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ABSTRACT
Objectives  This study explored the prognostic factors and 
developed a prediction model for Chinese-American (CA) 
cervical cancer (CC) patients. We compared two alternative 
models (the restricted mean survival time (RMST) model 
and the proportional baselines landmark supermodel 
(PBLS model, producing dynamic prediction)) versus the 
Cox proportional hazards model in the context of time-
varying effects.
Setting and data sources  A total of 713 CA women 
with CC and available covariates (age at diagnosis, 
International Federation of Gynecology and Obstetrics 
(FIGO) stage, lymph node metastasis and radiation) from 
the Surveillance, Epidemiology and End Results database 
were included.
Design  We applied the Cox proportional hazards model 
to analyse the all-cause mortality with the proportional 
hazards assumption. Additionally, we applied two 
alternative models to analyse covariates with time-varying 
effects. The performances of the models were compared 
using the C-index for discrimination and the shrinkage 
slope for calibration.
Results  Older patients had a worse survival rate than 
younger patients. Advanced FIGO stage patients showed a 
relatively poor survival rate and low life expectancy. Lymph 
node metastasis was an unfavourable prognostic factor 
in our models. Age at diagnosis, FIGO stage and lymph 
node metastasis represented time-varying effects from 
the PBLS model. Additionally, radiation showed no impact 
on survival in any model. Dynamic prediction presented a 
better performance for 5-year dynamic death rates than 
did the Cox proportional hazards model.
Conclusions  With the time-varying effects, the RMST 
model was suggested to explore diagnosis factors, and the 
PBLS model was recommended to predict a patient’s w-
year dynamic death rate.

INTRODUCTION
According to Surveillance, Epidemiology and 
End Results (SEER) Cancer Statistics Review, 
13 170 estimated new cases of cervical cancer 
(CC, 0.7% of all new cancer cases) and 4250 
estimated new deaths (0.7% of all new cancer 
deaths) will occur in 2019,1 making it the third 
most common cancer diagnosis and cause of 
death among gynaecological cancers in the 
USA. With the development of the human 
papillomavirus (HPV) vaccine, the incidence 

of CC will likely continue to decline both 
in the USA and worldwide.2 Unfortunately, 
despite these advances, Asian Americans are 
often reported to have low CC screening rates 
and high cancer mortality rates.3 4 Among 
the Asian-American subgroups, the Chinese-
American (CA) subgroup is the largest popu-
lation and the fifth fastest-growing racial 
population in the USA. However, few studies 
are available in the literature regarding explo-
ration of the risk factors and prognosis of CC 
for CA women. Therefore, a survival model 
specifically for CA women with CC would be 
widely useful and clinically beneficial.

The Cox proportional hazards (PHs) model 
is the most common regression modelling 
framework to explore prognostic factors and 
to estimate survival rates. Importantly, the Cox 
PHs model has to satisfy the PHs assumption, 
which means that the ratio of the two hazard 
functions is constant over time. However, 
Trinquart et al5 found evidence of the non-
proportionality of hazards (ie, the HR is not 
constant over time) in 24% (13/54) of trials 

Strengths and limitations of this study

►► The present study explored the effect of variation in 
prognostic factors over time on overall survival and 
developed a prediction model to obtain the 5-year 
dynamic death rate for Chinese-American cervical 
cancer patients.

►► This is the first study to compare two alternative 
methods (the restricted mean survival time (RMST) 
model and the proportional baselines landmark su-
permodel (PBLS model, producing dynamic predic-
tion)) versus the Cox proportional hazards model in 
the context of time-varying effects.

►► This study compared the performance of a variety of 
models using the C-index for discrimination and the 
shrinkage slope for calibration.

