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Tumor-Associated Macrophages
and Their Functional Transformation
in theHypoxic TumorMicroenvironment
Zicong He and Shuixing Zhang*

Department of Radiology, First Affiliated Hospital of Jinan University, Guangzhou, China

Tumor-associated macrophages (TAMs) are some of the most abundant immune cells
within tumors and perform a broad repertoire of functions via diverse phenotypes. On the
basis of their functional differences in tumor growth, TAMs are usually categorized into two
subsets of M1 and M2. It is well established that the tumor microenvironment (TME) is
characterized by hypoxia along with tumor progression. TAMs adopt an M1-like pro-
inflammatory phenotype at the early phases of oncogenesis and mediate immune
response that inhibits tumor growth. As tumors progress, anabatic hypoxia of the TME
gradually induces the M2-like functional transformation of TAMs by means of direct
effects, metabolic influence, lactic acidosis, angiogenesis, remodeled stroma, and then
urges them to participate in immunosuppression, angiogenesis and other tumor-
supporting procedure. Therefore, thorough comprehension of internal mechanism of
this TAM functional transformation in the hypoxic TME is of the essence, and might
provide some novel insights in hypoxic tumor immunotherapeutic strategies.

Keywords: tumor hypoxia, hypoxic tumor microenvironment, tumor-associated macrophages, macrophage
polarization, macrophage functional transformation
INTRODUCTION

The tumor microenvironment (TME) is now recognized as a major contributor to cancer
progression. Hypoxia, resulting from an imbalance between oxygen supply and consumption (1),
is an intrinsic property of the TME. The rapid proliferation of cells in the tumor mass necessitates
extensive vascularization to sustain an adequate oxygen supply; however, tumor vessels are usually
immature, disorganized, and hyperpermeable (2), leading to intratumoral oxygen deprivation.
Cancer cells adapt to the resultant hypoxic microenvironment mainly via the hypoxia-inducible
factor (HIF) signaling pathway, which regulates the expression of genes that contribute to immune
evasion and malignant progression (3, 4). However, such inhospitable conditions are not favorable
for infiltrating immune cells and promote their immunosuppressive functions (5).

Macrophages, which originate from circulating bone marrow-derived monocytic precursors, are
among the most abundant immune cells within tumors and can be polarized into different
phenotypes, each of which is associated with different and diverse functions (6, 7). According to
their functional differences, these tumor-associated macrophages (TAMs) can be broadly
org September 2021 | Volume 12 | Article 7413051
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categorized into two subsets, namely, M1 (pro-inflammatory and
anti-tumor) and M2 (anti-inflammatory and pro-tumor) (8).
M1-like TAMs are activated by IFN-g, lipopolysaccharide, IL-1b,
TNF, and/or GM-CSF and can recognize and destroy malignant
cells via phagocytosis and cytotoxicity, in addition to producing
pro-inflammatory cytokines that stimulate anti-tumor immunity
(9–11). In contrast, M2-like TAMs are induced by Th2 cytokines
such as IL-4, IL-10, IL-13, and/or M-CSF, and can favor tumor
growth and promote TME remodeling by producing growth
factors, immunosuppressive factors, pro-angiogenic molecules,
and proteases (9, 12–14). However, this simplified distinction of
M1/M2 polarization cannot strictly delineate the phenotypic and
functional boundaries of TAMs as these cells are both highly
dynamic and heterogeneous within and across tumors (15).
TAMs have an extraordinary degree of plasticity, which
enables them to finely modulate themselves in response to
microenvironmental changes and thereby orchestrate various
aspects of the TME (7, 15). Hypoxia is a microenvironmental cue
that induces the tumor-supporting transformation of TAMs, an
effect that is associated with disease progression and resistance to
therapy (16). This highlights the need to integrate TAM-related
hypoxic stress into tumor immunotherapy.

