absorbed energy and maximum
force with RP

2 and RMSEP of 0.712 and 1.288 J, and 0.812 and
64.331 N, respectively. The RPD values were 1.525 and 2.372. For
the prediction of the damage area, the RP

2 and RMSEP of the
GF-PLSR model were 0.826 and 91.583 mm2, respectively, and
the stability of this model was slightly better than that of the
SNV-PLSR model. However, the RPD values of the GF-PLSR
Table 5 PLSR and SVR model predictions of the absorbance spectra aft

Model Spectra Mechanical parameter Parameter

PLSR Raw DA (mm2) 9
AE (J) 13
MF (N) 12

SNV DA (mm2) 7
AE (J) 9
MF (N) 9

MA DA (mm2) 13
AE (J) 16
MF (N) 14

GF DA (mm2) 14
AE (J) 13
MF (N) 13

SVR Raw DA (mm2) (100,0.1,0.01)
AE (J) (100,0.1,0.01)
MF (N) (100,0.1,0.01)

SNV DA (mm2) (100,0.1,0.01)
AE (J) (100,0.1,0.01)
MF (N) (100,0.1,0.01)

MA DA (mm2) (100,0.1,0.01)
AE (J) (100,0.1,0.01)
MF (N) (100,0.1,0.01)

GF DA (mm2) (10,0.1,0.01)
AE (J) (10,0.1,0.01)
MF (N) (10,0.1,0.01)

Fig. 5 Process for the selection of characteristic wavelengths by the CA
RMSECV, (c) change in the regression coefficient.
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model were slightly lower than that of the SNV-PLSR model,
which indicates that the SNV-PLSR model had better prediction
accuracy. Overall, the SNV-PLSR model had higher prediction
accuracy for the mechanical parameters. In the SVR model, for
the prediction of the damage area, absorbed energy and
maximum force, the RP

2 and RMSEP of the Raw-PLSR model
were 0.825 and 96.399 mm2, 0.635 and 1.498 J, and 0.748 and
74.866 N, respectively. The RPD values were 2.255, 1.146 and
er preprocessing with different methods

Model set Prediction set

RMSEC RC
2 RMSEP RP

2 RPD

86.864 0.846 97.302 0.798 2.338
1.298 0.728 1.190 0.715 1.515

58.866 0.845 59.496 0.840 2.456
91.131 0.828 110.847 0.748 1.818
1.352 0.705 1.322 0.648 1.741

59.967 0.841 66.074 0.799 2.060
85.285 0.852 97.369 0.797 2.047
1.290 0.732 1.220 0.700 1.549

65.915 0.806 68.973 0.784 2.042
69.621 0.902 81.841 0.856 2.603
1.295 0.730 1.180 0.720 1.567

57.915 0.850 60.685 0.833 2.438
95.520 0.815 99.195 0.806 2.107
1.448 0.675 1.442 0.586 1.038

73.607 0.759 74.923 0.746 1.669
106.447 0.769 141.084 0.593 1.224

1.451 0.684 1.629 0.464 1.009
75.727 0.769 98.699 0.588 1.412

103.768 0.782 109.299 0.757 1.822
1.503 0.644 1.467 0.567 1.028

79.339 0.719 79.258 0.716 1.541
100.359 0.796 105.414 0.771 1.862

1.466 0.665 1.446 0.583 1.029
75.313 0.747 75.861 0.740 1.636

RS method: (a) change in the number of variables, (b) changes to the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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1.825. Its prediction performance was higher than that of other
models. Accordingly, for the R spectra, the SNV preprocessed
spectral data and the raw spectral data are selected for subse-
quent processing.

3.3.2 Modelling based on the absorbance spectral data.
The PLSR and SVR models were established based on the raw
absorbance data and the preprocessed absorbance spectral
data, respectively, and the results are shown in Table 4. It can be
seen from Table 4 that the PLSR model outperforms the SVR
model in terms of the prediction performance for all mechan-
ical parameters. In the two modelling methods, the prediction
Fig. 6 The CARS algorithms select the position of the reflectance spectr
normal variate.

© 2022 The Author(s). Published by the Royal Society of Chemistry
performance of the three kinds of preprocessed absorbance
data was less satisfactory.

