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Abstract

Background

In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the met-

astatic process. These effects are usually measured by changes in both methylome and

transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at

systems scale the significance of epigenetic treatment in melanoma cells with different met-

astatic potential.

Methods and findings

Treatment by DAC demethylation with 5-Aza-2’-deoxycytidine of two melanoma cell lines

endowed with different metastatic potential, SKMEL-2 and HS294T, was performed and

high-throughput coupled RNA-Seq and RRBS-Seq experiments delivered differential pro-

files (DiP) of both transcriptomes and methylomes. Methylation levels measured at both

TSS and gene body were studied to inspect correlated patterns with wide-spectrum tran-

script abundance levels quantified in both protein coding and non-coding RNA (ncRNA)

regions. The DiP were then mapped onto standard bio-annotation sources (pathways, bio-

logical processes) and network configurations were obtained. The prioritized associations

for target identification purposes were expected to elucidate the reprogramming dynamics

induced by the epigenetic therapy. The interactomic connectivity maps of each cell line were

formed to support the analysis of epigenetically re-activated genes. i.e. those supposedly

silenced by melanoma. In particular, modular protein interaction networks (PIN) were used,

evidencing a limited number of shared annotations, with an example being MAPK13 (cas-

cade of cellular responses evoked by extracellular stimuli). This gene is also a target

PLOS ONE | https://doi.org/10.1371/journal.pone.0206686 November 28, 2018 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jiang Z, Cinti C, Taranta M, Mattioli E,

Schena E, Singh S, et al. (2018) Network

assessment of demethylation treatment in

melanoma: Differential transcriptome-methylome

and antigen profile signatures. PLoS ONE 13(11):

e0206686. https://doi.org/10.1371/journal.

pone.0206686

Editor: Roger Chammas, Universidade de Sao

Paulo, BRAZIL

Received: June 20, 2018

Accepted: October 17, 2018

Published: November 28, 2018

Copyright: © 2018 Jiang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by Istituto

Toscano Tumori, 2013 Oncology Competition,

http://www.ittumori.it/IttSanitaSrty/jsp/start_ENG.

jsp?lang=ENG. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

http://orcid.org/0000-0001-9360-4767
https://doi.org/10.1371/journal.pone.0206686
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206686&domain=pdf&date_stamp=2018-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206686&domain=pdf&date_stamp=2018-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206686&domain=pdf&date_stamp=2018-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206686&domain=pdf&date_stamp=2018-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206686&domain=pdf&date_stamp=2018-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206686&domain=pdf&date_stamp=2018-11-28
https://doi.org/10.1371/journal.pone.0206686
https://doi.org/10.1371/journal.pone.0206686
http://creativecommons.org/licenses/by/4.0/
http://www.ittumori.it/IttSanitaSrty/jsp/start_ENG.jsp?lang=ENG
http://www.ittumori.it/IttSanitaSrty/jsp/start_ENG.jsp?lang=ENG


associated to the PANDAR ncRNA, therapeutically relevant because of its aberrant expres-

sion observed in various cancers. Overall, the non-metastatic SKMEL-2 map reveals post-

treatment re-activation of a richer pathway landscape, involving cadherins and integrins as

signatures of cell adhesion and proliferation. Relatively more lncRNAs were also annotated,

indicating more complex regulation patterns in view of target identification. Finally, the anti-

gen maps matched to DiP display other differential signatures with respect to the metastatic

potential of the cell lines. In particular, as demethylated melanomas show connected targets

that grow with the increased metastatic potential, also the potential target actionability

seems to depend to some degree on the metastatic state. However, caution is required

when assessing the direct influence of re-activated genes over the identified targets. In light

of the stronger treatment effects observed in non-metastatic conditions, some limitations

likely refer to in silico data integration tools and resources available for the analysis of tumor

antigens.

Conclusion

Demethylation treatment strongly affects early melanoma progression by re-activating

many genes. This evidence suggests that the efficacy of this type of therapeutic intervention

is potentially high at the pre-metastatic stages. The biomarkers that can be assessed

through antigens seem informative depending on the metastatic conditions, and networks

help to elucidate the assessment of possible targets actionability.

