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Abstract
Reliable and real-time information on soil and crop properties is important for the develop-

ment of management practices in accordance with the requirements of a specific soil and

crop within individual field units. This is particularly the case in salt-affected agricultural

landscape where managing the spatial variability of soil salinity is essential to minimize sali-

nization and maximize crop output. The primary objectives were to use linear mixed-effects

model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic

induction (EMI) measurements as ancillary data, to characterize the spatial distribution of

soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and

vertical EMI (type EM38) measurements at 252 locations were made during each survey,

and root zone soil samples and crop samples at 64 sampling sites were collected. This work

was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-

affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood

(REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO)

using ancillary data, and spatial distribution of soil ECe and CAO was generated using digi-

tal soil mapping (DSM) and the precision of spatial estimation was examined using the col-

lected meteorological and groundwater data. Results indicated that a reduced model with

EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with

both EMh and EMv as predictors met the requirement of CAO calibration. The obtained dis-

tribution maps of ECe showed consistency with those of EMI measurements at the corre-

sponding time, and the spatial distribution of CAO generated from ancillary data showed

agreement with that derived from raw crop data. Statistics of jackknifing procedure con-

firmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A

general increasing trend of ECe was observed and moderately saline and very saline soils

were predominant during the survey period. The temporal dynamics of root zone ECe coin-

cided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys

and data collection are needed to capture the spatial and temporal variability of soil and
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crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI

surveys, as one part of multi-source data for DSM, could be successfully used to character-

ize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil

salinity, and to spatially estimate potential crop yield.

Introduction
Soil salinization in the coastal zone of the Yangtze River alluvial sediments in Eastern China is
a constant threat to agriculture and ecology. Among them, the coastal region of Jiangsu Prov-
ince has possessed a total of about 8 ×105 ha salinized soil resources including mud flats,
accounting for over one quarter of total tidal flats in China [1]. These soils are naturally saline
due to marine immersion, the presence of a shallow, saline water table and coarse soil texture.
Although this area has been experiencing a slowly reduce of soil salinity owing to substantial
rainfall [2], farmers annually suffer from over 30% yield reduction due to large evaporation/
precipitation (E/P) ratio in dry season, low leaching efficiency in rain season as well as lack of
reliable soil salinity monitoring. Accurate and real-time salinity information becomes increas-
ingly important for developing management strategies that aim to minimize salinization and
maximize crop output in this area.

Rapid and reliable methods for obtaining information on the field soil salinity have made
great progress in the last two decades. Recently, rapid techniques of remote sensing and proxi-
mal sensory, which provided favorable facilities for detecting soil salinity and other properties,
have attracted more interests [3–5]. The most widely used technique is proximal sensing elec-
tromagnetic induction (EMI) instruments including the EM31, EM38, EM38-DD, and
EM38-MK2 meters, the DUALEM-1 and DUALEM-2 meters, and the Profiler EMP-400 [6].
These EMI sensors gauge the apparent soil electrical conductivity (ECa) with the advantages
such as high speed, ease of use, relatively low cost, and large volume of data collected over tra-
ditional methods [7]. Up to the present, EMI sensors have found wide applications in fields of
precision agriculture, water-saving irrigation, hydrological and pedological processes. The suc-
cess lies in the fact that EMI readings are easily correlated to soil attributes in the rootzone [8],
vadose zone [9] and deeper regolity [10], and these correlations have then been used to map
soil attributes from field to landscape scales [11–12]. However, the response of apparent electri-
cal conductivity measured by EMI techniques to soil salinity is influenced by a wide range of
indirect factors, such as soil moisture, clay content, bulk density and mineralogy [13–14]. The
real challenge is that EMI techniques work best in areas where there are large changes in one
soil property that influences soil electrical conductivity, and do not work as well when soil
properties that influence electrical conductivity are largely homogenous [15].

The primary use of proximal sensing EMI instruments in agriculture is for the assessment
of soil salinity at different scales and EM38 meter has been the most widely used EMI sensor in
soil science [16]. This meter provides an effective exploration depth of 0.75 and 1.5 m when it
is operated in the horizontal and vertical dipoles, respectively. Using the EM38 meter measure-
ments as ancillary data, the spatial variability of EMI data has been widely used to better infer
the spatial variability of soils salinity, water content, clay content, cation exchange capacity,
and even soil depth [17–20]. More recently, EM38 meter has gained popularity in precision
farming, such as improvement of soil mapping [21], potential crop yield estimation with the
combination of satellite imagery [22], identification of manure accumulation area and soil con-
straints to the crop yields [23], and assessment of potential nutrient build-up [24]. In addition,
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EM38 meter has been attracting attentions of researchers who are interested in precise delinea-
tion of field soil salinity, and appraisal and modeling of related agricultural managements on
crop growth, salt transport and water usage [25–27].

Despite the successful application of EMI in many regions around the world, few studies
have examined the use of periodical EMI survey measurements as ancillary data to estimate the
field soil salinity and crop yield in the marine-terrestrial interlaced region of the coastal zone of
Jiangsu Province. In this study, repeated EMI surveys with EM38 meter and digital soil map-
ping (DSM) were employed to characterize the spatial distribution and temporal dynamics of
root zone soil salinity on eight survey dates, and to map the spatial pattern of crop annual out-
put (CAO) based upon ancillary data. This work was conducted in a salt-affected agricultural
landscape which was enclosed and reclaimed from coastal mudflats in 2004. The primary
objectives were: (i) to establish the relationship between root zone salinity, CAO and the EMI
measurements using multiple linear regression (MLR) and restricted maximum likelihood
(REML), (ii) to evaluate the spatial distribution and temporal changes of soil salinity on differ-
ent survey dates, and to investigate the reliability of the estimation of spatial soil salinity using
weather and groundwater data, and (iii) to spatially estimate CAO using the average EMI mea-
surements obtained from the eight surveys as ancillary data and to verify the feasibility and pre-
cision of CAO prediction procedure.

