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a b s t r a c t

Polyethylene terephthalate (PET) is the largest produced polyester globally, and less than 30% of all the PET 
produced globally (∼6 billion pounds annually) is currently recycled into lower-quality products. The major 
drawbacks in current recycling methods (mechanical and chemical), have inspired the exploration of po
tentially efficient and sustainable PET depolymerization using biological approaches. Researchers have 
discovered efficient PET hydrolyzing enzymes in the plastisphere and have demonstrated the selective 
degradation of PET to original monomers thus enabling biological recycling or upcycling. However, several 
significant hurdles such as the less efficiency of the hydrolytic reaction, low thermostability of the enzymes, 
and the inability of the enzyme to depolymerize crystalline PET must be addressed in order to establish 
techno-economically feasible commercial-scale biological PET recycling or upcycling processes. Researchers 
leverage a synthetic biology-based design; build, test, and learn (DBTL) methodology to develop com
mercially applicable efficient PET hydrolyzing enzymes through 1) high-throughput metagenomic and 
proteomic approaches to discover new PET hydrolyzing enzymes with superior properties: and, 2) enzyme 
engineering approaches to modify and optimize PET hydrolyzing properties. Recently, in-silico platforms 
including molecular mechanics and machine learning concepts are emerging as innovative tools for the 
development of more efficient and effective PET recycling through the exploration of novel mutations in PET 
hydrolyzing enzymes. In-silico-guided PET hydrolyzing enzyme engineering with DBTL cycles enables the 
rapid development of efficient variants of enzymes over tedious conventional enzyme engineering methods 
such as random or directed evolution. This review highlights the potential of in-silico-guided PET degrading 
enzyme engineering to create more efficient variants, including Ideonella sakaiensis PETase (IsPETase) and 
leaf-branch compost cutinases (LCC). Furthermore, future research prospects are discussed to enable a 
sustainable circular economy through the bioconversion of PET to original or high-value platform chemi
cals.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. PET recycling and upcycling

Poly (Ethylene Terephthalate) (PET) is a synthetic polymer com
posed of terephthalic acid (TPA) and ethylene glycol (EG), which are 
derived from non-renewable petroleum-based sources. It is the third 
most widely utilized plastic commodity worldwide. PET is mainly 
designed for single-use food and beverage packaging applications, 
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and for textile fabric production[1]. For instance, the USA, the 
second-largest PET-packaging market with 20.5% of the global share, 
in 2020 reached a production of 22 million tons with a value of ∼$44 
billion, and it is predicted to have a compound annual growth rate 
(CAGR) of 3.7% pushing demand to 27 million tons by 2025 [2]. PET is 
a classic linear “take–make–waste” economy model. Landfills or 
incineration are no longer viable options for end-of-life treatment of 
PET in a circular economy [3]. Eco-friendly PET recycling for material 
recovery is necessary for reducing greenhouse gas (GHG) emissions 
and plastic pollution. The current physical and/or chemical limita
tions of PET recycling make it challenging to establish a fully closed- 
loop (PET-to-PET) economy. These limitations decrease the quality of 
recycled PET and increase the need for new PET to be produced. For 
instance, mechanical PET recycling, which dramatically deteriorates 
the material properties, is generally a “downcycling’ process, and has 
end products with lower-quality PET. Chemical recycling decon
structs plastic into its intermediates or original monomers that 
permit repolymerization [4]. However, the chemical process is also 
economically unfeasible due to the extensive energy it consumes 
and harsh conditions it requires [4]. Hence, developing innovative, 
eco-friendly techniques to valorize plastic is urgent for establishing a 
circular PET economy.

Researchers leverage the biological processes in nature to de
velop cost-effective, sustainable plastic bio-deconstruction and 
bioconversion techniques [5]. Recent research efforts have made 
significant advances with the discovery of plastic-degrading en
zymes, such as PET hydrolases, from certain microorganisms evolved 
in plastisphere that can selectively degrade PET into its constituent 
monomers thus offering more sustainable and eco-friendly bio- 
based PET recycling and waste management [6]. Notably, those mi
crobes employ a two-enzyme system for PET deconstruction, in 
which one enzyme, PETase, converts the polymer into soluble in
termediates: and, the other, MHETase, produces the constituent PET 
monomers [7]. Bio-based processes can remarkably reduce energy 
consumption and GHG emission compared to traditional recycling 
processes, as well as produce virgin PET from petroleum-based 
sources. Simultaneously, revolutionary plastic bio-upcycling tech
nologies are emerging that involve breaking down post-consumer or 
post-industrial PET waste and feedstock to synthesize high-value 
products such as fuels, platform chemicals, and polymers using en
gineered PET hydrolyzing enzymes and microbes (i.e., biocatalysts) 
[8]. The high-value precursors obtained via biocatalytic approaches 
offer a path to establish the open-loop (PET-to-X) economy for PET 
[9], and a promising solution to address the global plastic waste 
problem. For instance, in bio-upcycling, several high-value advanced 
chemicals, such as muconate, 2-pyrone-4,6-dicarboxylic acid, and β- 
ketoadipate can be obtained through bio-funneling PET-derived 
monomers via engineered microbes [10]. Those monomers can be 
used to produce advanced-performance materials. In sum, the PET 
hydrolyzing enzymes play a key role in developing the bio-based 
circular economy for PET.