►► The use of the RMST model and PBLS model will 
provide statistical suggestions that could assess 
risks and predict dynamic death rate for clinicians 
and patients when the proportional hazards as-
sumption fails.

http://bmjopen.bmj.com/
http://orcid.org/0000-0003-3201-2666
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2019-033965&domain=pdf&date_stamp=2020-07-16


2 Li L, et al. BMJ Open 2020;10:e033965. doi:10.1136/bmjopen-2019-033965

Open access�

published in five leading oncology journals. In such situ-
ations, a constant HR (averaged HR over the follow-up) 
from the Cox PHs model may result in misleading conclu-
sions.6 7

In recent years, except for the HR from the Cox PHs 
model, several authors5 8–11 have advocated the restricted 
mean survival time (RMST) difference as a robust and 
clinically interpretable summary measure of the survival 
time distribution that does not rely on the PHs assump-
tion. By definition, the RMST is the mean survival time 
to a prespecified time point (﻿‍τ ‍) and can be evaluated as 
the area under the survival curve S(t) up to this restricted 
survival time (﻿‍τ ‍).9 10 When the event of interest is death, it 
can be explained easily as ‘τ-year life expectation’. Thus, 
we also applied the RMST differences to explore prog-
nostic factors in CA CC.

However, the above two models cannot be used to 
predict from an arbitrary prediction time point (s) during 
the follow-up period, as the models have been designed 
for using immediately after diagnosis.12 For example, 
patients may pay more attention to the survival prob-
ability or mortality of ‘w’ years after a cancer diagnosis, 
which is often asked by the question ‘How long will I live?’ 
or ‘What is the probability of being alive ‘w’ years from 
now?’. Furthermore, the question is asked at the start of 
the treatment as well as at any time during the follow-up 
visits. This question, which implies a conditional prob-
ability of surviving an additional w years, given that the 
patient is still alive at that time point,13 14 emphasises the 
dynamic use of the predictive model.15 Houwelingen and 
Putter16 17 designed the proportional baselines landmark 
supermodel (PBLS model; dynamic prediction) based 
on the Cox PHs model, considering time-varying effects. 
Thus, we can use this model to obtain individual death 
rates after an arbitrary time point s during follow-up. This 
concept of continually updating the w-year death rate 
from a certain s is referred to as the w-year dynamic death 
rate (DDR).

One aim of this article was to explore the effect of varia-
tion in prognostic factors over time on overall survival and 
to obtain the 5-year DDR for CA CC patients based on the 
SEER data. Another aim was to introduce two alternative 
methods when the PHs assumption failed and to provide 
statistical suggestions that could assess risks and predict 
survival probability for clinicians and patients.

METHODS
Data sources
The SEER programme of the National Cancer Institute 
is an authoritative source of information on cancer inci-
dence and survival in the USA that includes patient demo-
graphics, tumour characteristics, treatment utilisation 
and mortality. It is currently collecting and publishing 
cancer data from population-based cancer registries 
covering approximately 30% of the US population from 
2013. The SEER database is an open public database, 
and the release of data from the SEER database does 

not require informed patient consent as patient privacy 
information is protected by the SEER cancer registries in 
every state of the USA. Access to the SEER 9 database was 
obtained after execution of A signed SEER Research Data 
Use Agreement (DUA).

Study design
Women diagnosed with CC were identified using the 
International Classification of Diseases for Oncology 
third Edition (ICD-O-3)18 codes, including cancer of 
the endocervix (C53.0), exocervix (C53.1), overlapping 
lesion of cervix uteri (C53.8) and unspecified cervix uteri 
cases (C53.9) for Chinese patients (863 cases) from 1988 
to 2013. Patients with multiple primaries (0 case), autopsy 
only and death certificate only (4 cases), no survival 
time record (20 cases), not the first tumour (40 cases), 
unknown age at diagnosis (0 cases), unspecified Interna-
tional Federation of Gynecology and Obstetrics (FIGO) 
stage (36 cases), unknown lymph node metastasis (LNM) 
(75 cases) or unspecified radiation therapy (3 cases) were 
excluded (total number: 150 cases; some patients may miss 
several variables). Ultimately, 713 patients were involved 
in this analysis (see online supplementary eFigure 1).