Materials and Methods

Ethics Statement
We selected a coastal salt-affected rainfed field in the Huanghai Raw Seed Growing Farm,
located in the southeast region of Dongtai Prefecture, Jiangsu Province, China to conduct this
study. One field, which was approximately 0.93 ha and reclaimed from coastal mud flats in
2004, was used to perform soil sampling and repeated electromagnetic induction (EMI) surveys
from June 2012 to May 2014. This study was permitted by the Agricultural Commission of
Dongtai Prefecture. No endangered or protected species were involved in the study.

Experimental site characteristics
The experiment site was the Huanghai Raw Seed Growing Farm with central coordinates 32°
390N and 120°530E, situated in the marine-terrestrial interlaced area, southeast of Dongtai Pre-
fecture, Jiangsu Province, China (Fig 1). The site has a typical coastal salt-affected agricultural
landscape in the subtropical zone of East China, and is characterized by the southeast monsoon
from spring to autumn and the northwest monsoon in winter owing to the oceanic and conti-
nental climate. The distance from the site to the Yellow Sea Coastline is approximately seven
kilometers and this farm has nearly flat topography, with an elevation of 1.0–1.5 m above sea
level. The land of this farm, enclosed and reclaimed from coastal mudflats in 1999 and 2004,
respectively, is divided by dikes of different ages running in a north-south direction (see [28]).
The predominant soil is silt loam in texture, developed from the alluvial sediments of the Yang-
tze River and Huai River and marine sediments [29], and is classified as a loamy, mixed, hyper-
thermic, Aquic Halaquepts according to USDA soil taxonomy [30].

Land use and management history
A section of land between Dike1999 and Dike2004, which was approximately 0.93 ha and
reclaimed from coastal mud flats in 2004, was chosen as the experimental site (Fig 1). The
experimental site had no documented history of cultivation prior to April, 2006. A rice/ barley
rotation, which is a widely used rotation system in coastal salt-affected farmlands, has been
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practiced in the experimental site. The rice (Oryza sativa L.) variety was Huaidao 9 (a japonica
inbred) and the barley (Hordeum vulgare L.) variety was Supi 4. Rice paddies were initially con-
structed to leach soil salinity because the salt levels of the newly-reclaimed land exceeded the
salt tolerant thresholds for most agricultural crops. Fresh water used for paddy rice was
pumped from the underground wells at approximately 300–400 m depth with an EC (electrical
conductivity) of 0.47 dS m-1. Due to the continuous decline of the water table in this area, the
amount of fresh water from these wells no longer met the water demand for rice production on
all fields. Therefore, rainfed corn/ barley rotation has been increasingly chosen by farmers and
Suyu 20 was the most widely used corn hybrid variety (Zea mays L.) in this farm.

On the experimental site, rainfed rotation began from the barley season of 2009, and con-
ventional soil fertility and pest management practices have been uniformly used. Using diam-
monium phosphate as basal fertilizer, a total of 450 kg/ha N and 180 kg/ha P2O5 has been
applied in corn and barley seasons and no potassium fertilizer has been used. Crop residues
were the main source of organic matter inputs. High soil salinity, coarse soil texture and poor
soil nutrient supplying capacity are known as the most significant limitations to soil productiv-
ity and crop growth varies greatly in the experimental site due to spatial variation of soil
conditions.

Field EMI survey
Repeated EMI (electromagnetic induction) surveys were conducted on the experimental site.
During each survey, uniform grids with an interval of 3.6 m from west to east and 10 m from
north to south were imposed on EMI measurement sites, and a total of 252 EMI measurement
sites consisting of 16 east-west direction transects were determined across the experimental site
(Fig 1). At each site, an electromagnetic induction instrument (type EM38) in the horizontal
and vertical operation dipoles was positioned on the soil surface, and the measurements were
taken and recorded (denoted by EMh and EMv), respectively. The intensive EMI survey was
conducted on 8 dates between June 2012 and May 2013, with each EMI survey completed in

Fig 1. Geographical location of the experimental site and spatial distribution of soil texture, field infrastructures, soil sampling sites and EMI
survey sites. Data source of the map of China in the left graph: Central Intelligence Agency (https://www.cia.gov/library/publications/the-world-factbook/
index.html, last access March 21, 2016).

doi:10.1371/journal.pone.0153377.g001
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two consecutive days (S1 File). The interval between 8 surveys ranged from 1 to 3 months. Dur-
ing each EMI survey, the soil temperature of the experimental site at 2, 5, 10, 20 and 40 cm lay-
ers was hourly monitored using an electronic thermometer with a metal probe. To avoid a
proportional shift due to differences in temperature, the recorded EMI measurements were
manually calibrated to values at 25°C according to Ma et al. [31]. EMI surveys were not per-
formed in rainy days to prevent the adverse impact of rainwater on the instrument, and no pre-
cipitation occurred during the 8 survey dates (S2 File). Thus, the variation of soil water content
during each survey time was considered negligible. The influences of soil texture, terrain and
bulk density on EMI measurements were also neglected considering the flat topography and
uniform management practices in the experimental site. Table 1 shows the linear regression
parameters between the horizontal and vertical EMI measurements obtained on the 8 survey
dates across the experimental site. A strong linear relationship was observed between the mea-
sured EMh and EMv data, indicating the reliability of apparent electrical conductivity (ECa)
data during each EMI survey.