Introduction

Cancer genomics deals with a wealth of ‘signals’ and ‘marks’ routinely detected through quan-

titative measurements obtained at wide genome spectrum. Naturally enough, a first level of

complexity involves genomics, due to the diversity of biotypes (protein coding genes, non-cod-

ing RNAs) and the computational methods that need to be specifically used to retrieve them.

The expected outcome of such process is a reference “signal space’ as a product of the synergy

between encoding bases, transmission mechanisms, cellular networking, all factors spanning a

multitude of possible states and their communication patterns [1]. The perturbations to such

systems come from factors altering the internally generated signal dynamics and enabling

aberrant patterns. Measuring the induced effects at systems scale and establishing the signifi-

cant impacts of such influencers from multiple perturbation sources are key steps. A first

aspect is the multiscale localization, by which genomic information is heterogeneously distrib-

uted across scales (from bases to megabases), and different patterns are observable but can be

measured only through different resolution-sensitive tools. Another aspect involves the role of

causative, correlative and confounding factors that need rigorous assessment for inferring any

valuable association between observed signals and patterns.

More complexity appears in a cancer-contextualized way, and is highly heterogeneous.

Each cancer is bringing the signature of general hallmarks but also specific features. Next Gen-

eration Sequencing protocols and their ad hoc methodological pipelines have clearly indicated

that a variety of molecular landscapes and profiles (expressional and mutational) exist, with

melanoma as an example [2]. Additionally, the centrality of large-scale transcriptome studies

and mutational approaches targeted to capture non-coding RNA evidences boosted the prom-

ised impact of epigenetic features [3]. As an example, DNA methylation has been often
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investigated in relation to the silencing effects exerted over gene expression levels. This type of

regulation affects especially the CpG islands, as these are proximal to gene promoter regions.

Generally speaking, both hyper- and hypo-methylation states are relevant to cancer conditions

through chromosomal instability, re-activation of retrotransposons, and oncogenic expression

levels. Tumor suppressor genes are usually silenced due to hyper-methylation affecting cell

cycle, invasion and DNA repair, and involving protein coding and non-coding genomic

regions [4]. However, a general hypo-methylation has also been observed in comparison with

normal cells [5,6]. Additionally, the study of resistance acquisition mechanisms is increasingly

observed under the epigenetic lens in view of personalized treatments. In such regards, DNA

methylation inhibition (5-Aza types) is in principle emerging as a treatment option in some

cancers (i.e. CRC, see [7]) due to induced activation of the immune response and co-activation

of both tumor suppressors and DNA repair genes.

Melanoma is a malignant tumor of melanocytes whose incidence is increasing worldwide,

therefore attracting major interest in the current research [8]. With metastasis, both genetic

and epigenetic alterations become relevant. Of interest in this work is to build the coupled pro-

file of transcriptome and methylome features from two different melanoma cell lines, i.e. two

of different metastatic potential (one non-metastatic, SKMEL-2, and the other metastatic,

HS294T). The main characteristic is that these melanoma cell lines are subject to the same epi-

genetic treatment. Since we measured both transcriptome and methylome profiles, it is natural

to ask whether these are possibly correlated. This relationship is quite controversial in light of

the literature results. Machine learning algorithms are designed for automatically learning

tasks or functions, offering the advantage of managing heterogeneity of data and scalability of

methods. For instance, they can perform automated actions within networks, directed to the

discovery of differential behaviors, to the detection of anomalies, to measuring the correlation

between patterns. We aim to use networks to reconcile the various experimental, computa-

tional and annotation evidences under a system’s configuration allowing the identification of

melanoma targets. Ultimately, target validation may lead to understanding biological mecha-

nisms relevant to melanoma, and to therapeutic intervention.