Patient and public involvement
Patients were not involved in setting the research ques-
tions or planning the study. Researchers do not know the 
identities of the study participants.

Statistical analysis
The outcome of this analysis was all-cause mortality. The 
continuous variable (age at diagnosis) was indicated with 
median (range), and categorical data (FIGO stage, LNM 
and radiation therapy) were described using counts. 
The age at diagnosis was divided into per 10 years to 
better represent the covariate effect. The FIGO stage was 
dichotomised into categorical variables for easy statistical 
interpretation.

The Kaplan-Meier curves were graphed to describe 
overall survival. The univariable and multivariable Cox 
PHs models were used to estimate HRs and 95% CIs of 
the age at diagnosis, FIGO stage, LNM and radiation 
factors. Using the Grambsch-Therneau test,19 we found 
that the age at diagnosis and FIGO stage violated the 
PHs assumption, in which cases the interpretation of a 
constant HR was difficult. Therefore, RMST was used as 
another appropriate outcome measure in our analysis. 
We chose a restricted survival time (‍τ = 20‍) first and then 
computed the pseudo-value for each observation and 
finally fitted a generalised linear model (GLM) to assess 
the prognostic factors.20

For dynamic prediction analysis,16 we first fixed the 
prediction window at w=5 years—that is, the ‘w’ in 
response to the patient’s question ‘How long will I live ?’ 
at any prediction time point (s). Next, we selected a set of 
prediction landmark time points {s1…,s101} from prediction 
time point s at approximately every 2.4 months between 0 
and 20 years after the diagnosis of CC. For each landmark 
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time point sl, we constructed a landmark dataset Rl, which 
consisted of individuals still alive at sl, with administrative 
censoring at sl +w (see online supplementary eFigure 2). 
These landmark data sets Rl were stacked to create a super 
prediction data set R. We then applied a PBLS model to 
the stacked super dataset R, which allows the baseline 
hazard to change smoothly with the landmark time point. 
This model can be fitted directly by applying a simple Cox 
model to the dataset R, in which the landmark time point 
is used as a covariate. Using this analysis, we can obtain 
the 5-year DDR at any prediction time point, s, between 
0 and 20 years after diagnosis of CC. In addition, to test 
for time-varying covariate effects, interactions between 
covariates and s (both linear and quadratic) were also 
included in the PBLS model, and the Akaike information 
criterion (AIC) was used to decide the final model for 
dynamic prediction.

The performances of the prediction models (the Cox 
PHs model and the PBLS model (w=5)) were evaluated 
in terms of both discrimination and calibration. The 
model’s capacity to correctly discriminate among patients 
was evaluated using Harrell’s C-index, while the calibra-
tion using the heuristic shrinkage factor was based on 
10 000 bootstrap resamplings.

All analyses employed R 3.2.4 software, and the signifi-
cance level was set to 0.05.

RESULTS
Characteristics of the study population
The characteristics of the 713 CC patients with 162 
(22.7%) deaths, with a long-term (nearly 26 years, ie, 
the maximum follow-up time in this data) survival rate 
of 69.4% (95% CI 64.5% to 74.7%), are summarised in 
table 1. The median of age at diagnosis was 42 (15–97) 
years. The median death time and median follow-up time 
were 4.08 (range: 0.08–24.08) and 16.67 (range: 0.08–
25.92) years, respectively.

Effects of prognostic factors on overall survival
According to the Cox PHs model, all covariates showed 
significant differences (P<0.001) in the univariate anal-
ysis, while the multivariate analysis demonstrated that 
radiation did not have a significant effect (P=0.156) on 
CC patients (HR=1.43; 95% CI 0.87 to 2.33) (for more 
details, see online supplementary eFigure 3 and table 1). 
However, the Grambsch-Therneau test showed that the 
age at diagnosis and FIGO stage were covariates with 
time-varying effects, indicating that constant HRs for 
these covariates obtained from the Cox PHs model were 
unreliable.