Soil sampling and lab analyses
Among 16 east-west direction EMI survey transects, 64 locations were randomly selected for
soil sampling with four locations in each transect. Just beneath the EMI measurement position,
soil samples were collected by hand augering at 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1.0 m
layers for laboratory analyses of soil salinity. At each location, soil sample of each layer was
determined using a quartering method, and this work was carried out simultaneously with
field EMI survey. Soil sampling was conducted only on two survey dates (i.e., 3 September
2012 and 31 March 2013). Therefore, soil samples of a total of 128 cores were obtained for the
calibration of EMI measurements (S1 File).

All soil samples were air-dried and passed through a 2 mm sieve prior to lab analyses. Soil
salinity was determined using EC1:5 (electrical conductivity of 1:5 soil/water paste extract). In
addition, soil samples of 32 cores were randomly selected for the analysis of ECe (electrical con-
ductivity of saturated soil paste extract) on each soil sampling date according to the procedure
by the U.S. Salinity Laboratory Staff [32]. A strong positive linear relationship was observed
between EC measurements of the two methods. The regression equation relating ECe (dS/m)
to EC1:5 (dS/m) was given by:

ECe ¼ 9:127EC1:5 þ 0:635 n ¼ 160 ð1Þ

This relationship (r2 = 0.943) was then employed to convert EC1:5 to ECe for the soil samples
which ECe was not measured. This equation shows agreement with the relationships reported
by Slavich and Petterson [33] for silt loam soil and by Yao et al. [34] in the similar region. In
this study, root zone ECe (i.e., the average ECe value of 0–1.0 m soil solum) was determined
and used for mapping soil salinity at different time stamps.

Meteorological and groundwater data collection
Table 2 shows the monthly meteorological and groundwater data during the whole survey
period. The meteorological data was collected from the weather station located in the experi-
mental site and the groundwater data, including water table and groundwater salinity was
recorded with CTD-Divers (type DI263) installed in the observation wells at the experimental
site (Table 2). The meteorological and groundwater data were hourly collected.

Out of the total rainfall of 947.1 mm, the amount during the corn growing season (from
sowing time in June 2012 to harvesting time in October 2012) was 630.2 mm accounting for
66.5%, whereas that during the barley growing season (from sowing time in November 2012 to
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harvesting time in May 2013) was 316.9 mm occupying 33.5%. Monthly mean air temperature
varied from 1.8°C in January to 27.3°C in July with an annual average of 15.2°C. Monthly
mean evaporation, measured with the E-601 type of evaporimeter, ranged from 38.1 mm in
January to 130.0 mm in May with an annual value of 1021.8 mm. The annual insolation dura-
tion was 2035.7 hours and the experimental site got 76.1% of average relative humidity and 2.8
m/s of average wind velocity. The monthly mean water table fluctuated between 0.57 m in Feb-
ruary 2013 and 2.61 m in May 2013 with an annual average of 1.5 m. The monthly mean
groundwater salinity varied from 7.28 dS/m in June 2012 to 30.98 dS/m in January 2013 with
an annual average of 21.8 dS/m.

Crop yield determination
At each soil sampling location, crop yields of corn and barley were measured at their harvest
seasons. At the end of corn season, corn cobs of 80 plants were picked manually from eight
rows of ten plants each, and 20 plants in adjacent two rows representing a replica were also col-
lected. Area of each replica was 4 m2 as the corn population density was five plants m-2 with
average row spacing of 0.80 m and plant spacing of 0.25 m. This work was done in the middle
of October 2012. At the end of the barley season, four replicas of above-ground barley spaced 5

Table 1. Regression parameters between the horizontal and vertical EMI measurements on different survey dates (n = 252).

EMh = a+b�EMv

Survey date Elapsed time Weather conditions a b R2 RMSE

8 June 2012 8–9 June 2012 Cloudy -13.40 0.84 0.92 24.18

31 July 2012 31 July–1 August 2012 Cloudy -18.29 0.97 0.91 32.64

3 September 2012† 3–4 September 2012 Sunny -24.52 1.06 0.89 46.81

11 December 2012 11–12 December 2012 Sunny -22.20 0.96 0.90 47.28

12 January 2013 12–13 January 2013 Sunny -24.33 1.00 0.89 54.55

24 February 2013 24–25 February 2013 Sunny 16.27 0.85 0.73 75.41

31 March 2013† 31 March–1 April 2013 Cloudy -31.70 1.08 0.99 49.43

23 May 2013 23–24 May 2013 Sunny -15.79 1.09 0.90 40.46

EMh, EMI measurements made in the horizontal operation dipole, mS/m; EMv, EMI measurements made in the vertical operation dipole, mS/m;
† indicates the date of soil sampling; the same below

doi:10.1371/journal.pone.0153377.t001

Table 2. Monthly meteorological and groundwater data from 1 June 2012 to 31 May 2013 in our experimental site.