The complexity of epigenetic regulation

Epigenetic modifications involve heritable and reversible changes in gene expression levels not

referred to DNA sequence alterations, but rather to DNA methylation and histone modifica-

tions. DNA methylation is known to induce transcriptional inactivation or silencing in geno-

mic regions (including non-coding). Silencing may also affect the expression levels of key

transcriptional regulators, and exert cascading effects to downstream targets. Significant

changes are especially expected in the presence of cancer. Hyper-methylation is considered

responsible for transcriptional quiescence and suppression of expression. In turn, microsatel-

lite instability and higher mutational frequency may be triggered. These activities are sup-

ported by the chromatin structure close to the gene promoters. By affecting DNA methylation,

the transcriptional activity states get perturbed. Methylation within gene promoters can turn

off their potential of suppressing tumorigenesis, cell adhesion, differentiation and growth. All

such processes play roles in tumor initiation, metastasis and thus progression. Regarding pro-

gression and response to drug treatment, it is important to quantify epigenetic drivers of clonal

heterogeneity [9].

Differentially methylated genes (DMG) and differentially expressed genes (DEG) can reveal

cross-correlative patterns for their differential profiles, here indicated by DiP. Increased meth-

ylation levels tend to be associated with decreased expression levels at gene promoters, and

such correlation seems harder to observe at gene body level [10,11]. This difference implies
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that reasoning in predictive terms from methylation to expression levels remains an uncertain

task, mostly supported by methylated promoters in correspondence with gene silencing, and

contrary to non-methylated promoters. To bypass this limitation, research focused on how

networks may identify ‘epi-oncomarkers’ [12], and ‘epigenetic modules’ [13]. These ideas were

used in pan-cancer studies [14]. Here, the observed correlative or causative dynamics call for

further investigation, and single cancers already represent highly complex systems. For

instance, melanoma involves multiple signaling pathways, cell cycle regulators and apoptotic

control mechanisms whose dynamics can be studied at a genomic network scale [15]. Interest-

ingly, while the genetic predisposition explains no more than 10% of melanoma cases, and

BRAF is the most frequently mutated gene (in up to 70% of cases), the role of epigenetics and

epigenetically driven regulatory networks in both initiation and progression of melanoma

remain to be clarified. This holds with regard to the associations between epigenetic marks

and non-coding RNAs, and the co-regulations or mediations thus induced [16].

Melanoma cell state transitions

Despite primary tumors cause widespread cells dissemination, only a relatively limited fraction

of them form metastasis in the end [17]. Cell adhesion mechanisms are crucially involved in

basic cellular processes and their changes are implicated in cancer through the loss of control

of cell proliferation and the start of metastatic dynamics. Changes in cell adhesive properties

specifically induce plasticity, which plays a central role for metastatic phenotype development.

Cadherins and Integrins are examples of adhesion molecules. Cadherins [18] exert functions at

intercellular level, mainly communicating by cell connections through calcium ion-dependent

binding. Instead, at an intracellular level, cadherins bind to catenin molecules establishing

links with the cytoskeleton. Their specific role in melanoma is illustrated, among other refer-

ences, in [19]. Their role in tumor progression is illustrated in [20]. Correlation between

reduced levels of E-type cadherin and reduced survival has been studied recently in various

melanoma types [21]. Here, it was also investigated in vitro transcription restoration following

5-aza-dC treatment (DNMT1 silencing), indicating an inverse correlation with a potential

therapeutic role for promoter demethylation re-activating cadherin expression.

With regards to the role of integrins, and their effects on migration and invasion potential,

it is known that melanoma cell lines with different metastatic power exhibit heterogeneity

[22]. In general, integrins function like ‘radars’, i.e. transmembrane cell-surface receptors, by

bridging between the extracellular matrix and the cytoskeleton when environmental changes

are detected. They are involved in multiple key processes, such as differentiation, adhesion,

migration, proliferation and survival [23]. Finally, the interplay between integrins and growth

factors presents clear opportunities for therapeutic targeting [24].