1.2. Mining PET-hydrolyzing enzymes and their limitations in industrial 
applications

PET hydrolyzing enzymes are carboxylic ester hydrolase enzymes 
such as cutinases, lipases, and esterases produced by microorgan
isms such as bacteria and fungi [11,12]. Researchers have developed 
high-throughput, culture-based screening methods to identify en
vironmental plastic-degrading microbes from the plastisphere [13]. 
Briefly, microorganisms expressing the PET enzymes are first en
riched and isolated under proper cultivation conditions, and mole
cular biological (e.g., sub cloning and enzyme purification) or 
computational approaches (e.g., in silico protein homology search) 
are used to identify potent PET hydrolyzing enzymes. Indeed, multi- 
omics analyses, including genomic, proteomics, transcriptomic, and 

metabolomics, of those microbes enable the identification of novel 
PET hydrolyzing enzymes [14,15]. The main drawback of conven
tional culture-dependent methods is that not all microorganisms in 
the plastisphere are culturable, or they require unique culturing 
conditions (e.g., micronutrients), making it challenging to find po
tent plastic-degrading enzymes through this approach [8].

Metagenomic is a culture-independent powerful tool to discover 
the potent PET hydrolyzing enzymes from the plastisphere. 
Advancement in high-throughput next-generation DNA sequencing 
technology, in in silico bioinformatics tools, and in metagenomic-li
brary screening technologies enable efficient mining of promising 
PET-degrading enzymes via a metagenomics approach. Culture-in
dependent metagenomics studies follow two approaches: 1) 
homology-based sequence screening; and, 2) functional-based 
screening [16,17]. Homology-based screens use in silico similarity 
comparison of functional genes of known plastic degrading en
zymes. It is an inexpensive and rapid method. Several PET hydro
lyzing enzymes have been discovered by this method [18–20]. 
Homology-based screens give the structure and function of un
known enzymes based on their sequence similarity with known 
enzymes in the databases, under the assumption that similar se
quences have similar functions. There are several approaches to 
identify homologous sequencing, including Basic Local Alignment 
Search Tool (BLAST), Hidden Markov Models (HMMs), and profile- 
based methods. For instance, Danso and coworkers demonstrated 
the successful application of HMMs for in-silico screening of PET 
hydrolyzing enzymes [21]. Despite the popularity of metagenomic 
methods for mining potential plastic degrading enzymes, there are 
some drawbacks to this approach such as limited comparison to 
current known plastic degrading enzymes in databases, missing 
potential plastic degrading enzymes due to low sequence similarity, 
and the need of further study to validate the functionality of the 
enzyme [17]. The other approach of metagenomics uses activity 
assays to find potential PET-degraders. This method does not require 
prior knowledge of the sequence. It is considered a more effective 
method than homology-based screening and it uncovers completely 
novel groups of enzymes for which the sequences are divergent from 
existing homologous ones. However, it is more costly, and has lim
itations and challenges associated with the heterologous expression 
of genes, such as host compatibility, which damper its effective
ness [8,22].

In addition to metagenomics, researchers leverage a proteomic- 
based approach to discover PET hydrolyzing enzymes. Generally, PET 
depolymerization occurs extracellularly, using enzymes secreted by 
microbes. Hence, the exoproteome is the principal target for iden
tifying potential plastic-degrading enzymes. Researchers mostly use 
comparative proteomics, which relies on differential induction of 
microbes to express plastic hydrolyzing enzymes when presented 
with a plastic surface [23]. Although this approach can directly de
tect and quantify protein expression, proteomic studies have only 
been conducted pure cultures and not in complex environmental 
samples, revealing the complex nature of high-quality protein ex
traction and the lack of high-throughput bioinformatic analysis for 
metaproteomics [24].

In general, the inferior catalytic performance of natural plastic- 
degrading enzymes is a key technical challenge to establishing the 
feasible biocatalytic-based PET-recycling or -upcycling technology. 
Indeed, an industrially applicable PET hydrolyzing enzyme needs to 
have higher conversion efficiency, improved robustness (thermal 
and chemical), expanded half-life, and reusability with prolonged 
functional properties. Hence, the engineering of efficient PET-hy
drolyzing enzymes is necessary for a realistic application of bioca
talytic-based PET depolymerization on an industrial scale. PET- 
degrading enzymes can be optimized either through a rational en
gineering approach or by directed evolution. The latter involves 
screening huge libraries of PET enzyme variants, which is laborious 
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and time-consuming. The need for efficient high-throughput 
screening techniques is a crucial technical barrier to the directed 
evolution [25]. By contrast, rational engineering primarily leverages 
precise modifications of enzymes based on a deep understanding of 
their structure and function using computational simulation and 
modeling of proteins coupled with experimental techniques such as 
X-ray crystallography, NMR, and enzyme kinetics to enhance desired 
PET-degrading enzyme characteristics. The available structural and 
mechanistic information for many identified PET-hydrolyzing en
zymes enables the efficient engineering of plastic-degrading en
zymes via a rational approach. Researchers leverage systems and 
synthetic biology-based design, build, test, and learn (DBTL) cycles 
to develop commercially applicable, efficient PET hydrolyzing en
zymes through rational engineering. This review highlights the 
trends of using an in-silico-guided PET hydrolyzing enzyme en
gineering approach to develop efficient PET hydrolyzing enzymes.

2. Overview of developing in-silico platform to study the plastic 
hydrolyzing enzymes

In-silico enzyme engineering is primarily twofold: rational and 
combinatorial [26]. In rational engineering, hot spots for mutations 
and potential substituent residues are identified through the results 
of previous experiments or through binding surface analysis via 
molecular docking. Combinatorial approaches involve generating 
and screening larger libraries of enzymes to identify potential var
iants for specific properties such as increased thermal stability or 
enhanced catalytic activity. Machine Learning (ML) algorithms have 
recently been utilized to effectively screen a large sequence space. 
However, in practical ML approaches, rational engineering inputs are 
incorporated to guide the algorithms search for a specific enzyme 
activity, or to truncate the sequence space. Once the potential var
iants are identified, their kinetics are studied through multi-scale 
computational modeling [27].