Here, we review the known mechanistic effects of a hypoxic
TME on TAM functional transformation (Figure 1) and provide
insights into immunotherapeutic strategies targeting
hypoxic macrophages.
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PRO-TUMOR TRANSFORMATION OF
TAMS IN THE HYPOXIC TME

Hypoxia-Driven TAM Recruitment
Due to unbalanced growth and a disorganized microvasculature,
there is significant heterogeneity in oxygen content in a tumor
mass. The hypoxic condition induces the production of a broad
array of migratory stimulating factors, such as VEGF, CCL2,
CCL5, CSF-1, EMAP-II, endothelin-2, SEMA3A, oncostatin M,
and eotaxin, in tumor cells and the stroma within oxygen-
deprived regions (17–24), resulting in macrophage recruitment
and entrapment (25). When macrophages are recruited in
hypoxic tumor areas, their polarization can be altered to an
M2-like pro-tumor phenotype via the activity of the above-
mentioned hypoxic tumor cell-derived cytokines (20, 24). A
recent study revealed that neuropilin-1 (NRP-1) expression is
significantly upregulated in hypoxic areas and induces pro-tumor
phenotypes in recruited macrophages (26). Consequently, there is
a greater abundance of M2-like TAMs at the invasive margin of
tumors, where the hypoxic status is more severe, compared with
that at the tumor center (27).

Direct Effects of Hypoxia
Hypoxia may also direct TAM polarization by affecting gene
expression profiles. HIFs are key hypoxia-responsive
transcription factors, the expression of which is upregulated in
FIGURE 1 | Graphical summary depicting the contributors of TAM functional transformation in the hypoxic TME.
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macrophages (28). Two isoforms of HIF—HIF-1 and HIF-2—
elicit overlapping but sometimes opposing effects on macrophage
transcriptional profiles, which endow macrophages with
plasticity and shape their versatile phenotypes (29, 30). HIF
activity in macrophages is dependent on the type of cytokine
stimulus (31), with HIF-1a reported to be activated by Th1
cytokines and HIF-2a by Th2 cytokines. Additionally, HIF-1a
and HIF-2a, via the regulation of respectively the inducible nitric
oxide (NO) synthase and the arginase 1 genes, coordinately
regulate NO availability to guide macrophage functional
phenotypes (31). HIF-1a and HIF-2a are known to participate
in the inflammatory function of macrophages. Macrophages
sense changes in oxygen concentrations and then mediate
IFN-g production via HIF-1a, thereby enhancing their
phagocytic functions and antigen presentation abilities (32).
Meanwhile, HIF-1a promotes the production of inflammatory
molecules in a TLR4-dependent fashion, including granule
proteases, antimicrobial peptides, TNF-a, IL-1, IL-4, IL-6, and
IL-12, thereby regulating the killing capacity of macrophages (33,
34). In vitro findings indicated that the absence of HIF-1a in
macrophages leads to reduced ARG1 expression and the
consequent suppression of T-cell activation (35). Additionally,
there is evidence to indicate that HIF-1a affects the
inflammatory function of macrophages by regulating their
glycolytic capacity under hypoxic conditions (36). The
contributions of HIF-2a to pro-inflammatory cytokine
expression in hypoxic macrophages have also been
documented (37). However, unlike HIF-1a, the regulation of
inflammation by HIF-2a involves neither the production of NO
nor the expression of costimulatory molecules (33, 37).
Furthermore, HIF-1a and HIF-2a were found to exert
antagonistic functions in angiogenesis. The role of HIF-1a as a
positive regulator of macrophage-derived VEGF is well
established (38). The knockout of HIF-1a in TAMs can
attenuate their pro-angiogenic responses (39). In contrast,
HIF-2a upregulates the production of soluble VEGF receptor 1
(sVERFR-1) by macrophages (40, 41). sVERFR-1 is an
alternatively spliced variant of the membrane-bound VEGFR-1
expressed on endothelial cells and acts as a negative regulator of
VEGF in tumor angiogenesis (40). Furthermore, HIF-1a was
recently reported to upregulate the expression of PD-L1 in
tumor-infiltrating macrophages, thereby promoting the
establishment of an immunosuppressive TME (42). A recent
study found that macrophage-derived HIF-2a regulates the
expression of the serine protease inhibitor Kunitz type 1
(SPINT1), which contributes to the tumor-suppressive
functions of TAMs in breast cancer development (43).
Nonetheless, the latest evidence from single-cell RNA
sequencing revealed that macrophages within both tumors and
normal tissues do not show defined M1 or M2 polarization
signature gene expression (44). The multifarious functional
phenotypes of TAMs in hypoxic tumors might not be entirely
dependent on gene expression profiles, but may also be
influenced by the local environment.