A study showed that BRAF (V600E) is associated with specific methylation changes, thus

driving effects over target genes and activating growth signaling [25]. RASSF1A is another

example of tumor suppressor gene involved in cell cycle and apoptosis, and representing a

good candidate marker of tumor progression. Furthermore, it often results hyper-methylated,

while deregulated in expression levels. Re-expression can be induced by 5-aza through

demethylation of its promoter. Another study focused on the reprogramming phase between

proliferative (SOX10/MITF) and invasive (AP-1/TEAD) melanoma cells (from biopsies)

through the integration between transcriptomic and epigenetic modifications and methylation

profiles [26]. These last authors inferred a functional network representing cell state transition,

probably driven by the tumor microenvironment, and explaining the observed transcriptional

reprogramming. It is important to stress that changes in network dynamics may facilitate the

identification of cancer pre-transition states. These may not necessarily occur at a global
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network scale, which remains difficult to detect and interpret, but preferably at a sub-network

interactomic or modular scale, which can be algorithmically computed and evaluated in its sig-

nificance [27–29].

In order to understand differential methylation patterns, also CpG island tracts are usefully

studied, as from the exploration of coding and non-coding regions in cell lines, patient sam-

ples, melanocytes of various types [30]. Here, early and late stage melanoma differentiated in

retrotransposable elements and CpG island signatures, indicating methylation-driven progres-

sion. Also, a co-expression network was built to establish the relationships between metastasis-

linked genes subject to 5-aza treatment. An earlier study [31] pointed out gene expression pro-

files differences between primary and metastatic melanoma in an attempt to identify a progres-

sion-linked transition point. Specific gene sets appeared associated to the two conditions, and

a transition period indicated a signature of the metastatic phenotype emergence (including

oncogenes and suppressors). Asymmetry in expression was also found in another study

through RNA-Seq of 3 distinctly pathogenic cell lines (normal, onset and metastasis) [32]. A

special discriminatory role was here assigned to cytokine regulatory pathways, together with

differential networks (cell death, cell cycle, cellular development).

Rationale of the proposed study

Our study aims to verify significant systemic effects of epigenetic treatment while informing

on the influence exerted by melanoma metastatic states. All the significant evidences obtained

from transcriptome and methylome profiles where mapped at the interactome scale, a natural

ground for assessing intricate regulations and identifying possible targets. In such regards, net-

works applied to large-scale ‘panomics’ have contributed to elucidate a series of hypotheses,

such as identifying phenotypic drivers in targeted therapies (precision medicine approach) or

the applicability of a reproducible cycle based on models, validations, and therapies acting

inter-connectedly as a system (system medicine approach) [33]. Our use of the interactomes is

aimed to the drawing of reference differential maps of coupled transcriptome-methylome DiP

informative of the metastatic influences.

Concerning such regulations, the final part of our work is dedicated to melanoma associ-

ated antigens, and we use network inference in this context too. Several results have recently

appeared showing T cell specific to neoantigens in cancer patients in view of developing cancer

vaccines [34]. For instance, it is known that an immune response can be induced in melanoma

patients, and thus melanoma cells express antigens as targets for immunotherapy [35,36].

These antigens are considered immune-activating and can provide diagnostic and prognostic

utility. Melanoma has a quite hyper-mutated genome which increases the chances of neo-epi-

tope formation [37]. This in turn explains why melanoma remains an excellent candidate for

targeted immunotherapy. Several studies have considered somatic mutations for achieving

predictive signatures associated with neo-antigen loads [38]. Antigens heterogeneity and pro-

file stability are subject to variation depending on tumor, and especially cell proliferation stages

[39]. It appears that T cell immunity acting against tumor-driven amino acid substitutions in

melanoma patients presents a great potential outsourcing of antigens, which in turn requires

systems analysis in order to identify targets of anticancer immunity.

Materials & methods

Cell lines characteristics

SKMEL-2 (ATCC HTB-68) is a cell line derived from patient skin malignant melanoma cells,

and is known to express wild-type BRAF and mutant NRAS. HS294T (ATCC HTB-140) is a

cell line derived from patient lymph node metastatic site, and has an enhanced proliferative
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rate. In terms of cell culture and treatment, SKMEL-2 and HS294T were purchased by Ameri-

can Type Culture Collection (ATCC) (Rockville, MD) and cultured under recommended con-

ditions. Both human melanoma cells were maintained in Dulbecco’s Modified Eagle’s

Medium (DMEM) supplemented with 10% Fetal Bovine Serum, 2 mM L-glutamine and 1%

penicillin-streptomycin, at split ratio of 1:3 twice a week and incubated at 37˚C in a 5% CO2

air atmosphere. For treatments, cells were seeded in 6-well plates at a density of 5 x 104 cells.