Table 1 also shows the RMST differences. The patients 
without LNM had a longer restricted mean survival time, 
namely, 3.63 years, than the women presenting with LNM 
after 20 years of follow-up in the multivariate analysis. 
The women with FIGO stage II compared with patients 
with stage I showed a statistically significant RMST differ-
ence (−3.04; 95% CI −5.34 to −0.73), while the HR (1.57; 

95% CI 0.97 to 2.54) showed no significance in the multi-
variate analysis.

Table 2 demonstrates the regression coefficients in the 
PBLS model, and figure 1 shows the HR5(s)s, that is, the 
HR from any prediction time point s to s+5. The age at 
diagnosis revealed a changing impact on HR5(s) with 
each successive prediction time point (s), indicating that 
CC women had increased 5-year death rates over time 
(figure 1A). The women in FIGO stage I compared with 
stage in situ illustrated a significant time-varying effect, 
while the stage II versus stage I and stage III versus stage I 
did not (figure 1B1–B3); however, the overall time-varying 
effect was significant. The LNM also had the potential 
to change over time in the 5-year dynamic HR, HR5(s), 
which could be calculated by the following formula:

	﻿‍

HR5
LNM(s) = exp(β0 + β1 × (s/20) + β2 × (s/20)2)

= exp(0.40 + 5.66 × (s/20) − 9.56 × (s/20)2), sϵ [0, 20]‍�

The HR5
LNM (s) (figure 1C) increased from the start of 

the diagnosis but decreased 6 years after the diagnosis and 
was nearly 0 with a 20-year history of CC (‍HR5

LNM

(
5
)

= 3.38

‍, ‍HR5
LNM

(
10

)
= 2.32‍, ‍HR

5
LNM

(
15

)
= 0.48‍, ‍HR5

LNM

(
20

)
= 0.03

‍). Radiation was not statistically significant (figure 1D).

Individual dynamic prediction
The 5-year DDRs for patients with different baseline 
characteristics (see online supplementary eTable 1) are 
shown in figure 2. For example, the green line in figure 2 
represents the probability of dying within 5 years for 
patient B with the following characteristics: diagnosed at 
the age of 45 years, FIGO stage I, without LNM and no 
radiation. If still alive at 7 years after diagnosis, that is, the 
landmark time equaled 7 years, the probability of dying 
within 5 years was less than 0.05 for patient B.

Model assessment
The Cox PHs model and the PBLS model (w=5) presented 
different discrimination capacities (0.836 and 0.868, 
respectively, for the C-index). The PBLS model demon-
strated a better discriminative capacity than the Cox PHs 
model. The calibration slopes (0.958 and 0.996, respec-
tively) for these two models were similar for the apparent 
performance, while the PBLS model showed a better fit.

DISCUSSION
We used the Cox PHs model, as well as two alternative 
methods (the RMST difference model and the PBLS 
model), to explore the prognostic factors and provide 
5-year DDR predictions for CA CC patients. To our knowl-
edge, these two alternative models for CA CC patients 
have not been previously reported.

Regarding factor exploration, the Cox PHs model 
revealed that age at diagnosis, FIGO stage and LNM 
were independent risk factors of the prognosis of CA CC 
patients. However, the presence of non-PHs indicated that 
the effects of some covariates were changeable over time. 
In such a situation, RMST, the area under the survival 
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curve S(t) up to the restricted time point (τ), has great 
potential as another meaningful and sensitive outcome 
measure in the analysis with a time-to-event outcome. 
Compared with HR, the RMST difference does not rely 
on the PHs assumption and is readily interpretable. 
For instance, women without LNM had a longer mean 
survival time than the patients with LNM after the 20-year 
follow-up (blue area in online supplementary eFigure 4), 
namely, 7.93 years in the univariate analysis. In addition, 
the RMST is estimable even under heavy censoring, while 
the CI for HR from the Cox PHs model can be unstable 
and can vary widely. However, satisfactory results of RMST 
analysis must depend on the choice of the restricted time 
point (τ). Generally, the value of τ should be prespecified 
to avoid selection bias (after seeing the data). An appro-
priate time point should consider both the statistical 
method and the clinical reality. For example, in a trial on 
a severe cancer, 1-year or 2-year survival may be an appro-
priate measure, so τ=1 year or 2 years would be reasonable, 
while for cancers with a relatively longer clinical course, 
such as CC, τ=10 or even 20 years is more realistic. In the 
absence of such a choice, a default τ may be taken to be 