In the PLSR model, the Raw-PLSR model had the best
prediction performance on the absorbed energy and maximum
force with RP

2 and RMSEP of 0.723 and 1.296 J, 0.792 and
67.223 N, respectively. Their RPD values were 1.667 and 2.199.
For the prediction of the damage area, the RP

2 (0.834) of the MA-
PLSR model was slightly higher than the RP

2 (0.832) of the Raw-
PLSR model, which indicates that the MA-PLSR model had
better stability. However, from the perspective of prediction
accuracy, the RPD (2.538) of the Raw-PLSR model was slightly
a characteristic wavelength. Raw ¼ original spectrum; SNV ¼ standard

RSC Adv., 2022, 12, 28152–28170 | 28161
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higher than that of the MA-PLSR model RPD (2.435). Overall,
the Raw-PLSR model showed better predictive performance.
Among the SVR models, the Raw-SVR model had better
predictive performance for the damage area and maximum
force with RP

2 and RMSEP of 0.809 and 99.731 mm2 and 0.759
and 72.891 N, respectively. The values of RPD were 2.170 and
1.818. For the absorbed energy, although the RP

2(0.590) of the
SNV-PLSR model was larger than the RP

2(0.586) of the Raw-SVR
model, the Raw-PLSR model had better prediction accuracy for
absorbed energy. It is worth noting that the predictive perfor-
mance of the SVR for absorbed energy remains to be improved,
with none of its RP

2 values exceeding 0.590. Overall, for the A
spectra, the original spectra were selected for further
processing.

3.3.3 Modelling based on K–M spectral data. The PLSR and
SVR models were established using the original K–M spectra
and the preprocessed K–M spectra, respectively, and the results
are shown in Table 5. Comparing the twomodels, the prediction
ability of the PLSR model for all mechanical parameters was
higher than that of the SVR model. In the PLSR model, the GF-
PLSR model had the best prediction performance for the
damage area and absorbed energy, with RP

2 and RMSEP of 0.856
and 81.841 mm2, 0.720 and 1.180 J, respectively, and the values
of RPD were 2.603 and 1.567, respectively. For the maximum
force, the prediction performance of the Raw-PLSR model was
better. Its values of RP

2 and RMSEP were 0.840 and 59.496 N,
respectively. However, the RPD of the GF-PLSR model (2.438)
was similar to that of the Raw-PLSR model (2.456), and the
prediction results of the GF-PLSR model for the maximum force
were still acceptable. For the SVR model, the Raw-SVR model
had the best predictive performance for all mechanical
parameters with RP

2 and RMSEP of 0.806 and 99.195 mm2,
0.586 and 1.442 J, and 0.746 and 74.923 N, respectively. Overall,
for the K–M spectra, the GF preprocessed spectra and the
original spectra were selected for further analysis.
Fig. 7 Characteristic wavelength selection by the UVE algorithm.
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3.4 Selection of characteristic wavelengths

3.4.1 Reectance spectral characteristic wavelength selec-
tion. The CARS algorithm was used to select the characteristic
wavelengths for the raw spectra and the SNV preprocessed
spectral data. Fig. 5 shows the characteristic wavelength selec-
tion process for the raw spectra of the absorbed energy. Fig. 5(a)
shows that the number of selection variables decreases with the
number of samples, and the speed of variable reduction is fast
rst, and then slow. As shown in Fig. 5(b), with increasing
sample, the RMSECV value decreases rstly and then increases.
The RMSECV value reaches a minimum value when the number
of samples was 57. This indicates that the spectral information,
which is not relevant to the absorbed energy, was eliminated in
the 1st–57th samples. Aer the 57th sample, the RMSECV value
gradually increased, indicating that the information relevant to
the absorbed energy was also eliminated. Fig. 5(c) shows the
path of change in the regression coefficients of the 176 spectral
variables. Since the smallest RMSECV value was found in the
57th sampling, the variables extracted from the 57th sampling
were used as the characteristic wavelengths of the absorbed
energy, containing a total of 14 variables, 495.8 nm, 557.5 nm,
696.9 nm, 711 nm, 807 nm, 810.6 nm, 824.9 nm, 828.5 nm,
850.1 nm, 853.7 nm, 900.7 nm, 907.9 nm, 940.7, and 1010.3 nm.

For the original spectra, the number of characteristic wave-
lengths corresponding to the damage area, absorbed energy and
maximum force were 35, 14 and 28, respectively, accounting for
19.9%, 7.9% and 15.9% of the total wavelengths, respectively.
The positions of the characteristic wavelengths are shown in
Fig. 6(A), (C) and (E). For the SNV preprocessed spectra, the
number of characteristic wavelengths corresponding to the
damage area, absorbed energy and maximum force were 21, 9
and 28, respectively, accounting for 11.9%, 5.1% and 15.9% of
the full wavelengths, respectively. The positions of the charac-
teristic wavelengths are shown in Fig. 6(B), (D) and (F). As
© 2022 The Author(s). Published by the Royal Society of Chemistry
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shown in Fig. 6, the position and number of characteristic
wavelengths corresponding to different mechanical parameters
were different, which indicates that the spectral characteristic
information of different mechanical parameters is different. It
is noteworthy that most of the characteristic wavelengths were
located between 760 nm and 950 nm (water absorption band),
indicating that there is a strong correlation between the water
molecular content and mechanical parameters in the collision
region.