As shown in Fig. 1, the modeling process initiates with an atomic 
configuration of the PET hydrolyzing enzyme obtained from X-ray 
crystallography or NMR spectroscopy [28]. After optimizing the en
zyme’s atomic configuration, an initial configuration of the enzyme/ 
substrate (e.g., MHET or BHET) complex with the lowest binding 
energy is made using molecular docking programs by sampling the 
conformational space with various algorithms [29–31]. The docked 
configurations can further be analyzed to visualize the active sites of 
the binding pockets, and to identify the residues which are crucial 
for the PET degradation process. The residues of the enzyme in the 
active site play a critical role in determining the size, shape as well as 
hydrophobicity of the binding site [32]. These key residues can be 
considered for further mutation (i.e., mutagenesis).

A deeper understanding of enzyme/substrate interactions and 
their dynamical behavior is crucial in evaluating the effect of mu
tagenesis, which is possible with Molecular Dynamics (MD) simu
lations. MD simulate the dynamics of atoms in force fields 
originating from their surroundings as described by classical 
Newtonian physics [29,30,33]. The accuracy or reliability of the MD 
depends significantly on the quality of the force field, which typi
cally describes the potential energy of the systems with parameters 
related to bonded and non-bonded interactions. In the bonded 
model, force fields are described by structural parameters such as 
bond lengths, bond angles, and dihedral angles, which can be ex
tracted from quantum mechanical calculations [34]. Once the force 
fields are generated, the time evolution of the system’s energy as a 
function of its structural details is simulated via Newtonian me
chanics using molecular dynamic simulations. MD programs typi
cally include various analysis tools for studying the configurations 
and trajectories that were calculated throughout the simulation such 
as energy-optimized atomic configurations, binding energies, flex
ibility of residues, hydrogen bonding analysis, and root mean square 

deviation (RMSD). RMSD compares the atomic coordinates of two 
molecular configurations. In enzyme engineering, RMSD can be used 
to analyze the relative stability of a mutant enzyme with respect to 
that of wild type. However, MD does not provide sub-atomic details 
such as electronic charge transfer.

Electronic properties of a system are described by the laws of 
Quantum Mechanics, which can be obtained by solving the 
Schrodinger equation. However, solving Schrodinger’s equation for a 
many-electron system is challenging and only possible using ap
proximations [35,36]. Ab-initio Density Function Theory (DFT) is one 
of the mathematical approximations that has proven crucial to 
studying biological processes, but it is still a challenging process that 
requires high performance computing. Hybrid Quantum Mechanics/ 
Molecular Mechanics (QM/MM) methods further help to overcome 
this problem [37–39]. In QM/MM simulations, a small portion of the 
system, usually the active site, is treated using QM, while the re
mainder of the system is handled using MM. For biological systems 
such as the PET/IsPETase complex, we can identify regions that are 
known to play a crucial role in catalysis and truncate the larger 
system to a few hundred atoms around the area of interest to per
form DFT calculations. In the case of PET/IsPETase system, electronic 
details will be important around the catalytic triad and the metal 
site. We can investigate the fine geometric details, charge transfer 
details, and energy barriers from the output of QM/MM calculations.

While more efficient variants were reported through rational 
engineering, the optimum enzyme configurations may be hidden in 
the intractable chemical configuration space, which can be explored 
through Machine Learning (ML) algorithms. Recently, Pirillo and 
coworkers presented a semi-rational protein evolution workflow, 
where hotspots for potential mutations were identified by 

Fig. 1. Flowchart of the in-silico multiscale modeling process for enzyme engineering. 
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bioinformatics, and site-saturated mutagenesis was applied to 
identify high-stability variants. The stable variants chosen from a 
MD study were then tested for PET hydrolysis under various con
ditions [6].

Further, ML is a promising tool that can assist in-silico modeling 
of enzyme engineering in various ways [40]. ML models can be 
trained to understand the correlations between the characteristics 
and enzyme sequences to predict variants with targeted properties. 
Various protein predictors such as distances between amino acids, 
torsion angles, and active site residues have been used in this pro
cess [41]. ML models can also be used to develop more accurate force 
fields to achieve better results from MD simulations [42].

It is evident that information at various time/length scales must 
be investigated to achieve a deeper insight into the PET - hydrolysis 
process. Therefore, combined application of several in silico plat
forms is essential to pave the path for developing industrial-scale 
PET hydrolysis.

2.1. Current knowledge of engineering LCC and IsPETase

The PET hydrolyzing enzymes belong to the hydrolase family 
with a Nucleophile-His-Acid catalytic triad made of serine, histidine, 
and aspartic acid. Most of these hydrolases have the GX1 SX2G motif 
in the active site, where central Serine is a part of the catalytic triad 
[32]. As the PET substrate binds to the enzyme, its carbonyl bond 
attached to the first benzene ring must be harbored close to Serine in 
the catalytic triad (Fig. 2). Serine gets polarized by histidine, which is 
then stabilized by aspartic acid. Polarized Serine will attack the 
carbonyl bond (C-O) of the polyester, resulting in a tetrahedral in
termediate, which is then stabilized by the oxyanion hole. The hy
drolysis procedure is completed by a second nucleophilic attack 
mediated through a water molecule [43,44]. With the results from a 
QM/MM approach combined with statistical sampling, Zheng and 
coworkers found a unified PET hydrolysis mechanism for LCC and 
IsPETase [45]. Various other enzyme-specific residues support (or 
inhibit) the hydrolysis reaction. The activity can be enhanced by 
mutagenesis. A summary of recently found variants is described 
below and summarized in Table 1, Fig. 3, and Fig. 4.