At the early stages of oncogenesis, infiltrating macrophages
adopt an M1-like phenotype that promotes the destruction of
Frontiers in Immunology | www.frontiersin.org 3
tumor cells and the inhibition of angiogenesis, concomitant with
the activation of the inflammatory response (45). However,
chronic inflammation resulting from M1-like TAM activity can
accelerate genomic instability in malignant cells and serve as a
driver of tumor progression (46, 47). As tumors progress,
increasing levels of hypoxia lead to reduced secretion of pro-
inflammatory mediators (e.g., IL-1b, TNF-a, and CCL17) by M1-
polarized macrophages and facilitates macrophage differentiation
toward the M2-like phenotype (48). Although hypoxia does not
directly alter the relative abundance of macrophage subsets, it
induces a pro-tumor gene expression profile in the M2-like
macrophage subset (49), including the expression of growth
factors (e.g., FGF2, PDGF, and VEGF) (50, 51), angiogenic
molecules (e.g., VEGF, FGF2, CXCL8, and IL-8) (52),
angiogenic modulators (e.g., COX2 and iNOS) (52), and matrix
metalloproteinases (e.g., MMP2, MMP7, and MMP9) (53, 54).
Furthermore, hypoxia can reportedly promote an increase in
CCL20 expression in TAMs through the ERK/NF-kb pathway,
leading to the accumulation of CCR6+ Foxp3+ T regulatory cells
(Tregs) (55). Although TAMs show no differences in M1 and M2
polarization capacity, they tend to exert M2-like pro-tumor
functions in the hypoxic TME (35).

Metabolic Influence of Hypoxia
Hypoxia is known as a metabolic cue that shapes macrophage
functional phenotypes within the TME. M1-like macrophages
usually employ glycolytic metabolism for their energy supply and
have a robust capacity for reactive oxygen species (ROS)
production; in contrast, M2-like macrophages generally utilize
oxidative phosphorylation to fuel their longer-term tissue repair
functions (56). The crucial role of HIF-1a in regulating the
glycolytic capacity of macrophages, as well as their survival and
function, in the hypoxic TME has been documented (36). The
expression of the glycolytic enzyme phosphoglycerate kinase
(PGK) and glucose transporter 1 (GLUT-1) is markedly
reduced in macrophages with deletion of myeloid HIF-1a, as is
the cellular ATP pool, which leads to an impaired inflammatory
response (33, 36). There is some evidence to suggest that pro-
inflammatory macrophages redirect pyruvate away from pyruvate
dehydrogenase (PDH) in a NO-dependent and HIF-1a-
independent manner, thereby promoting their metabolic
reprogramming (57). Pyruvate dehydrogenase kinase, isozyme 1
(PDK1), induced by HIF-1a in mildly hypoxic condition, has
been found to regulate glycolytic reprograming of macrophages
through the redirection of pyruvate flux into lactate, while leaving
cytochrome c oxidase activity unaffected (58). Such active
glycolysis promotes the redistribution of intracellular ATP, and
plays an essential role in macrophage migratory capacity (58).
However, long-term hypoxia in tumors still exerts a negative
influence on TAM metabolism. Mammalian target of rapamycin
(mTOR) functions as an integrative rheostat that couples cellular
activation to nutrient sensing and metabolic status (59, 60).
Hypoxia drives the upregulation of regulated in development
and DNA damage response 1 (REDD1), an inhibitor of mTOR,
which strongly hinders glycolysis in TAMs and reduces their
metabolic competition with endothelial cells (61, 62). Such a
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REDD1/mTOR metabolic shift in TAMs culminates in
endothelial cell hyperactivation, with the consequent formation
of an abnormal vascular network (61, 62). A significant reduction
in microRNA-30c levels is also observed in hypoxic TAMs, which
impairs both mTOR activity and glycolysis, thereby inhibiting
TAMM1-like polarization (63). BMAL1 is known as a molecular
clock that regulates mitochondrial metabolism under metabolic
stress in macrophages. A recent study found that BMAL1/HIF-1a
crosstalk regulates macrophage energy metabolism, while
metabolic dysregulation due to aberrant HIF-1a activation in
TAMs contributes to an immunosuppressive TME (64).