The UVE algorithm was used to select the characteristic
wavelengths for the original spectrum and the spectrum pre-
processed by SNV. Fig. 7 shows the stability analysis of the
Fig. 8 The UVE algorithms select the position of the reflectance spectr

© 2022 The Author(s). Published by the Royal Society of Chemistry
characteristic wavelength of the original spectrum for the
damaged area. In Fig. 7, the 176 original wavelengths are shown
on the le, and the same number of random variables are
introduced on the right. The two parallel lines represent the
upper and lower limits of stability, with all variables within the
two parallel lines removed, and the remaining variables were
used for further processing. The results show that a total of 106
variables were selected by UVE, accounting for 60.2% of the full
wavelength.

For the original spectra, the number of characteristic wave-
lengths corresponding to the damage area, absorbed energy and
maximum force were 106, 75 and 73, representing 60.2%, 42.6%
a characteristic wavelength.

RSC Adv., 2022, 12, 28152–28170 | 28163
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and 41.5% of the full wavelengths, respectively. The positions of
the characteristic wavelengths are shown in Fig. 8(A), (C) and
(E). For the SNV pretreatment spectra, the number of charac-
teristic wavelengths corresponding to the damage area, absor-
bed energy and maximum force were 60, 55 and 51,
representing 34.1%, 31.3% and 28.9% of the full wavelengths,
respectively. The locations of the characteristic wavelengths are
shown in Fig. 8(B), (D) and (F). As can be seen from Fig. 8, the
number of characteristic wavelengths selected by the UVE
algorithmwas large, withmost of the characteristic wavelengths
located between 600 nm–750 nm (carbohydrate absorption
band) and 760 nm–950 nm (water absorption band).
Fig. 9 The CARS and UVE algorithms select the position of the reflecta

28164 | RSC Adv., 2022, 12, 28152–28170
3.4.2 Absorbance spectral characteristic variable selection.
The characteristic wavelengths of the raw absorptance spectra
were selected using the CARS and UVE algorithms, respectively,
and the wavelength selection process was referred to Section
3.4.1. For the damaged area, absorbed energy and maximum
force, the number of characteristic wavelengths selected by
CARS were 18, 33 and 52, representing 10.2%, 18.8% and 29.5%
of the full wavelengths, respectively. The positions of the char-
acteristic wavelengths are shown in Fig. 9(A), (C) and (E), with
most of the characteristic wavelengths located between 700 nm
and 950 nm. The numbers of feature wavelengths selected by
the UVE algorithm were 75, 96 and 73, accounting for 42.6%,
nce spectra characteristic wavelength.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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54.5% and 41.5% of the full band, respectively. The positions of
the characteristic wavelengths are shown in Fig. 9(B), (D) and
(F), with most of the characteristic wavelengths located between
600 nm–750 nm and 760 nm–950 nm.

3.4.3 K–M spectral characteristic wavelength selection. The
characteristic wavelengths of the raw K–M spectra and the GF
preprocessed spectra were selected using CARS, and the selec-
tion process is referred to in Section 3.4.1. For the raw K–M
spectra, the numbers of the characteristic wavelengths corre-
sponding to the damage area, absorbed energy and maximum
Fig. 10 The CARS algorithms select the position of the reflectance spec
filter.

© 2022 The Author(s). Published by the Royal Society of Chemistry
force were 33, 18 and 38, representing 18.8%, 10.2% and 21.6%
of the full wavelengths, respectively. The position of the char-
acteristic wavelengths is shown in Fig. 10(A), (C) and (E). For the
GF preprocessed spectra, the numbers of characteristic wave-
lengths corresponding to the damage area, absorbed energy and
maximum force were 36, 38 and 35, accounting for 20.5%,
21.6% and 19.9% of the full wavelengths, respectively. The
positions of the characteristic wavelengths are shown in
Fig. 10(B), (D) and (F). It is worth noting that, unlike the R and A
spectra, most of the characteristic wavelengths in the K–M
tra characteristic wavelength. Raw ¼ original spectrum; GF ¼ Gaussian

RSC Adv., 2022, 12, 28152–28170 | 28165
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spectrum were in the range of 450 nm to 550 nm. This is
consistent with the ndings of Yuan et al.58