2.1.1. Rational engineering of IsPETase
IsPETase secreted from Ideonella sakaiensis 201-F6 gained much 

attention due to its PET hydrolysis activity at mild temperature [46]. 
It shows 5–120-fold increase in PET hydrolysis activity compared to 
other mesophilic PET-hydrolyzing enzymes [43,44]. IsPETase has 51% 
of amino acid similarity to the cutinase from Thermobifida fusca [46]. 
It has a few notable features that further support the hydrolyzing 
process [44]. It gains stability with two disulfide bonds, while only 

one conserved disulfide bond exists in other homologs. Conserved 
disulfide bond C273-C289 connects the last loop to the C-terminal 
helix. The IsPETase-specific disulfide bond C203-C239 harbors the 
catalytic acid and the base [43], and has been shown to result in a 
lower energy barrier/higher efficiency for PET hydrolysis [47]. 
Trp185 is found to be wobbling due to the presence of Serine, i. e. 
specific to IsPETase, and forms T-stacking with the benzene ring of 
the substrate, which also plays a vital role in the process of cleavage 
in PET hydrolysis. A. Crnjar and coworkers confirmed the flexibility 
of wobbling Trp by S214H and I218F with MD simulations [48].

Using covalent docking calculations followed by experiments, Joo 
and co-workers reported a 22.4% increase of PET degradation activity 
in IsPETase-R280A. Even though R280 is far from the catalytic triad, 
its replacement with a smaller hydrophobic residue enhances the 
substrate binding [44]. Melting of this variant is reported to increase 
by 8.81 ℃ with the addition of S121E/D186H [49]. Thermal stability 
of this variant (S121E/D186H/R280A) is achieved by a newly in
troduced water-mediated hydrogen bond between S121E and 
Asn172. The new variant named ThermoPETase, IsPETase-S121E/ 
D186H/R280A gives a 14-fold increase in hydrolysis activity at 40 ℃ 
[49]. In a later study, ThermoPETase was further engineered to Is
PETase S121E/D186H/N246D/S242T, which has a melting tempera
ture of 37 ℃ and a 58-fold higher activation rate compared to 
wildtype. N246D was found to increase the activity and S242H to 
improve the durability [50].

Ma and coworkers identified the potential mutation sites that 
could increase the active site space or hydrophobicity to increase 
PET binding affinity by docking IsPETase with 2PET substrate [32]. 
Out of the six mutation sites chosen from a molecular docking study 
and tested through experiments, R90A, L117F and I208F (R61A, L88F, 
and I179F in the original paper) have shown significant effects with a 
1.4-, 2.1- and 2.5-fold increases in activity, respectively. Electrostatic 
surface potential analysis suggests that alanine is more hydrophobic 
and less massive compared to arginine, thus it increases activity. 
Additionally, R61A enhances the cleavage of products due to its 
smaller size, L88F improves the effect of oxyanion hole, and I179F 
increases the substrate localization, with a similar effect as W156. 
Surprisingly, narrowing down the binding cleft with double mutant 
IsPETase-S238F/W159H has shown to improve the PET hydrolysis 
activity [51].

To further understand the PET hydrolysis mechanism, Boneta and 
coworkers and Jerves and co-workers performed a DFT calculation 
on a smaller region of the IsPETase /MHET complex and identified a 
4-step mechanism [37,38]. The energy barrier for the rate limiting 
acylation step is 20.0 kJ/mol. While DFT calculations are time-con
suming and require high-performance computing resources, it is 
crucial to identify the role of each residue at the electronic level. 

Fig. 2. A mechanistic overview of mutants to enhance PETase activity. Panel (A) shows the catalytic triad of MHET-docked PETase (from 5xjh.pdb). Amino acids of catalytic triad, 
Ser, His, and Asp are shown in green. The MHET molecule is shown in ball-and-stick model. The carbonyl bond of MHET is closely harbored to Ser 160 to initiate the hydrolysis 
reaction. Panel (B) shows initial steps of the PET hydrolysis mechanism.

S.K. Jayasekara, H.D. Joni, B. Jayantha et al. Computational and Structural Biotechnology Journal 21 (2023) 3513–3521

3516



Ta
bl

e 
1 

En
zy

m
es

 d
ev

el
op

ed
 t

hr
ou

gh
 in

 s
ili

co
-b

as
ed

 e
ng

in
ee

ri
ng

. 

En
zy

m
e

D
ev

el
op

m
en

t 
pl

at
fo

rm
/S

of
tw

ar
e 

us
ed

Sp
ec

ifi
c 

m
ut

at
io

ns
 i

nc
or

po
ra

te
d 

in
to

 t
he

 e
nz

ym
e

Ty
pe

 o
f 

PE
T 

us
ed

 a
s 

a 
su

bs
tr

at
e 

fo
r 

en
zy

m
e 

as
sa

y
In

 v
it

ro
/i

n 
vi

vo
 c

on
ve

rs
io

n 
effi

ci
en

cy
Re

f.

FA
ST

-P
ET

as
e:

 f
un

ct
io

na
l, 

ac
ti

ve
, s

ta
bl

e,
 a

nd
 

to
le

ra
nt

 P
ET

as
e)

M
ut

Co
m

pu
te

 t
hr

ee
-d

im
en

si
on

al
 C

N
N

 
(3

D
CN

N
) 

m
od

el
. 