After 24 hours from splitting, the culture medium was replaced with media containing no

drug (control) or 10 μM 5-AZA-2’-DEOXYCYTIDINE (DAC) (treated cells) (Sigma- Aldrich)

for 72 hours.

Cell cycle analysis

After 72 hours of incubation with the culture medium containing (or not) 10 μM DAC, control

and treated cells were harvested and their cell cycle phases were analysed by flow cytometry

(FACS). For analysis, nuclei were stained with 10 μg/ml propidium iodide (PI) in hypotonic

solution (1X PBS containing 0.1% sodium citrate and 0.1% Triton X-100) for 30 minutes at

4˚C in the dark. Cell cycle phases were analyzed by a FACS-Canto-II flow cytometer (BD Bio-

sciences, San Jose, CA, USA) and data were analyzed with the FlowJo (Ashland, OR, USA)

software. To evaluate the effect of DAC treatment on both melanoma cells, a one-way

ANOVA was performed (cell cycle phases of treated vs control). Statistical significance thresh-

old was set at a p-value < 0.05. The efficacy of different DAC concentrations administered at

different time points to both melanoma cell lines was tested and following each treatment, and

the effect on cell cycle was monitored by flow cytometric analysis. Fig 1 shows that treating

both cell lines with 10μM DAC for 72h has induced a significant enrichment in sub-G1 peak

(one-way ANOVA P< 0.05) in comparison to untreated cells. Since population in sub-G1

peak contains dying cells (apoptosis), it is an indicator of drug effect on cell viability.

DNA and RNA extraction

Genomic DNA was extracted from untreated SKMEL-2 and HS294T cells, using QIAamp

DNA mini kit according to the manufacturer’s instructions. DNA concentration was deter-

mined by NanoDrop spectrophotometer (Thermo Scientific). DNA integrity was checked by

1% agarose gel containing 1 μg/ml ethidium bromide. Fresh prepared DNA samples were sent

Fig 1. Analysis of cell cycle phases of SK-MEL-2 (left) and HS294T (right) for both untreated (ctrl) and treated (DAC)

cells with 10 μM DAC for 72h. The cells % in sub-G1 (apoptotic cells), G0-G1, S and G2-M cell cycle phases are

reported in Y axis. Data are reported as mean ± sd. Statistical significance threshold set at p-value< 0.05.

https://doi.org/10.1371/journal.pone.0206686.g001
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to BGI TECH SOLUTIONS (Hong Kong) for methtylation analysis by Reduced Representa-

tion Bisulfite Sequencing (RRBS). Total RNAs were extracted from both treated and untreated

melanoma cells using NucleoSpin RNA isolation kit (Macherey-Nagel) according to the man-

ufacturer’s instructions. RNA concentration and purity was determined by NanoDrop spec-

trophotometer (Thermo Scientific). Fresh prepared RNA samples were sent to BGI TECH

SOLUTIONS (HongKong) for transcriptome sequencing by RNA-Seq.

RNA-Seq

The sequenced data were processed for DEG and ncRNA profiling using tools from the R envi-

ronment. We used read counts to assess genomic coverage, and when less than 10 mapped

reads were counted, the call was discarded. The read counts were then normalized by the

edgeR package in Bioconductor [40]. The read counts were assessed for treatment and control

samples under the negative binomial distributional assumptions. Differential expression in

edgeR is assessed gene-wise by a Fisher’s exact test adapted to handle data over-dispersion.

Variation estimates were performed by choosing a Generalized Linear Model (GLM) to

account for gene-specific biological variation. Genes with |logFC|>1x and FDR<5% were

established as DEGs. In choosing among various alternative models, the exact Test was found

to generate less DEGs than GLM, actually providing subsets of those obtained with GLM.