Months

Weather and
groundwater parameters

Jun. Jul. Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Total/
average

Temperature (°C) 24.1 27.3 26.7 23.4 17.7 11.1 4.1 1.8 4.4 8.3 14.1 19.4 15.2

Relative humidity (%) 69.2 86.1 80.4 78.5 70.2 74.6 75.8 71.5 77.4 73.6 79.2 77.2 76.1

Wind speed (m/s) 2.9 2.8 2.4 2.2 2.4 2.3 3.0 2.6 3.2 3.5 3.1 3.2 2.8

Insolation duration (h) 155.2 158.2 192.6 186.1 172.4 165.2 147.2 146.4 132.7 177.8 187.4 214.5 2035.7

Precipitation (mm) 12.7 339.6 167.0 80.7 30.2 61.6 57.2 16.0 55.6 18.1 56.6 51.8 947.1

Evaporation (mm) 104.4 126.2 108.2 96.7 88.3 64.5 43.6 38.1 45.3 73.8 102.7 130.0 1021.8

Water table (m) 2.32 0.95 1.19 0.87 2.16 1.36 0.87 1.00 0.57 1.72 2.37 2.61 1.5

Groundwater salinity (dS/
m)

7.28 27.46 28.69 28.98 10.78 28.22 29.54 30.98 30.56 16.79 10.07 11.99 21.8

doi:10.1371/journal.pone.0153377.t002
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m apart were manually cut from the four 1 m × 1 m plots at each location. This was carried out
in late May 2013. Grains of corn and barley were threshed using a miniature thresher for each
replica, and yield of corn and barley was determined by weighing the grains after oven drying
at 60°C. Considering the uniform management practices and fertilizer application in the exper-
iment site, crop annual output (CAO), which was the sum of corn yield and barley yield in one
corn/barley rotation, was used as the soil productivity in this study (S1 File).

Linear mixed-effects model (LME)
Soil salinity and crop yield were predicted using EMI measurements obtained at horizontal and
vertical operation dipoles as ancillary data. For soil salinity estimation, EMI measurements
made on 3 September 2012 and 31 March 2013 were used as ancillary variables of soil ECe,
whereas the average EMI measurements (EMave) during our investigation periods were used as
ancillary variables for CAO estimation. Considering the data used and expected errors were
spatially autocorrelated, a linear mixed-effects model (LME), which allows to model a spatially
correlated outcome [35], was employed to fit the relationship between ECe and EMI measure-
ments (i.e., EMh and EMv) as well as CAO and the average EMI measurements (i.e., EMh_ave

and EMv_ave). Linear mixed effects models simply model the fixed and random effects as hav-
ing a linear form. Using the familiar notation, the linear mixed effect model takes the form:

y ¼ Xbþ Zþ ε ð2Þ
where y is a n×1 vector of values of the target variable, X is a n×p data matrix, β is a p×1 vector
of fixed-effect regression coefficients, η is a n×1 vector, the elements of which are a realization
of a spatially autocorrelated random variable, and ε is a n×1 vector, the elements of which are a
realization of an independent and identically distributed random variable. There is one element
equal to 1 in each row of the data matrix. Thus, the elements of β are the estimated mean values
of the target soil variable in the corresponding classes. The autocorrelated random variable η is
assumed to be normal with mean zero and variance parameters. The error variable ε also has
zero mean and a variance σε

2.
The model in Eq 2 was fitted for the target variables (i.e., root zone ECe and crop annual

output) and with the fixed-effects of a subset of the ancillary variables in a regression type
model. In the linear mixed model fitting procedure, variance parameters for the random effects
are first estimated by restricted maximum likelihood (REML) and the fixed-effects coefficients
are then estimated by weighted least squares. More details of the method used are described in
Lark et al. [36].

Restricted maximum likelihood (REML)
A full model with continuous fixed effects was initially selected to fit root zone ECe (or CAO)
with EMh and EMv (or EMh_ave and EMv_ave) as predictors. A comparison was then made
between this full model and a series of predictor-reduced models which were generated by leav-
ing each predictor out in turn. In the comparison, the log-likelihood ratio of all models was
computed and tested using chi-squared test with one degree of freedom [37]. The criterion of
rejecting a predictor was that the reduced model developed by dropping this predictor was not
significantly worse than the full model. This procedure was repeated until no further predictors
were rejected. Since restricted likelihoods cannot be compared between models and different
fixed effects, maximum likelihood was employed in this procedure and the model was re-esti-
mated by REML after the predictors were determined.
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Statistical Analysis
Exploratory statistics of EMI survey measurements at different periods and the average EMI
measurements was performed using the software SPSS [38], and the normality of the distribu-
tion was tested using one-sample Kolmogorov-Smirnov (K-S) test (p� 0.05). Analysis of linear
mixed-effects model (LME) and restricted maximum likelihood (REML) were also done in the
software SPSS [39]. Spatial distribution of ancillary variables (i.e., proximally sensed EM38 at
different periods) was first generated using ordinary kriging (OK). Spatial distribution of root
zone ECe and CAO was then generated from maps of ancillary variables using the reduced
multiple linear regression (MLR) model and REML on a 1-m grid. The OK and spatial analysis
procedure were carried out in ArcGIS 9.3 environment [40] and this work was performed for
each EMI survey, respectively. Spatial accuracy of ECe and CAO was assessed using jackknifing
method on the soil sampling locations and two prediction criteria including the mean error
(ME) and the root mean-square error (RMSE) were considered:

ME ¼ 1

n

Xn

i¼1

½MðxiÞ � PðxiÞ� ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

½MðxiÞ � PðxiÞ�2
vuut ð4Þ

WhereM(xi) is the measured value at location xi, P(xi) is the predicted value at location xi, n
is the number of locations in the jackknifing procedure. In this study, n equals to 128 for root
zone ECe as soil samples were collected on two survey dates. For CAO, n was set as 64 in that
annual crop yield was used.