A
 s

tr
uc

tu
re

-b
as

ed
 m

ac
hi

ne
 l

ea
rn

in
g 

al
go

ri
th

m

Th
re

e 
fr

om
 M

L 
al

go
ri

th
m

 p
re

di
ct

io
n 

(N
23

3K
/ 

R2
24

Q
/S

12
1E

) 
an

d 
tw

o 
(D

18
6H

/R
28

0A
) 

fr
om

 
pa

re
nt

al
 s

ca
ff

ol
d)

 A
ct

iv
e 

in
 a

m
bi

en
t 

te
m

pe
ra

tu
re

 
fr

om
 3

0 
℃

 T
o 

50
 ℃

un
tr

ea
te

d,
 p

os
tc

on
su

m
er

-P
ET

 f
ro

m
 

51
 d

if
fe

re
nt

 t
he

rm
of

or
m

ed
 

pr
od

uc
ts

 
(M

ar
ke

d 
th

er
m

os
ta

bi
lit

y 
an

d 
re

ac
ti

vi
ty

 t
ow

ar
d 

am
or

ph
ou

s 
an

d 
le

ss
 c

ry
st

al
lin

e 
PE

T 
(1

.2
–1

1.
7%

 c
ry

st
al

lin
it

y)
 a

t 
el

ev
at

ed
 

te
m

pe
ra

tu
re

s 
(e

.g
., 

50
 ℃

))

98
.4

%
 o

f 
TP

A
 

Fr
om

 d
ig

es
ti

on
 s

ol
ut

io
n.

 C
om

pl
et

e 
de

gr
ad

at
io

n 
of

 
un

tr
ea

te
d,

 p
os

t-
co

ns
um

er
-P

ET
 f

ro
m

 5
1 

di
ff

er
en

t 
th

er
m

of
or

m
ed

 p
ro

du
ct

s 
in

 1
 w

ee
k.

 
D

ep
ol

ym
er

iz
at

io
n 

of
 u

nt
re

at
ed

, a
m

or
ph

ou
s 

po
rt

io
ns

 
of

 a
 c

om
m

er
ci

al
 w

at
er

 b
ot

tl
e 

an
d 

an
 e

nt
ir

e 
th

er
m

al
ly

 
pr

et
re

at
ed

 w
at

er
 b

ot
tl

e 
at

 5
0 

ºC

[5
4]

D
ur

a-
PE

Ta
se

G
re

ed
y 

ac
cu

m
ul

at
ed

 s
tr

at
eg

y 
fo

r 
pr

ot
ei

n 
en

gi
ne

er
in

g,
 G

RA
PE

. 
A

 s
ys

te
m

at
ic

 c
lu

st
er

in
g 

an
al

ys
is

 
co

m
bi

ne
d 

w
it

h 
gr

ee
dy

 a
cc

um
ul

at
io

n 
of

 
be

ne
fi

ci
al

 m
ut

at
io

ns
 i

n 
a 

co
m

pu
ta

ti
on

al
ly

 d
er

iv
ed

. 
lib

ra
ry

m
el

ti
ng

 t
em

pe
ra

tu
re

 i
nc

re
as

ed
 b

y 
31

 °C
1.

 s
em

ic
ry

st
al

lin
e 

po
ly

 (
et

hy
le

ne
 

te
re

ph
th

al
at

e)
 (

PE
T)

 fi
lm

s 
(3

0%
)2

. 
m

ic
ro

pl
as

ti
cs

1.
 3

0%
 e

nh
an

ce
m

en
t 

of
 P

ET
 d

eg
ra

da
ti

on
 a

t 
m

ild
 

te
m

pe
ra

tu
re

s 
(o

ve
r 

30
0-

fo
ld

). 
2.

 C
om

pl
et

e 
bi

od
eg

ra
da

ti
on

 o
f 

2 
g/

L 
m

ic
ro

pl
as

ti
cs

 
2.

 C
om

pl
et

e 
bi

od
eg

ra
da

ti
on

 o
f 

2 
g/

L 
m

ic
ro

pl
as

ti
cs

[5
2]

LC
C-

IC
CG

M
.D

o.
 B

in
di

ng
 a

na
ly

si
s 

to
 2

- 
H

E(
M

H
ET

)3
F2

43
I/

D
23

8C
/S

28
3C

/Y
12

7G
po

st
-c

on
su

m
er

 c
ol

or
ed

-fl
ak

e 
PE

T 
w

as
te

 (
Pc

W
-P

ET
)

90
%

 o
f 

PE
T 

de
po

ly
m

er
iz

at
io

n 
in

to
 m

on
om

er
s 

ov
er

 
10

 h
, P

ro
du

ct
iv

it
y 

is
 1

6.
7 

g 
of

 T
PA

/L
/h

 (2
00

 g
/k

g 
of

 P
ET

 
su

sp
en

si
on

, w
it

h 
an

 e
nz

ym
e 

co
nc

en
tr

at
io

n 
of

 3
 m

g/
g 

of
 P

ET
)

[5
6]

Th
er

m
o-

PE
Ta

se
Is

PE
Ta

se
S1

21
E

/D
18

6
H

/R
2

8
0

A
 va

ri
an

t, 
ha

ve
 a

 s
ta

bi
liz

ed
 

β6
-β

7 
co

nn
ec

ti
ng

 l
oo

p 
an

d 
ex

te
nd

ed
 s

ub
si

te
 I

Ic
, 

Th
er

m
os

ta
bl

e 
Is

PE
Ta

se
 w

it
h 

Tm
 5

6.
8 

℃
) 

th
at

 
ha

rb
or

s 
th

re
e 

m
ut

at
io

ns
, S

12
1E

, D
18

6H
, a

nd
 R

28
0A

Tm
 v

al
ue

 i
nc

re
as

ed
 b

y 
8.

81
 °C

, a
nd

 P
ET

 d
eg

ra
da

ti
on

 
ac

ti
vi

ty
 w

as
 e

nh
an

ce
d 

by
 1

4-
fo

ld
 a

t 
40

 °C
 c

om
pa

re
d 

w
it

h 
Is

PE
Ta

se
W

T
.