Iron is an essential nutrient for malignant cell growth and
proliferation and also contributes to both tumor progression and
metastasis (65). Most iron is recycled and released to tissues by
macrophages via erythrophagocytosis (66). M2-like TAMs
exhibit a gene expression profile associated with iron efflux
(increased ferroportin levels and reduced ferritin levels),
whereas M1-like TAMs favor iron retention (67, 68). Tumor
hypoxia supports such an iron-donor phenotype by upregulating
solute carrier family 40, member 1 (SLC40A1) and lipocalin 2
(LCN2) expression in TAMs, resulting in increased iron
availability in the TME and improved iron uptake by
malignant cells (69–71).

Lactic Acidosis After Hypoxia
It is well established that the hypoxic TME is characterized by
acidosis. Hypoxic tumor cells mainly obtain energy via anaerobic
glycolysis, leading to increased concentrations of lactic acid (72).
Meanwhile, such fermentative metabolism occurs in highly
proliferating cells even in the presence of oxygen, known as
the “Warburg Effect” (72). This byproduct of aerobic or
anaerobic glycolysis (together with M-CSF) downregulates the
NF-kB pathway, reduces the secretion of both NO and
inflammation-related cytokines (such as TNF-a and IL-1),
while simultaneously inducing the expression of VEGFA,
ARG1, and other M2-associated genes (73–75). Besides, M2
−like TAMs altered by lactic acid were found to promote T
−cell apoptosis through the PD−L1/PD−1 pathway (76). Recent
findings have shown that a pH of 6.1 without stimulation or a pH
of 6.8 with IL-4 stimulation could promote the expression of
ARG1 and VEGFA by macrophages in vitro (77, 78). These effects
of tumor-cell-derived lactic acid are mediated by HIF-1a and
promote TAM polarization toward an M2-like phenotype (73–
75). A different study reported that lactic acid could inhibit
ATP6V0d2 expression in TAMs, thereby promoting their HIF-
2a-mediated pro-tumor functions (79). This suggests that lactic
acid promotes the tumor-supporting phenotype of TAMs via the
activation of HIF-1a3 and HIF-2a, albeit through distinct
mechanisms. Under normoxic conditions, lactic acid normally
exerts only a weak effect on TAMs. Under hypoxia, however,
lactic acid greatly facilitates M2-like polarization via the HIF-1,
Hedgehog, and mTOR pathways (80). Furthermore, G protein-
coupled receptors (GPCRs) have been reported to function as
key sensors of the acidification of the TME, inducing the
expression of inducible cyclic AMP early repressor (ICER;
transcriptional repressor), which enhances the pro-tumor
transition of TAMs via NF-kB signaling inhibition (77, 81).
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Moreover, the activation of acid-sensing ion channels (ASICs)
was identified as an important mediator of the endocytic
functions of macrophages as well as their maturation (82).
Recently, lactic acid was shown to be capable of skewing the
macrophage phenotype toward the M2-like state via
monocarboxylate channel transporter (MCT)/HIF-1a signaling
(83). Lactate-derived histone lysine lactylation, a recently
identified epigenetic modification, was demonstrated to induce
the expression of M2-associated genes, including ARG1 (84).
Moreover, the most recent evidence has indicated that tumor-
released succinate can activate succinate receptor 1 (SUCNR1)
signaling to polarize TAMs toward tumor-supporting
phenotypes through a SUCNR1-activated PI3K/HIF-1a
axis (85).