The characteristic wavelengths of the raw K–M spectra and
the GF preprocessed spectra were selected by UVE algorithm,
and the selection process was referred to in Section 3.4.1. For
the original spectrum, the numbers of characteristic wave-
lengths corresponding to the damage area, absorbed energy and
maximum force were 98, 68 and 114, representing 55.7%, 38.6%
and 64.8% of the total wavelengths, respectively. The positions
of the characteristic wavelengths are shown in Fig. 11(A), (C)
and (E). For the GF preprocessed spectra, the numbers of
characteristic wavelengths corresponding to the damage area,
Fig. 11 The UVE algorithms select the position of the reflectance spect

28166 | RSC Adv., 2022, 12, 28152–28170
absorbed energy and maximum force were 76, 82 and 117
respectively, accounting for 43.2%, 46.6% and 66.5% of the total
wavelengths, respectively. The positions of the characteristic
wavelengths are shown in Fig. 11(B), (D) and (F). It can be seen
from Fig. 11 that unlike the CARS algorithm, the larger number
of characteristic wavelengths selected by UVE was in the range
of 600 nm to 1000 nm.
3.5 Modelling based on characteristic wavelengths

The characteristic wavelengths of the three kinds of spectra (R, A
and K–M) were used as input variables to establish the PLSR
ra characteristic wavelength.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 6 Optimal prediction results of PLSR and SVR based on characteristic wavelengthsa

Spectra Model Mechanical parameter Number Parameter

Model set Prediction set

RMSEC RC
2 RMSEP RP

2 RPD

R SNV-PLSR DA (mm2) 176 11 74.512 0.886 92.252 0.823 2.509
AE (J) 176 14 1.243 0.733 1.288 0.712 1.525
MF (N) 176 12 58.966 0.845 64.331 0.812 2.372

SNV-CARS-PLSR DA (mm2) 21 8 63.923 0.916 86.452 0.844 2.415
AE (J) 9 8 1.214 0.745 1.303 0.706 1.621
MF (N) 28 12 55.550 0.862 57.139 0.852 2.524

SNV-UVE-SVR DA (mm2) 60 (100,0.1,0.01) 67.725 0.909 95.119 0.814 2.169
AE (J) 55 (100,0.1,0.01) 1.281 0.726 1.378 0.671 1.465
MF (N) 51 (100,0.1,0.01) 56.747 0.860 61.679 0.845 2.350

A Raw-PLSR DA (mm2) 176 10 83.074 0.858 89.882 0.832 2.538
AE (J) 176 14 1.237 0.728 1.296 0.723 1.687
MF (N) 176 13 54.531 0.868 67.223 0.792 2.199

Raw-CARS-PLSR DA (mm2) 18 7 65.495 0.911 85.700 0.848 2.642
AE (J) 33 16 1.239 0.727 1.316 0.715 1.622
MF (N) 52 10 58.342 0.849 59.387 0.838 2.449

Raw-CARS-SVR DA (mm2) 18 (100,0.1,0.1) 87.125 0.847 103.390 0.779 1.923
AE (J) 33 (100,0.1,0.1) 0.930 0.854 1.518 0.626 1.417
MF (N) 52 (100,0.1,0.1) 41.039 0.926 81.502 0.719 1.815

K–M GF-PLSR DA (mm2) 176 14 69.621 0.902 81.841 0.856 2.603
AE (J) 176 13 1.295 0.730 1.180 0.850 1.567
MF (N) 176 13 57.915 0.850 60.685 0.833 2.438

GF-CARS-PLSR DA (mm2) 36 10 72.966 0.892 77.865 0.870 2.700
AE (J) 38 13 1.044 0.785 1.065 0.772 1.768
MF (N) 35 12 47.930 0.897 47.996 0.895 3.050

Raw-UVE-SVR DA (mm2) 98 (10,0.1,0.1) 87.303 0.847 109.997 0.774 1.892
AE (J) 68 (10,0.1,0.1) 1.505 0.644 1.437 0.578 1.076
MF (N) 114 (100,0.1,0.01) 76.084 0.743 76.029 0.739 1.643

a Spectra: three kinds of spectra of R, A, and K–M; Number: number of characteristic wavelengths.
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and SVR models. The optimal predictions for the PLSR and SVR
models in the R, A and K–M spectra are shown in Table 6 (See
additional information for the rest of the models, Table S1†).