Results and Discussion

Exploratory data analysis
Table 3 shows the descriptive statistics of EMI measurements collected on different survey
dates across the experimental site. Apparently, seasonal dynamics of apparent electrical con-
ductivity was observed from the statistics, indicating the fluctuations of soil salinity over the
study period. When the temporal change of EMI measurements was considered, the fifth sur-
vey date (i.e., 12 January 2013) had the highest mean EMI values ranging between 92.1 mS/m
and 947.4 mS/m for EMh and ranging from 65.8 mS/m to 870.3 mS/m for EMv. The lowest
average EMh and EMv measurements occurred on 8 June 2012, indicating the lowest soil salin-
ity at the first EMI survey time. Another indication was that soil salinity exhibited an increasing
trend during our investigation period. It was also observed that EMv data were larger than EMh

at most of the survey dates except 23 May 2013. In such an instance, normal distribution of
soil salinity in the profile (i.e., increasing with depth) was suggested according to Corwin and
Rhoades [41].

For the most part, the various statistics derived from the eight surveys and from the average
of the eight surveys were similar. This was the case for the coefficient of variation and skewness.
The frequency distribution of EMI measurements was all characterized by left-skewed and low
EMI value had higher frequency, which was witnessed by positive skewness ranging between
0.6 and 1.8. The EMh measurements had larger extent of skewness than EMv measurements. In
fact, this left-skewed distribution indicates an evolving process of alleviation of soil salinization
resulting from the agricultural utilization after the reclamation [34]. In order to satisfy the
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Gaussian assumption, normal transformation was deemed necessary for both EMh and EMv.
The results of one-sample Kolmogorov-Smirnov (K-S) normality test (p<0.05, two-tailed)
showed that the EMI measurements were essentially normal distributed after logarithmic
transformation (Table 3).

Table 4 shows the summary statistics of ECe and CAO collected at 64 sampling locations.
The average soil salinity ECe on the two survey dates was 8.63 dS m-1 and 8.74 dS m-1, which
exceeded the generally salt tolerance threshold for most agricultural crops [42]. The average
crop annual output was 5.58 Mg/ha, classified as low soil productivity when compared with the
high-and-middle yielding fields in the similar area due to high surface soil salinity and poor
soil quality [43]. Strong correlation between ECe at two survey times was observed (r2 = 0.92),
indicating that the spatial and temporal similarity of soil salinity really existed due to uniform
management practices used in the experimental site. Strong negative correlation was observed
between CAO and ECe on the two survey dates with correlation coefficient ranging between

Table 3. Descriptive statistics of EMh and EMv measurements (mS/m) obtained on different survey dates.

EMh/EMave_h EMv/EMave_v

Survey date Min. Max. Mean Cv (%) Skew. K-S p* Min. Max. Mean Cv (%) Skew. K-S p*

8 June 2012 14.8 593.9 173.5 49.0 1.8 0.25 55.9 574.9 221.4 43.6 1.0 0.43

31 July 2012 69.2 686.8 218.1 51.0 1.6 0.16 61.3 607.7 243.5 45.0 1.0 0.19

3 September 2012 57.9 858.4 277.7 51.4 1.4 0.51 68.7 697.4 283.8 44.6 0.9 0.13

11 December 2012 77.6 858.6 301.0 50.3 1.2 0.63 20.7 813.8 336.3 44.5 0.6 0.27

12 January 2013 92.1 947.4 327.6 51.4 1.4 0.47 65.8 870.3 353.0 45.3 0.8 0.51

24 February 2013 79.8 855.8 276.8 52.3 1.5 0.33 75.2 1090.5 305.5 47.4 1.3 0.13

31 March 2013 55.1 826.3 258.6 56.4 1.4 0.41 50.8 666.7 269.5 47.3 0.8 0.39

23 May 2013 59.0 711.8 256.0 49.4 1.1 0.32 57.9 607.0 251.1 44.1 0.7 0.49

EMave 72.1 773.6 261.2 50.8 1.4 0.38 70.0 684.0 283.0 44.1 0.8 0.18

Min., minimum; Max., maximum; Cv, coefficient of variation; Skew., skewness; K-S p*, significance level of Kolmogorov-Smirnov (K-S) normality test on

log-transformed EMI measurements; EMave, the average value of the eight EMI surveys; EMave_h, the average horizontal EMI value of the eight surveys;

EMave_v, the average vertical EMI value of the eight surveys; the same below

doi:10.1371/journal.pone.0153377.t003

Table 4. Descriptive statistics of ECe (dS/m) and CAO (Mg/ha) collected at 64 sampling locations.

ECe (3 Sept. 2012) ECe (31 Mar. 2013) CAO

Min. 1.56 1.40 0.81

Max. 28.42 28.77 11.24

Mean 8.63 8.74 5.58

Median 6.93 6.91 5.43

Cv (%) 60.21 65.52 36.66

Skew. 1.89 1.72 0.09

K-S p* 0.49 0.53 0.64

Pearson’s correlation coefficients squared

ECe (3 Sept. 2012) 1 0.92** -0.46**

ECe (31 Mar. 2013) 1 -0.49**

CAO 1

** Significant (two-tailed) at p < 0.01 by least significant difference (LSD)

doi:10.1371/journal.pone.0153377.t004
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-0.46 and -0.49. It was not unexpected as excessively high soil salinity imposed significantly
adverse impact on soil productivity in the coastal area.