Angiogenesis in Hypoxic Areas
Hypoxia in the TME induces angiogenesis to meet the oxygen
and nutrient needs of proliferating tumor cells. TAMs
accumulate and transition into proangiogenic phenotypes in
perivascular areas (86), especially those that are poorly
vascularized (87). TIE2, an angiopoietin (ANG) receptor
expressed by TAMs, is upregulated under hypoxic conditions
and, together with ANG-2, enhances the pro-tumor functions of
TAMs (88, 89). Compared with TIE2− TAMs, TIE2+ TAMs
within the same tumor express higher levels of pro-angiogenic
genes, including MMP9, VEGFA, COX2, WNT5A, and PDGFB
(90, 91). ANG-2 expression is known to be increased in hypoxic
regions and serves as a chemoattractant for macrophages (89).
ANG-2, secreted from tumor and vasculature cells, can enhance
IL-10 and mannose receptor expression, while decreasing that of
TNF-a and IL-12, thereby weakening TAM anti-tumor activity
under hypoxic conditions (88, 89).

The secretion of macrophage-derived VEGF-A is also
markedly increased by HIF-1a at hypoxic sites, thereby
enhancing tumor angiogenesis (92, 93). In contrast, under the
regulation of HIF-2a, hypoxic TAMs generate high levels of
sVEGFR-1, which selectively neutralizes VEGF activity and
diminishes tumor angiogenesis (40, 41). This antagonistic
effect of HIF-1a and HIF-2a on angiogenesis was suggested to
facilitate the redistribution of the vascular network in hypoxic
tumors to meet their growth and metabolic requirements. Of
note, HIF-2a is also highly expressed in normoxic macrophages,
leading to enhanced transcription of proangiogenic genes (52).

Neoangiogenesis can provide oxygen and nutrients to
hypoxic areas, but can also result in erythrocyte extravasation
and hemolysis. The release of heme and iron from hemolytic red
blood cells can help convert M2-like TAMs into pro-
inflammatory M1-like TAMs that display tumor-killing
activity (94).

Hypoxia-Remodeled Stromal Components
Stromal fibrosis is a commonly occurring event in the hypoxic
TME. Cancer-associated fibroblasts (CAFs) are considered to be
the dominant component of fibrotic stroma and can be activated
by tumor hypoxia through several mechanisms (95). These
activated fibroblasts have been found to overexpress numerous
pro-inflammatory cytokines (e.g., CCL2, CCL5, IL-4, IL-6, IL-8,
September 2021 | Volume 12 | Article 741305
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GM-CSF, CXCL8, and CXCL14) that regulate TAM recruitment,
differentiation, and activation (96). CAF-derived CXCL14 has
been demonstrated to affect macrophage recruitment in tumors
via NOS1-derived NO signaling. CAFs have also been reported
to impair the maturation and differentiation of recruited
macrophages, locking them in a suppressive state, through the
induction of STAT3 phosphorylation (97, 98). In vitro
observations have indicated that CAF might drive myeloid
cells toward immunosuppressive differentiation via the
production of IL-4, IL-6, and IL-8 (99).

Extensive lymphocyte subpopulations also constitute a major
fraction of tumor stroma. These lymphocytes in the hypoxic
TME engage the tumor-supporting activities of TAMs via a large
array of cytokines. For instance, Th2 lymphocyte-derived IL-4
and IL-13 can enhance epidermal growth factor expression in
TAMs, which promotes tumor cell metastasis, as well as the
suppressive activity of TAMs, which blunts CD8+ T-cell
responses to therapy (100, 101). Moreover, there is evidence
showing that hypoxia can upregulate the expression of forkhead
box P3 (FOXP3), a transcriptional activator of Tregs, through an
HIF-1a-dependent mechanism (102), while FOXP3+ Tregs drive
TAMs toward an immunosuppressive phenotype (103, 104).