From Table 6 and additional information, Table S1† shows
that in the PLSR model, the performance of the model based on
the K–M spectral data outperforms that of the R and A spectra.
Among these models, the PLSR model based on the character-
istic wavelengths selected by CARS showed the best prediction
performance. For the prediction of the damage area, absorbed
energy and maximum force, the RP

2 and RMSEP of the K–M-GF-
CARS-PLSR model were 0.870 and 77.865 mm2, 0.772 and 1.065
J, 0.895 and 47.996 N, respectively. The values of RPD were
2.700, 1.768 and 3.050. In the SVR models, the performance of
the models based on the R-spectral data outperforms that of the
A-spectral and K–M spectra. Among these models, the SVR
model based on the characteristic wavelengths selected by the
UVE showed better predictive performance. For the prediction
of the damaged area, absorbed energy and maximum force, the
RP

2 and RMSEP of the R-SNV-UVE-SVR model were 0.814 and
95.119 mm2, 0.671 and 1.378 J, 0.845 and 61.679 N, respectively.
The values of RPD were 2.169, 1.465 and 2.350. It was notable
that the prediction accuracy of the PLSR model was higher than
that of the SVR model for the three kinds of spectra, which is
probably due to the fact that the mechanical parameter values
are more in line with the linear law of change. This was
consistent with the results of the Apple study.59 In summary, for
© 2022 The Author(s). Published by the Royal Society of Chemistry
the quantitative prediction of yellow peach in terms of
mechanical parameters, the K–M-GF-CARS-PLSR model
provides the best prediction performance. It has fewer charac-
teristic wavelengths (19.9–20.5% of the full band) and higher
prediction accuracy.

Fig. 12 shows the scatter plots of the modelling sets and
prediction sets for the mechanical parameters obtained based
on the K–M-GF-CARS-PLSR model. The X-axis represents the
actual measured values and the Y-axis represents the predicted
values. As shown in Fig. 12, the K–M-GF-CARS-PLSR model had
high prediction accuracy for the damage area, absorbed energy
and maximum force. In addition, the sample points in the
modelling sets and prediction sets were distributed near the
regression line, and the linear t was good. This indicates that
the mechanical parameters have a strong correlation with the
K–M spectral data, and the K–M spectrum can be used to
accurately predict the mechanical parameters of yellow
peaches. Compared to the damage area and the maximum
force, the correlation between the measured and predicted
values of the absorbed energy was poor. The possible reason for
this was that the absorbed energy produced large errors in the
measurement process, resulting in the spectral information not
being able to predict it accurately. In future research studies,
more accurate methods will be used to obtain the absorbed
energy of yellow peaches in order to reduce systematic and
RSC Adv., 2022, 12, 28152–28170 | 28167



Fig. 12 Scatter plot of the mechanical parameters. (a) Damaged area; (b) absorbed energy; (c) maximum force.
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measurement errors, and try to improve the model or spectral
analysis algorithm to improve the prediction accuracy.
4. Conclusion

This study focuses on comparing the quantitative predictive
ability of three kinds of spectra (R, A and K–M) for mechanical
parameters. Firstly, reectance spectra (R) were obtained by
a hyperspectral imaging system, and they were transformed into
absorbance (A) spectra and Kubelka–Munk (K–M) spectra.
Then, the R, A and K–M spectra were preprocessed by SNV, MA
and GF, respectively. Finally, the characteristic wavelengths
were selected by CARS and UVE algorithms, and the PLSR and
SVR models were established based on the characteristic
wavelengths, respectively. Aer analysis and comparison, the
main conclusions of this research were as follows:

(a) For the SVR model, the R-SNV-UVE-SVR model based on
the R spectra showed the best prediction on the damage area,
absorbed energy and maximum force. However, compared with
the damage area and maximum force, the prediction accuracy
of the absorbed energy remained to be improved.

(b) For the PLSR model, the K–M-GF-CARS-PLSR model
based on the K–M spectrum has the highest prediction accuracy
28168 | RSC Adv., 2022, 12, 28152–28170
for the damage area, absorbed energy and maximum force. The
RP

2 and RMSEP for this model were 0.870 and 77.865 mm2,
0.772 and 1.065 J, and 0.895 and 47.996 N, respectively. The
values of RPD were 2.700, 1.768 and 3.050.

(c) In the R, A and K–Mspectra, the prediction accuracy of the
PLSR model for mechanical parameters was better than that of
the SVR model.

In summary, the K–M spectra combined with the PLSR
model can be used to accurately predict the mechanical
parameters of impact damage, so as to realize the quantitative
prediction of peach impact damage. The results of this study
may provide a theoretical basis for predicting mechanical
parameters using hyperspectral imaging, in addition to
promoting the development of agricultural biomechanics.
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