slightly below the maximum expected follow-up time.9 
In summary, the HR and RMST difference are comple-
mentary techniques that provide alternative methods of 
summarising treatment effects.8

There are also some other models that are commonly 
used when the PHs assumption fails, such as the accel-
erated failure time (AFT) model and the transformation 
model. However, these two models have certain limita-
tions in their use and their results are not easy to inter-
pret. For example, although the AFT model is simple and 
does not need to meet the PHs assumption, the distribu-
tion of survival time must be specified in advance, and 
random errors, noise and covariates are assumed to be 
independent and so on. Due to the special distribution 
of the survival time in the data in this study (for more 
details, see online supplementary eFile 1), the results may 
not be accurate. The transformation model also has some 
advantages and has proved its relevance in the two special 
cases (the Cox PHs model and the proportional odds 
model; for details, see online supplementary eFile 1), but 
for other choices of r, the regression coefficients are more 
difficult to interpret because they refer to the scale given 

Table 2  The dynamic prediction used the PBLS model (w=5 years)

Variable Time function* Coefficient SE P value† P value‡

βLM (s) Age at diagnosis
(per 10 years)

1 0.18 0.11 0.082 <0.001

s/20 1.14 0.25 <0.001

FIGO stage
(1994 edition)

 �  <0.001

 � In situ 1 −2.39 0.55 <0.001

s/20 11.10 2.50 <0.001

(s/20)2 −9.07 2.56 <0.001

 � I (reference)  �

 � II 1 0.39 0.40 0.335

s/20 2.68 2.79 0.336

(s/20)2 −3.44 3.14 0.274

 � III 1 1.08 0.44 0.015

s/20 2.20 4.69 0.639

(s/20)2 −18.40 11.22 0.101

Lymph node metastasis  �  <0.001

 � No (reference)  �

 � Yes 1 0.40 0.40 0.316

s/20 5.66 3.15 0.072

(s/20)2 −9.56 4.00 0.017

Radiation  �

 � No (reference)  �

 � Yes 1 0.34 0.30 0.260 0.252

θ(s) s/20 −10.60 1.89 <0.001

(s/20)2 3.50 1.55 0.024

* Time function: ‍βLM
(
s
)
= β0 + β1

(
s/20

)
+ β2

(
s/20

)2
‍,

† P value for the time-varying trend.
‡ P value for the whole time-varying effect adjusted for age at diagnosis, FIGO stage, lymph node metastasis and radiation.
FIGO, International Federation of Gynecology and Obstetrics; PBLS, proportional baselines landmark super.
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by the unknown h. Therefore, the two models are intro-
duced in online supplementary eFile 1, and their results 
are shown for reference only (see online supplementary 
eTables 2 and 3, eFigure 5).

Exploring the prognostic factors is important for clin-
ical research, but a good prognostic prediction model 
might be more important to patients. We used the PBLS 
model to perform dynamic prediction and it had several 
strengths over the above two models. First, the PBLS 
model can effectively find the time-varying effect of 
covariates for both estimation and prediction (see table 2 
and figure 1). Second, patients may focus more on ‘What 
is the probability of still being alive w years from now?’ 
during the follow-up. The PBLS model can provide the 
HRw(s) or w-year DDR at different prediction times. The 
Cox PHs model in this analysis could only provide a static 
HR for the whole follow-up and obtain the 5-year survival 
rate from the diagnosis time to 5 years. Furthermore, the 
discrimination and calibration in the PBLS model were 
clearly larger than those in the Cox PHs model, indicating 
that PBLS is more suitable in reality than the Cox PHs 
model for prediction when the PHs assumption is unsat-
isfied. Third, dynamic prediction is based on landmark 

analysis; thus, this model could overcome the guarantee 
time bias,21 especially in the group classification.