Extracellular matrix (ECM), which serves as a structural
scaffold for immune cell infiltration in the TME, is extensively
remodeled under tumor hypoxia (105). Hyaluronic acid (HA), a
primary ECM component, is associated with macrophage
trafficking and tumor neovascularization (106). Hypoxia
enhances the endogenous production of HA by tumor cells
(107). Pro-angiogenic M2-like TAMs preferentially traffic to
HA-rich areas in the TME (106). Tumor-derived HA has also
been identified to trigger the transient, early activation of
monocytes, thereby promoting M2-like immunosuppressive
phenotypes among TAMs (108). Another study reported that
periostin and collagen, both fibrosis-associated ECM
components, respectively facilitated TAM recruitment via
integrin binding (109) and promoted their M2-like
polarization (110).

Cellular debris resulting from cell death is prevalent within
hypoxic regions of tumors. The release of high mobility group
protein B1 (HMGB1) was demonstrated to drive IL-10
production in TAMs selectively through the receptor for
advanced glycation end products (RAGE), leading to an IL-10-
rich milieu within the tumor (111). The recognition of apoptotic
cells is also thought to suppress macrophage activation potential
(112). TAMs can recognize dying tumor cells through the MER
tyrosine-protein kinase (MERTK) receptor and upregulate the
expression of wound-healing factors such as TGF-b, IL-10, and
ARG1 that suppress anti-tumor immunity (113).

Research attention has increasingly focused on exosomes
released by hypoxic tumor cells. Hypoxia can stimulate tumor
cells to produce higher numbers of exosomes (114). Exosomes in
hypoxic tumor areas contain large amounts of chemokines and
immunomodulatory proteins, including CSF-1, CCL2, FTH,
FTL, and TGF-b, which promote the differentiation of
infiltrating myeloid cells toward an M2-like macrophage
lineage (115). Exosomal miR-301a-3p derived from hypoxic
Frontiers in Immunology | www.frontiersin.org 5
pancreatic cancer cells was reported to promote M2-like
macrophage polarization by activating the PTEN/PI3Kg pathway
(116). MiR-7a, another exosomal miRNA derived from hypoxic
tumorcells,was shown tosuppress several target genesof the insulin
pathway, such as INS-1 and IGF1R, and thus trigger M2-like TAM
polarization (117), similar to that seen for miR940 from exosomes
derived from ovarian epithelial carcinoma cells (118). Recently,
exosomal lncRNA BCRT1 was demonstrated to promote M2-like
phenotype polarization and enhance macrophage-induced tumor
progression (119). Additionally, miR-1246 in hypoxic glioma-
derived exosomes was shown to mediate H-GDE-induced M2-
like macrophage polarization by targeting TERF2IP via activating
and inhibiting the STAT3 and NF-kB signaling pathways,
respectively (120). Hypoxic stress was also demonstrated to
suppress miR101 expression, which resulted in an increase in
TAM-derived IL-1a and IL-6, which, in turn, promoted lung
tumor cell growth (121).

Epithelial to mesenchymal transition (EMT) is also a common
phenomenon associated with stroma remodeling in hypoxic
tumors, helping to foster an immunosuppressive TME and
facilitating tumor progression and metastasis (122, 123). A
significant correlation has been confirmed to exist between
EMT and TAM infiltration in hypoxic tumor tissues (124).
Zinc finger E-box binding homeobox 1 (ZEB1) plays a critical
role in the EMT program by restraining epithelial differentiation
via the inhibition of members of the microRNA-200 family (125).
The high expression of ZEB1 in hypoxic regions has a positive
relationship with M2-like TAM abundance, i.e., it recruits
M2-like TAMs by activating CCL8 transcription (126).
Moreover, high HIF-1a expression under hypoxic conditions
leads to increased secretion of the cytokine IL-1b by M2 TAMs,
which, in turn, enhances EMT progression (127).
IMMUNOTHERAPEUTIC STRATEGIES
TARGETING HYPOXIC TAMS