[4
9]

Is
PE

Ta
se

S1
21

E/
D

18
6H

/ 
S2

42
T/

N
24

6D
St

ru
ct

ur
al

 b
io

in
fo

rm
at

ic
s-

ba
se

d 
pr

ot
ei

n 
en

gi
ne

er
in

g
in

te
gr

at
in

g 
th

e 
S2

42
 T

 a
nd

 N
24

6D
 m

ut
at

io
ns

 i
nt

o 
th

e 
pr

ev
io

us
ly

 r
ep

or
te

d 
Is

PE
Ta

se
S1

21
E/

D
18

6H
/ 

R2
08

A
 v

ar
ia

nt

A
 5

8-
fo

ld
 i

nc
re

as
e 

in
 a

ct
iv

it
y 

co
m

pa
re

d 
w

it
h 

Is
PE

Ta
se

W
T
.

[5
0]

Is
PE

Ta
se

 W
15

9H
/F

22
9Y

 
va

ri
an

t
th

e 
m

ut
at

io
n 

de
si

gn
 t

oo
l, 

Pr
em

us
e

tw
o 

m
ut

at
io

ns
 (

W
15

9H
 a

nd
 F

22
9Y

)
p-

N
PP

, a
m

or
ph

ou
s 

PE
T,

 a
nd

 P
ET

 
bo

tt
le

It
s 

Tm
 a

nd
 c

at
al

yt
ic

 e
ffi

ci
en

cy
 v

al
ue

s 
(k

ca
t/

K
m

) 
in

cr
ea

se
d 

by
 1

0.
4 

°C
 a

nd
 2

.0
-f

ol
d 

us
in

g 
p-

N
PP

 a
s 

th
e 

su
bs

tr
at

e 
co

m
pa

re
d 

w
it

h 
th

e 
w

ild
 t

yp
e.

 T
he

 
de

gr
ad

at
io

n 
ac

ti
vi

ty
 f

or
 a

m
or

ph
ou

s 
PE

T 
w

as
 

in
cr

ea
se

d 
by

 a
lm

os
t 

40
-f

ol
d 

co
m

pa
re

d 
w

it
h 

th
e 

w
ild

 
ty

pe
 a

t 
40

 °C
 in

 2
4 

h.
 b

io
de

gr
ad

at
io

n 
of

 P
ET

 b
ot

tl
es

 a
t 

a 
m

ea
n 

ra
te

 o
f 

23
.4

 m
gP

ET
/h

/m
g 

en
zy

m
e.

[5
3]

L9
2F

/Q
94

Y 
va

ri
an

t 
of

 
PE

S-
H

1
St

ru
ct

ur
al

 a
na

ly
se

s 
an

d 
co

m
pu

ta
ti

on
al

 
m

od
el

in
g 

us
in

g 
M

D
 s

im
ul

at
io

n
A

m
or

ph
ou

s 
G

oo
df

el
lo

w
 P

ET
 (

G
f-

 
PE

T)
 fi

lm
s 

an
d 

pr
et

re
at

ed
 

po
st

co
ns

um
er

 (
‘r

ea
l-

w
or

ld
’) 

PE
T 

w
as

te

2.
3-

fo
ld

 a
nd

 3
.4

-f
ol

d 
im

pr
ov

ed
 h

yd
ro

ly
ti

c 
ac

ti
vi

ty
 

ag
ai

ns
t 

am
or

ph
ou

s 
PE

T 
fi

lm
s 

an
d 

pr
et

re
at

ed
 r

ea
l-

 
w

or
ld

 P
ET

 w
as

te
, r

es
pe

ct
iv

el
y.

 h
yd

ro
ly

ze
d 

lo
w

- 
cr

ys
ta

lli
ni

ty
 P

ET
 m

at
er

ia
ls

 2
.2

-f
ol

d 
m

or
e 

effi
ci

en
tl

y

[5
9]

Pl
e6

29
 p

ol
ye

st
er

 h
yd

ro
la

se
 

va
ri

an
t

D
22

6A
/S

27
9A

 m
ut

at
io

ns
 i

m
pr

ov
ed

 a
ct

iv
it

y 
an

d 
th

er
m

o-
st

ab
ili

ty
PE

T 
na

no
pa

rt
ic

le
s

5.
5-

fo
ld

 i
m

pr
ov

ed
 a

ct
iv

it
y

[6
0]

Cu
t1

90
*

S2
26

P/
R2

28
S 

in
cr

ea
se

d 
ac

ti
vi

ty
 a

nd
 h

ig
he

r 
th

er
m

os
ta

bi
lit

y.
 T

he
 m

ut
an

t 
of

 t
he

 c
ut

in
as

es
-l

ik
e 

en
zy

m
e,

 C
ut

19
0,

 f
ro

m
 S

ac
ch

ar
om

on
os

po
ra

 v
ir

id
is

 
A

H
K

19
0

M
od

el
 s

ub
st

ra
te

 p
ol

y 
(b

ut
yl

en
e 

su
cc

in
at

e-
co

-a
di

pa
te

).
[6

1]

Is
PE

Ta
se

 d
ou

bl
e 

m
ut

an
t

H
om

ol
og

y 
m

od
el

in
g 

an
d 

g-
in

du
ce

d 
fi

t 
do

ck
in

g 
(I

FD
)

Tw
o 

m
ut

at
io

ns
 a

re
 in

tr
od

uc
ed

 a
t 

S2
38

F/
W

15
9H

 t
o 

m
ak

e 
th

e 
PE

Ta
se

-a
ct

iv
e 

si
te

 m
or

e 
lik

e 
cu

ti
na

se
 

en
zy

m
e’

s

po
ly

et
hy

le
ne

-2
,5

-f
ur

an
 

di
ca

rb
ox

yl
at

e 
(P

EF
), 

PE
T 

co
up

on
s 

w
it

h 
an

 i
ni

ti
al

 c
ry

st
al

lin
it

y 
of

 1
4.

8 
 ±

  0
.2

%

[5
1]

S.K. Jayasekara, H.D. Joni, B. Jayantha et al. Computational and Structural Biotechnology Journal 21 (2023) 3513–3521

3517



However, this approach is limited to small systems due to compu
tational cost. It is hard to understand the effect of residues far from 
the QM region, but it can be accessed through QM/MM approach.