Log-likelihood analysis using REML
The correlation coefficients between ECe and EMI measurements and between CAO and the
average EMI measurements are shown in Table 5. To examine whether better correlations
could be achieved between target variable and ancillary variables, we log-transformed EMh,
EMv, EMave_h and EMave_v owing to that EMI data and the average EMI data were left
skewed. Apparently, the correlation between ECe and log-transformed EMh and EMv was not
improved. This was also the case for CAO and log-transformed EMave_h and EMave_v. There-
fore, two reduced models which used EMh and EMv as ancillary variable, respectively, were
determined for ECe prediction, whereas EMave_h and EMave_v were employed as ancillary vari-
able of the two reduced models for CAO prediction. Log-likelihood ratio test statistics of the
selected reduced models are shown in Table 6.

Compared with the full model which used all the ancillary data, a reduced model having a
log-likelihood ratio greater than 1 was preferred according to Kerry and Oliver [44]. With
regard to the reduced models for predicting ECe, dropping EMv resulted in a log-likelihood
ratio of 0.37, whereas removing EMh resulted in a log-likelihood ratio of 8.52. This indicated
that the removal of EMh caused the greatest loss in predictive capacity for ECe, whereas EMv

had no effect on prediction performance given that the log-likelihood ratio was less than 1.
This was also proven from Table 4 where EMh had the most significant correlation with ECe.
Therefore, EMh was selected as the ancillary variable of ECe and used to develop a linear

Table 5. Correlation coefficients between ECe and EMI measurements and between CAO and the aver-
age EMI measurements.

ECe (n = 128) CAO (n = 64)

EMh 0.98**

EMv 0.82**

Ln-EMh 0.85**

Ln-EMv 0.63**

EMave_h -0.45**

EMave_v -0.37**

Ln-EMave_h -0.42**

Ln-EMave_v -0.29**

Significant (two-tailed) at p < 0.05 by least significant difference (LSD);

** Significant (two-tailed) at p < 0.01 by least significant difference (LSD)

doi:10.1371/journal.pone.0153377.t005

Table 6. Log-likelihood ratio of reducedmodels for predicting ECe and CAO.

EMh/EMave_h EMv/EMave_v Selected variable

ECe

-2Log-likelihood 230.70 240.56 EMh

Log-likelihood ratio 0.37 8.52

CAO

-2Log-likelihood 243.19 251.34 EMave_h+EMave_v

Log-likelihood ratio 1.41 10.27

doi:10.1371/journal.pone.0153377.t006

DSM of Soil Salinity and Crop Yield Using Repeated EMI Surveys

PLOS ONE | DOI:10.1371/journal.pone.0153377 May 20, 2016 10 / 20



regression and REML. When considering the reduced models for predicting CAO, dropping
EMave_h and EMave_v resulted in log-likelihood ratio of 10.27 and 1.41, respectively, indicating
that removing either EMave_h or EMave_v would produce loss in prediction capacity of CAO. As
a result, both ancillary variables of EMave_h and EMave_v were retained and used to develop a
multiple linear regression model and REML to predict CAO.

Spatial distribution of ancillary variables
Fig 2 shows the distribution maps of EMI measurements (252 locations) collected on eight sur-
vey dates. At the same survey period, EMh and EMv exhibited similar spatial patterns and this
was not unexpected as the EMh and EMv were significantly correlated (Table 1). Also, spatial
similarity was observed on different survey dates for both EMh and EMv, and this could be
ascribed to the uniform field management practices used in the field. Evident spatial trend was
observed at various times. Taking the EMh as an example, low EMh measurements (< 100 mS/
m) defined the areas at the eastern boundary of the field. Small-to-moderate (100–200 mS/m)
and moderate-to large (200–400 mS/m) EMh measurements, accounting for over 70% of the
total area, mainly occurred in the north-central and south-central locations of the field. Large
EMh measurements (400–600 mS/m) characterized the central of the field and the extremely
large EMh measurements (> 600 mS/m) concentrated in patches within a relatively small
region which used to be lower-lying area. High soil salinity resulting from poor drainage and
water logging was a major cause of large EMh measurements at these areas. This phenomenon
was also observed in EMv measurements.

Digital mapping of soil ECe and CAO
Using the developed MLR model and REML, the spatial distribution maps of ECe were gener-
ated from those of ancillary variables on different survey dates. The obtained distribution maps
of ECe are presented in Fig 3 and show agreement with those of EMI measurements at the cor-
responding time (Fig 2). From Fig 3, like a narrow band, the non-saline soil (ECe< = 2 dS/m)
and slightly saline soil (2–4 dS/m) mostly occurred at the east and north-west boundary of the
field. Apparently, moderately saline soil (4–8 dS/m) and very saline soil (8–16 dS/m), which
accounted for more than 75% of the field, were predominant from 8 January 2012 to 23 May
2013. Surrounded by very saline soil, extremely saline soil (> 16 dS/m) mainly concentrated at
the central locations of the field on all the survey dates. In fact, the field investigation revealed
that the presence of extremely saline soil was mainly attributable to the soil landscape which
was located within a depression here.