Substantial evidence supports that the hypoxia-induced
immunosuppressive TME elicits a more aggressive tumor
phenotype and promotes resistance to treatment (128). Several
studies have reported that TAM polarization might
counterproductively be skewed towards an M2-like pro-tumor
phenotype after chemotherapy and radiotherapy, which
contributes to tumor revascularization and relapse, while
increasing levels of hypoxia after therapy could further
enhance the tumor-supporting functions of TAMs (129, 130).
This highlights the potential of TAMs as immunotherapeutic
targets for hypoxic tumors. Macrophage-centered therapeutic
strategies for treating hypoxic tumors should focus on improving
the hypoxic status of the TME, inhibiting the tumor-promoting
functions of M2-like TAMs, or reactivating the anti-tumor
activity of M1-like TAMs.

Improving the Hypoxic Status of the TME
As described above, the hypoxic TME is responsible for the pro-
tumor transformation of TAMs. Redressing hypoxia in the TME
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maybe beneficial for reversing themalignantTAMphenotypes and
improving responses to immunotherapy. Oxygen delivery to
hypoxic areas via nanomaterials may be an attractive means for
achieving this. Various strategies for delivering O2 to the hypoxic
TME have been reported, such as using certain oxygen carriers for
transporting O2 to tumor sites or generating O2 from endogenous
hydrogen peroxide in situ using nanocatalysts (131–134). Recently,
a TAM-targeted biomimetic nano red blood cell system was
designed for precise O2 delivery and M2-like TAM depletion
within the TME (135). This nanosystem alleviated tumor hypoxia
and markedly enhanced chemoimmunotherapeutic effects.
Normalization of the tumor vasculature represents another
possible approach for directly alleviating tumor hypoxia. Vessel
normalization is now thought to be beneficial for tumor immune
reprogramming (136). As is generally acknowledged, a wide
spectrum of highly expressed pro-angiogenic proteins are
responsible for the abnormal vasculature networks found in
hypoxic tumors. Scheduling a proper dose of anti-angiogenic
drugs that block these pro-angiogenic proteins or their receptors,
such as VEGF/VEGFR, could help restore functional vessels, thus
alleviating tumor hypoxia (137). Low-dose anti-VEGFR2 therapy
has been reported to improve the perfusion of hypoxic tumors and
promote an immunosuppressive-to-immunostimulatory TAM
phenotype conversion (138). Counterintuitively, monotherapy
with anti-angiogenic drugs at high doses might be
counterproductive owing to the associated excessive pruning of
tumor vessels (137). Modification of the HIF signaling pathway
might be anotherway of alleviating hypoxia in theTME.Vorinostat
(suberoylanilide hydroxamic acid, SAHA) is a histone deacetylase
inhibitor that has been approved by the United States Food and
Drug Administration (FDA) and has been demonstrated to
negatively regulate the expression and function of HIF-1a
through the inhibition of an eIF3G-dependent translation
mechanism (139). Meanwhile, topotecan, a FDA-approved
topoisomerase I inhibitor, has been shown to inhibit HIF-1a
protein accumulation through a DNA damage-independent
mechanism and thus delay both angiogenesis and tumor
growth (140).