However, dynamic prediction must be considered 
cautiously. We noticed that the dramatic 5-year dynamic 
HR for the dummy variable (FIGO III vs FIGO I) was less 
than 1 after 7.4 years. The reason is that, at each landmark 
time point (sl), we have a corresponding dataset (Rl) (see 
online supplementary eFigure 6). As the landmark time 
point increased, the patients whose survival times were 
less than sl would be excluded, leading to a decrease in 
the number of patients in the dataset Rl. The cumula-
tive distribution function (F(sl)) (see online supplemen-
tary eFigure 7) was calculated by dividing the number of 
deaths by the number of patients in each dataset. It can 
be seen that, for FIGO III, F(sl) became 0 after a 7.4-year 
follow-up as the number of deaths equals 0. Thus, the 
reason for the dramatic HR5(s) less than 1 after 7.4 years 
was apparent. Therefore, we could not simply state that 
the patients in FIGO III had better survival than those in 
FIGO I at the late follow-up. The same situation occurred 
regarding LNM after the 11-year follow-up.

In addition, several limitations of the current study 
must be noted. First, this is a retrospective observational 
study, and consequently, some bias may have affected the 
analysis. Second, SEER database lacks some important 
variables related to patient status, such as HPV infection, 
the information of chemotherapy, and economic condi-
tions, which are associated with prognosis. Third, because 
SEER does not include information on cancer recur-
rence, we are unable to analyse other endpoints, such 
as time to recurrence, or disease-free survival. However, 
because cause-of-death information is available, an addi-
tional cause-specific analysis was performed to model CC 
mortality (for details, see online supplementary eFile 

Figure 1  Dynamic HRs with 95% CIs in the dynamic 
prediction PBLS model (w=5 years). The red line represents 
HR=1. The black solid line represents dynamic HRs, and the 
black dashed line represents 95% CIs. FIGO, International 
Federation of Gynecology and Obstetrics; PBLS, proportional 
baselines landmark super.

Figure 2  Changes in the 5-year dynamic death rate in 
nine example patients. FIGO, International Federation of 
Gynecology and Obstetrics.
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2), and the results are shown in online supplementary 
eTables 4–7, eFigures 8 and 9.

Above all, older patients had a worse survival rate than 
younger ones, a finding similar to that of Nghiem VT for 
Chinese patients. The FIGO stage is an essential prog-
nostic factor in CC patients, and our study confirmed 
that advanced FIGO stage patients had a poor survival 
rate.22 23 LNM was an unfavourable prognostic factor 
in our models. Several studies24 25 have indicated that 
patients with LNM have a rather poor prognosis. The new 
finding that age at diagnosis, FIGO stage and LNM have 
time-varying effects was found from the dynamic predic-
tion. In this study, radiation had no impact on survival in 
CA CC, a finding that differs by race in some reports.26 27

In summary, the Cox PHs model is unsuitable for 
survival analysis when the PHs assumption is unsatisfied; 
thus, the RMST difference as another effective outcome 
measure that overcomes the PHs handicap, which would 
help clinicians to explore the effects of prognostic factors 
for CA CC, and the PBLS model (dynamic prediction) 
permits continuous revision of a CA CC patient’s w-year 
DDR at the start of the diagnosis as well as at different 
prediction times s during follow-up. We also recom-
mend the latter two alternatives considering time-varying 
factors when the PHs assumption is not satisfied. But in 
actual use process, we must pay attention to the choice of 
the restricted time point (τ) in the RMST model and the 
interpretation of the PBLS model.
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