Fig 4a exhibits the distribution map of CAO calculated from the fitted MLR model, REML
and the average values of ancillary variables on the eight survey dates. As also shown in Fig 4b
is the distribution map of CAO estimated from the raw crop date at 64 sampling locations.
Obvious spatial similarity was observed between the two graphs, indicating that the spatial
CAO was predicted from the ancillary variables with high reliability. In addition, compared
with the graph generated using raw crop sampling data (Fig 4b), more details of the short
range variation of CAO was reflected in the graph developed using REML and ancillary vari-
ables (Fig 4a). Generally, the spatial trend of CAO was opposite to that of ECe, indicating that
high CAO mostly occurred at locations with low ECe, and vice versa. This showed agreement
with Li et al. [45] and Yao et al. [2] who found that soil salinity was negatively associated with
crop yield and the spatial pattern of soil salinity had strong impact on shaping that of crop
yield in coastal region. On the other hand, this result was not occasional as the spatial distribu-
tion of both ECe and CAO was developed from the same ancillary variables.
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Fig 2. Spatial distribution of ancillary variables EMh and EMv on different survey dates.

doi:10.1371/journal.pone.0153377.g002
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Prediction precision assessment
Using the jackknifing procedure proposed by Huang et al. [46], the prediction performance
was evaluated on the bias and precision between measured and predicted values. Fig 5 presents
the results of predicted against measured ECe and CAO values, plus the fitted regression line
and prediction error statistics. Strong correlation was observed between the measured and pre-
dicted ECe values with coefficient of determination of 0.80 and slope of 0.81. With regard to
mean error (ME), an overestimation was observed for ECe, and this was indicated by most of
points being above the 1:1 line. CAO prediction had a coefficient of determination of 0.51 and

Fig 3. Spatial distribution maps of predicted soil ECe (dS/m) on different survey dates.

doi:10.1371/journal.pone.0153377.g003
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Fig 4. Spatial distribution maps of predicted CAO using a) fitted MLR and REML; b) raw crop sampling data.

doi:10.1371/journal.pone.0153377.g004

Fig 5. Prediction bias and accuracy of a) ECe and b) CAO.Where ME is mean error, RMSE is root mean-square-error, a is the slope of the fitted
regression line between measured and predicted values, R2 is coefficient of determination, Kendall’s is Kendall’s Tau-b coefficient of concordance.

doi:10.1371/journal.pone.0153377.g005
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a regression slope of 0.42, it also got a ME of 0.09 and RMSE of 1.43, indicating that CAO pre-
diction was less biased, however less precise, than ECe prediction. A better measure of similar-
ity between estimated and measured data was provided by Kendall’s Tau-b coefficient of
concordance. This coefficient was 0.71 and 0.48 for ECe and CAO, respectively, classified as
moderate and significant at p< 0.01. These statistics confirmed the accuracy and reliability of
spatial prediction of ECe and CAO.

Spatial and temporal dynamics of ECe

Table 7 presents the summary statistics of ECe and percentage of soil salinity classes on the
eight survey dates. The average ECe ranged from 5.41 dS/m to 11.11 dS/m. A general increasing
trend of ECe was observed from 8 June 2012 to 12 January 2013 and then a decrease occurred
from 12 January 2013 to 23 May 2013 across the field. The average ECe on 8 June 2012 and 31
July 2012 was classified as moderately saline soil type (4–8 dS/m), whereas that on other survey
dates pertained to very saline soil type (8–16 dS/m). With regard to the percentage of soil
ECe categories, area of non-saline and slightly saline soils was comparatively small, which
accounted for 0.0%-6.57% and 6.09%-26.09% of the total field on eight survey dates, respec-
tively. The proportion of extremely saline soil type ranged between 0.72% and 17.98%. Moder-
ately saline (which ranged from 25.08 to 52.55%) and very saline soils (which varied from
14.06 to 50.85%) were predominant on all survey dates, accounting for 66.61%-81.44% of the
total field.

The temporal dynamics of ECe was further validated using the daily rainfall, water table and
groundwater data shown in Fig 6. Apparently, water table well responded to the rainfall, indi-
cating large amount rainfall resulted in the subsequent rise of groundwater and less rainfall
generally led to the decline of groundwater. Taking water table as an example, it decreased
from 2.05 m on 1 July to 0.32 m on 15 July with a total of 338.8 mm rainfall occurring during
this period. Also, groundwater salinity varied with the rainfall and the fluctuation of water
table, and high groundwater salinity was generally accompanied with shallow water table and
vice versa. When considering the relationship between root zone ECe and the meteorological
and groundwater data, the date when high root zone ECe occurred was characterized by shal-
low water table and high groundwater salinity. For instance, in response to water table of 2.57
m and groundwater salinity of 6.47 dS/m, the average root zone ECe was 5.41 dS/m on 8 June.
2012. However, on 12 January 2013, the water table was 0.97 m and groundwater salinity was
31.09 dS/m with an average root zone ECe of 11.11 dS/m. In fact, significant negative correla-
tion was observed between root zone ECe and water table and significant positive correlation
was also observed between root zone ECe and groundwater salinity (S2 File). This result

Table 7. Summary statistics of ECe in dS/m and percentage of soil ECe classes on various survey dates.

Percentage of soil salinity classes in terms of ECe

Survey date Min. Max. Mean St. D. Cv (%) < = 2.0 dS/m 2–4 dS/m 4–8 dS/m 8–16 dS/m > 16 dS/m

8 June 2012 0.22 19.98 5.41 2.83 52.38 6.57 26.09 52.55 14.06 0.72

31 July 2012 1.29 24.54 7.04 3.74 53.03 2.35 15.81 51.28 26.98 3.58

3 September 2012 0.91 31.14 9.26 4.86 52.49 2.51 7.03 38.37 43.07 9.02

11 December 2012 1.63 30.68 10.14 5.25 51.75 0.74 8.87 28.48 48.46 13.45

12 January 2013 2.12 34.30 11.11 5.85 52.63 - 6.09 25.08 50.85 17.98

24 February 2013 1.73 30.78 9.23 5.01 54.31 0.32 10.06 39.80 39.05 10.77

31 March 2013 0.77 29.81 8.55 5.03 58.86 4.61 9.28 42.75 34.73 8.63

23 May 2013 0.93 25.17 8.45 4.38 51.90 3.92 10.14 39.47 40.50 5.97

doi:10.1371/journal.pone.0153377.t007
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indicated that the temporal dynamic of the average root zone ECe of the experimental site coin-
cided with the meteorological and groundwater data. Another indication was that shallow
water table and high groundwater salinity had adverse impact on root zone salinity.