2.1.2. Rational engineering of LCC
The leaf and branch compost cutinase (LCC), first derived in 2012, 

shows a high potential for industrial application mainly due to its 
activity at a relatively high melting temperature, 65 ℃[55]. LCC and 
the IsPETase enzymes have a similar PET-hydrolyzing mechanism. 
The two enzymes are structurally similar with an identity of 49.5% 
with the same catalytic triad made of Serine, Histidine, and Aspartic 
Acid [37]. By binding surface analysis through Molecular Docking 
studies, Tournier and coworkers considered 11 residues in the con
tact shell for potential mutations. Of these the F243 substitution 
with Isoleucine (F243I) is the most promising, probably because it 
expands the binding cleft for PET [56,57]. They also confirmed the 
melting temperature increase in LCC by Ca2+ ions, which was also 
reported in previous studies [55]. Key residues that were on the 
metal site of known homolog enzymes were identified as D238 and 
S283. They mutated by cysteine to introduce a disulfide bonding to 
increase melting temperature instead of metal ion stabilization. The 
engineered LCC version named LCC-ICCG (with D238C/S283C along 
with F243I and Y127G) is reported to acieve 90% of PET depoly
merization. Recent study by Zeng and coworkers reported an in
crease in the melting temperature of LCC-ICCG to 98.9 ℃ by addition 
of A59K, V63I, and N248P mutations. However, the optimal hydro
lyzing temperature was found to be 74 ℃ [58]. Using DFT, Boneta and 
coworkers analyzed the reaction mechanism of PET hydrolysis 

through LCC in 4 major steps [37]. Zheng and coworkers analyzed 
the correlations between structural details, such as bond lengths and 
dihedral angles, and activation energies using a combined Quantum 
Mechanics (DFT) and Molecular Dynamics simulations. More work is 
needed to clearly understand the correlations between the atomistic 
details and the hydrolysis performance [58].

2.1.3. Leverage machine learning with MD simulation for engineering 
the enzymes

We discussed above changes in PET hydrolysis by IsPETase and 
LCC because of targeted single/multiple point mutations chosen by 
rational protein engineering. An intuitive next step is to investigate 
their synergistic performance. However, searching for combinatorial 
mutations to identify optimal variants is beyond the capacity for 
conventional in-silico approaches. Such a problem can only be 
tackled by in-silico machine learning (ML) approaches.

Recently, Pirillo and coworkers presented a semi-rational protein 
evolution workflow, where hotspots for potential mutations were 
identified by bioinformatics, and site saturated mutagenesis was 
applied to identify highly stable variants [6]. The stable variants 
chosen from a MD study were then tested for PET hydrolysis under 
various conditions.

Cui and co-workers reported a new variant of IsPETase, named 
DURA-PETase with a 31 ℃ increase in melting temperature, and with 
a remarkable 300-fold increase of degradation activity on semi- 
crystalline PET [52]. GRAPE algorithm was used on 21 single point 
mutations, which were chosen by other energy-based algorithms, 
and verified through experiments. These 21 single-point mutants 

Fig. 3. Overview of in-silico engineering of IsPETase (a) is the structure of IsPETase from 5xjh.pdb [44]. The catalytic triads are shown in the ball-stick model, α helices are shown 
in shaded yellow, β strands are shown in blue, and the residue spots considered in various studies for mutagenesis are marked in magenta. (b) shows the sequence of IsPETase. 
helices and strands are marked in yellow and blue. Catalytic triads (S160, H237, D206) are marked with stars, and red arrows point to the residue spots considered for mutation. 
(Rx) denotes the references as R1-[32], R2-[49], R3-[50], R4-[51], R5-[52], R6-[53], R7-[54], R8-[44].

Fig. 4. Overview of in-silico engineering of LCC: (a) The structure of LCC from 4eb0.pdb [28]. The catalytic triad is shown in the ball-stick model, α helices are shown in shaded 
yellow, β strands are shown in blue, and the residue spots considered in various studies for mutagenesis are marked in magenta. (b) The sequence of LCC (from 4eb0.pdb). helics 
and strands are marked in yellow and blue. Catalytic triad (S165, H242, D210) is marked with stars and red arrows point to the residue spots considered for mutation. (Rx) 
denotes the references as R1-[56], R2-[62], R3-[37].
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were clustered into three groups, and the most promising member 
of each group was chosen as the parent. The multi-hierarchical 
GRAPE algorithm continues accepting the next off-spring of the 
system only if the performance is increased because of the addition. 
This study resulted in DURA-PETase with mutations S214H-I168R- 
W159H-S188Q-R280A-A180I-G165A-Q119Y-L117F-T140D. MD was 
used to verify the activity of each alteration.

Meng and coworkers published a web tool named Premuse to 
design enzyme variants by comparing to their homologs [53]. Pre
muse integrates pairwise alignment of residues between the target 
protein and its homologs, position specific amino acid probabilities 
(PSAP), and preferred mutation selections to design new variants. 
Double-mutant IsPETase W159H/F229Y, which was derived by Pre
muse after comparing it to 1486 homologs was found to have a 
10.4 ℃ increase in melting temperature and a 2.0 -fold increase in 
degrading activity for p-NPP substrate. MD study on this new variant 
on 2HE(MHET)4 found new hydrogen bonds in the active site com
pared to those in the wildtype enzyme.

Lu and coworkers used a ML platform, MuteCompute, which 
employs a CNN analysis, to identify the unstable regions of the WT 
IsPETase [54]. Based on the information on the chemical environ
ment of 19000 stable protein structures from protein data banks, 159 
mutations were predicted to have better stability than the wild type.