Inhibiting the Tumor-Promoting Functions
of M2-like TAMs
The depletion of M2-like TAMs represents a possible therapeutic
approach for lessening pro-tumor functions. Liposomal clodronate
treatment was shown to attenuate lung cancer progression through
depleting TAMs (141). Additionally, trabectedin (ET-743),
originally developed as an anti-proliferative agent for soft tissue
sarcoma and relapsed ovarian cancer, was reported to activate the
extrinsic apoptotic pathway viaTRAIL receptors, followedbyTAM
depletion in tumors (142). However, anti-cancer therapy with
trabectedin might elicit undesirable effects on monocyte/
macrophage-mediated host defenses because of the
indiscriminate depletion of macrophages (142). As a
consequence, molecular-targeting has emerged as a promising
direction for M2-like TAM depletion. Cieslewicz and colleagues
constructed an M2-targeting fusion peptide to selectively exhaust
M2-like TAMs, thereby reducing systemic damage (143).
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Because macrophages are recruited and entrapped in hypoxic
areas of tumors by tumor- and stroma-derived chemoattractants,
preventing macrophage recruitment via pharmacological
modulation may be another effective treatment method for
inhibiting the pro-tumor functions of TAMs. Several
antibodies selectively targeting chemoattractant receptors,
including CCL2R, VEGFR2, and CSF-1R, have been shown to
reduce macrophage infiltration and suppress tumor growth
(144–146). Accordingly, interfering pharmacologically with
other macrophage chemoattractants, such as CXCL12 and
CCL5, as a means of inhibiting tumor growth merits further
investigation (147, 148).

Reactivating the Anti-Tumor Activity of
M1-like TAMs
As mentioned above, M1-like TAMs possess anti-tumor activity,
such as the ability to inhibit tumor angiogenesis as well as the
activation of inflammatory responses. This suggests that
repolarizing TAMs to an M1-like phenotype may be an
additional supplement to the arsenal of anti-cancer therapies.
One study found that zoledronic acid, a nitrogen-containing
bisphosphonate used for the treatment of cancer patients with
bone metastases, could convert the TAM phenotype fromM2-like
to M1-like by targeting the mevalonate pathway (149).
Additionally, M2-like TAMs activated using CD40 agonists can
reportedly reacquire antigen-presenting capabilities and become
tumoricidal, resulting in the reestablishment of tumor immune
surveillance and the short-term reduction of tumor volume (150).
Meanwhile, it has been shown that Toll-like receptor 3 (TLR3)
signaling can transform tumor-supporting TAMs into tumor
suppressors by rapidly inducing the production of pro-
inflammatory cytokines (151). Furthermore, there is evidence to
support that the structural and functional restoration of the tumor
vasculaturemight restore the anti-tumor functions of TAMs. It has
been demonstrated that histidine-rich glycoprotein (HRG) can
downregulate placental growth factor (PlGF) levels, leading to the
restoration of tumor vessel functionality and TAM repolarization
(152). CSF-1R inhibition has also been reported to alter TAM
polarization incombinationwithglioma-secreted factors, including
GM-CSF and IFN-g (20). Anti-CD47-elicited antibody-dependent
cellular phagocytosis might also lead to the skewing of TAM
polarization toward an M1-like phenotype (153). Recent studies
have found that PI3Kg signaling represents a crucialmediator of the
switching between immunostimulatory and immunosuppressive
macrophage phenotypes. The selective inactivation of PI3Kg can
stimulate and prolong NF-kB activation while inhibiting that of C/
EBPb, thereby restoring the pro-inflammatory functions of
macrophages (154). However, whether the anti-tumor functions
of repolarized TAMs will be overridden by the hypoxic TME
remains unclear and warrants further investigation.
CONCLUDING REMARKS

Hypoxia is a critical modulator of tumor immunity. TAMs, an
important component of tumor immunity, are recruited into the
September 2021 | Volume 12 | Article 741305
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hypoxic regions of tumors, where they acquire a pro-tumor
phenotype following direct or indirect stimulation by the
hypoxic TME. TAMs subsequently become important
contributors to tumor immune escape, angiogenesis, matrix
remodeling, metabolic changes, and treatment resistance
through a vast array of pathophysiological processes. Although
hypoxia-modified gene expression profiles endow TAMs with
plasticity and versatility, the interaction with the hypoxic TME
finally defines their specific functions. Consequently, a close
characterization of the cross-talk between the TAM functional
state and other components of the TME might offer significant
insight into the development of new treatment regimens.
Alleviating hypoxia in the TME and the phenotypic
conversion of TAMs might be the focus of future efforts for
cancer immunotherapy.
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