Precision issues in CAOmapping
In this study, crop yield was predicted successfully using the apparent electrical conductivity
measured by electromagnetic induction as ancillary variables. This was achieved based upon
the correlation between EMI measurements and soil salinity as well as the correlation between
soil salinity and crop productivity. Therefore, the uncertainty of spatial CAOmapping relied
on not only the regression model between EMI measurements and crop yield but also the pre-
diction accuracy of spatial distribution of EMI measurements. With respect to the regression
model, a linear mixed-effects model, in which random variables were introduced for variance
decomposition, was used to describe the relationship between EMI data and CAO. In many
other studies, boundary line analysis, which was originally proposed to investigate fields where
yield components could not reach their optimal values and to identify the most important lim-
iting factors [47], was also used to determine the relationship between soil salinity and crop

Fig 6. Temporal dynamics of average root zone ECe, rainfall, water table and groundwater salinity during the survey period.

doi:10.1371/journal.pone.0153377.g006
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yield [48]. Boundary line analysis was not employed in this study as soil salinity measured by
EMI measurements was proven to be the most important limiting factor of crop productivity
in the coastal salt-affected farmland [2, 49]. When the reliability of spatial distribution of EMI
measurements was considered, the prediction accuracy of ordinary kriging (OK) was satisfac-
tory with ME of -8.45 dS/m and RMSE of 49.65 dS/m for EMave_h, and with ME of -2.69 dS/m
and RMSE of 33.82 dS/m for EMave_v, and the corresponding determination coefficient (R2) of
the regression between measured and predicted EMI measurements was 0.87 and 0.93, respec-
tively. Furthermore, regression kriging (RK) method, which performed the estimation by add-
ing the krigged residuals to the regression predictions was also not employed in this study,
although RK method was reported to prevail over OK method in prediction accuracy when the
ancillary variables were available [50]. The reason was that OK method had an advantage over
RK method in crop yield prediction when only repeated EMI surveys were conducted.

Crop yield has high variability across fields and years as a result of complex interactions
among different factors, including topography, soil nutrients, weather conditions, management
practices and especially soil salinity in the coastal area [51]. The data of EMI measurements
and crop yield, based on which the spatial distribution was investigated using digital soil map-
ping (DSM), was collected in just one year. Therefore, further efforts are needed to perform
long-term EMI surveys and soil and crop data collection, to validate whether our findings
would be also useful over time and in different salt-affected regions, management systems, met-
rological conditions and land use patterns.

Conclusions
Repeated electromagnetic induction (EMI) surveys were performed across a salt-affected farm-
land in coastal regions of Jiangsu Province, China during the study period. Significant correla-
tion between apparent electrical conductivity (ECa) and soil ECe (electrical conductivity of
saturated paste extract) and crop yield allowed for rapid characterization of the spatio-temporal
variation in soil salinity and crop annual output (CAO) using ECa survey data. Results of linear
mixed-effects model and log-likelihood analysis showed that EMh could be used as a solo pre-
dictor for ECe calibration, whereas both EMh and EMv should be used to meet the need of CAO
calibration. Spatial patterns of soil salinity and CAO, as derived from EMI survey data, showed
agreement with those generated from raw data with low bias and high reliability. Spatial soil
salinity exhibited temporal dynamics with the increasing trend from 8 June 2012 to 12 January
2013 and decreasing trend from 12 January 2013 to 23 May 2013, which coincided with the
meteorological and groundwater conditions during those periods. Spatial distribution of CAO
showed that crop yield could be predicted using ordinary kriging with satisfactory accuracy.

It is concluded that the cost-effective and efficient EMI surveys, as one part of multi-source
data for digital soil mapping, can be successfully used to characterize the spatial and temporal
variability of soil salinity and to estimate potential crop yield spatially. The methodology of this
study can be used as guidance for researchers who are interested in understanding soil salinity
development as well as land managers aiming for appropriate soil salinity management strate-
gies and maximum efficiency of crop outputs. In order to characterize the spatio-temporal vari-
ations in soil salinity and crop yield on larger scales, more sophisticated EMI instruments (e.g.
DUALEM-421) as well as remote sensing data (e.g. MODIS satellite imagery) can be integrated
for digital soil mapping [4, 52].

Supporting Information
S1 File. EMI survey data on the 8 survey dates were collected with EM38 in the horizontal
(EMh) and vertical (EMv) dipoles, respectively. 128 calibration sites were sampled on the two

DSM of Soil Salinity and Crop Yield Using Repeated EMI Surveys

PLOS ONE | DOI:10.1371/journal.pone.0153377 May 20, 2016 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153377.s001


survey dates and rootzone electrical conductivity of saturated paste extracts (ECe) were mea-
sured for the calibration of EMI measurements. Crop annual output (CAO) was determined by
summing corn yield and barley yield during the survey period.
(XLSX)

S2 File. Daily average water table and groundwater salinity was obtained from the hourly
collected data of CTD-Divers. Daily rainfall from June 2012 to May 2013 was obtained from
the hourly collected data of the weather station.
(XLSX)
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