Out of the mutations, the four with higher melting temperature 
and higher degradation rate were filtered. Twenty-Nine combina
torial configurations of those four mutations were added to three 
enzymes, WT-PETase, Thermo-PETase, and Dura-PETase. The highest 
melting temperatures were observed for WT-PETaseT140D/N233K 
(58.1 ℃), ThermoPETaseN233K (67.2 ℃), and DuraPETaseN233K 
(83.5 ℃). They show melting temperature increases of 10, 9 and 5 ℃ 
respectively, relative to their host scaffolds, IsPETase, ThermoPetase 
and DuraPETase. The best PET degradation rates of 3.4 and 29- fold 
compared to WT at 30 ℃ and 40 ℃ was achieved with variant 
IsPETase-S121E/D186H/R224Q/N233K/R280A, which was named 
FAST-PETase (Functional, Active, Stable and Tolerant PETase). The 
overall PET degrading performance of FAST PETase was found to be 
superior to those IsPETase, Dura-PETase, Thermo-PPETase, LCC, as 
well as LCC-ICCM variants. The increased thermal stability of FAST- 
PETase can be ascribed to the newly formed salt bridge between 
N233K and E204 and the hydrogen bond between R224Q and S192. 
Crystal structure analysis shows further water-mediated hydrogen 
bonding between H186 and N172.

3. Summary and outlook

3.1. Outlook

Due to the enormous size of sequence space, the result of its 
combinatorial nature, combinatorial sequence space, rational pro
tein engineering may fail to identify highly beneficial variants of 
already discovered enzymes for PET hydrolysis. Recent development 
of Machine Learning approaches plays a crucial role in searching for 
the beneficial variants in the enormity of this sequence space. That 
was demonstrated by the engineering of IsPETase into the more ef
ficient FAST-PETase [54]. However, ignoring the fundamental laws of 
physics (such as Quantum Mechanics as well as Classical Newtonian 
Mechanics) that primarily govern the process of biodegradation in 
machine learning approaches may guide us towards incorrect di
rections. Physics-learned ML models are expected to be successful in 
paving the path for protein engineering towards desired activ
ities [63].

There are several ways in which ML approaches can be trained 
with Physics-based models. Recently, there has been significant re
search on ML-modeled force fields based on input from Quantum 
Mechanics.

Another approach is to use Physics-based descriptors to train ML 
modeling [64]. The performance of a ML algorithm depends on the 
selection of the features used for describing a desired property. On 
the other hand, understanding reaction pathways with the details of 
electron transfer is possible through Quantum Mechanical DFT ap
proaches, which are computationally expensive. It is, therefore, a 
challenge to use Machine Learning algorithms to effectively predict 
reaction pathways. There have been significant efforts to identify 
suitable descriptors, and more accurate Machine Learning models in 
order to incorporate quantum mechanical effects in enzyme en
gineering. For example, Song and coworkers calculated the 
minimum energy pathways (MEP) using a multiscale modeling ap
proach [65]. Many initial configurations were obtained using the 
Molecular Dynamics trajectory. A region of interest with a ∼150 
atoms was selected to study with QM. QM features of that active 
region were investigated, while the rest of the system was con
sidered with Molecular Dynamics. Features related to atomistic de
tails such as bond lengths of specific heavy atoms, hydrogen bond 
distances, and dihedral angles of intermediate states can be ana
lyzed. ML algorithms can extract the important features of minimum 
energy pathways.

Physics-learned Machine Learning algorithms based on features 
evaluated from a multi-scale modeling approach including 
Molecular Docking, Molecular Dynamics, and Quantum Mechanics 
are expected to accelerate the engineering of PET Hydrolysis with 
biocatalysts.

The expression and purification of in-silico-designed PET hydro
lyzing enzymes is one of the key challenges. Overexpression of re
combinant protein often leads to severe burdens on the physiology 
of host strain. The novel enzymes can be less soluble and tends to 
make inclusion bodies, folding defects, and become toxic to tradi
tionally employed model systems such as E. coli. Furthermore, not all 
suggested mutations can be tested in the invitro reactions. Different 
tags such as GST, Fh8, SUMO, His, TRX, and MBP at the N- or C- 
terminal enhance the solubility of PET hydrolyzing enzymes and 
help in affinity purification. Researchers implement protein ex
pression control (i.e., regulatory promotor) by lowering the tem
perature after culture induction to promote soluble PET hydrolyzing 
enzyme production. This strategy increases protein stability and 
proper folding. Further, novel promoters and glycoengineering E. coli 
cells also lead to increased recombinant protein expression [66]. It 
was also revealed that enhanced recombinant protein yields were 
obtained in the E. coli periplasm by combining signal peptide and 
production rate screening. One study established a scale-up of a type 
I secretion system in E. coli using a defined mineral medium, paving 
the way for industrial application [67]. Recently, Deng and cow
orkers demonstrated enhancement of activity and thermostability of 
IsPETase through glycosylation engineering [62]. Other robust pro
tein-expressing host strains such as yeast (e.g., Pichia pastoris) need 
to be used to produce the targeted PET hydrolyzing enzymes with 
the desired post translation modifications (i.e., glycosylation).

3.2. Summary

In conclusion, we discussed the current efforts on identifying 
more efficient variants of IsPETase and LCC for PET degradation. In- 
silico multiscale modeling approaches, which includes quantum 
mechanical density functional theory, molecular docking, molecular 
dynamics, and machine learning algorithms have the potential to 
uncover more beneficial variants. Engineered enzymes provide a 
promising path to develop a sustainable enzyme or microbial cell- 
based circular economy through the bioconversion of PET to original 
or high-value platform chemicals. We discussed the potential of 
physics-learned machine learning algorithms for future research in 
enzyme engineering and the challenges of testing those in-silico 
predicted varians in in-vitro techniques.
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