Hence, we selected GLM results (S1 Tables include DEGs).

The differential values were detected in non-coding genomic regions too, and involved

ncRNA categories further classified into major biotypes, such as lincRNA, pseudogenes, anti-

sense, among all other biotypes that were found. This classification (S2 Tables) was obtained

by using the Ensembl genome annotation (Homo_sapiens.GRCh38.85.gtf) as a guideline for

annotation (S3 Tables). The parental genes associated with pseudogenes were determined by

an in-house resource of pseudogenes-parental genes associations. The criteria for assessing

transcribed evidence of significant associations are: 1) Reads mapped to the pseudogene

sequence and not to the parental gene; 2) Reads mapped to both the pseudogene and to the

parental gene, but with lower sequence similarity (<90%). Target parental genes were identi-

fied by aligning the pseudogene sequences using BLAST against a database of the protein cod-

ing CDNA sequences from Ensembl (v. 72). The best hit matches for a pseudogene sequence

were selected based on e-value scores, and the best overall hit for a pseudogene was selected as

its parental gene.

The contextual analysis of lincRNAs with respect to the DEG targets was established on the

basis of the physical proximal distance at chromosome level. The lncRNAs are generally classi-

fied into cis- and trans-regulatory biotypes, influencing how they may target proteins and then

determine RNA–protein interaction. One looks at whether the lncRNA regulates neighboring

genes, i.e. genes on the same chromosomal regions where they are located, or instead distant

genes, i.e. on other chromosomes. Notably, lncRNAs interact directly or indirectly within

genomic regions, sometimes through proteins performing specific biological functions, some-

times through other neighbor lncRNAs in a coordinated way. In our application, locations of

DE lincRNAs were obtained by simple steps: a) lincRNA at their genomic locations (start and

end positions) and b) protein-coding genomic locations (start and end positions); c) lincRNA

neighbors annotation. Genes at both left and right sides of starting and ending positions of

lincRNAs, and within various intervals, say ±1, ±2, ±3 Mbps regions, were considered as puta-

tive targets. Despite these intervals remain arbitrary, there is not a universally accepted defini-

tion of an accurate range. In an attempt to explore neighbors of the lncRNA locus that

confidently allow putative targets to be identified, we assigned priority to targets located at the

closest possible distance from the locus of interest.
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As per the correlation between methylation on promoter region and gene expression,

DEGs with |logFC| greater than 1.2x and methylation level on either promoter region or gene

body greater than 0 were selected for performing correlation analysis. The methylation levels

and expression values (FPKM) of treatment were normalized between 0 and 1. The linear

model among expression of treated, methylation level on gene body and promoter region were

accessed by lm (formula = treated ~ promoter + gene) and gls (model = treated ~ promoter

+ gene) functions in the R package. In both models, methylation level at promoter is signifi-

cantly correlated with expression of treated (p<5%) while methylation level at gene body show

no sign of correlation with expression (S1 Text). Extensive details on cross-profiles (transcrip-

tome-methylome) are reported in S4 Tables and S5 Tables.

Bioannotations

Gene annotations (S6 Tables and S7 Tables) were retrieved from DAVID 6.8 (Database for

annotation, Visualization and Integrated Discovery) (https://david.ncifcrf.gov/), an integrated

database of data and tools like ENSEMBL, NCBI, UniProt, KEGG, BIOCARTA, PANTHER,

BIND, GO and PUBMED etc.

Following RNA-Seq, the identified ncRNAs were cross-checked with the lincRNome db

(http://www.lncrnablog.com/tag/lincrnome/) and the lncrnadb (http://www.lncrnadb.org/) to

understand the functionality details (S2 Text). From the DAnCER db (http://wodaklab.org/

dancer/) (Disease Annotated Chromatin Epigenetics Resource) [41] Recurring genes involved

in chromatin modeling were also checked (S3 Text), and bio-annotations (molecular function

and biological processes) were integrated also by BiNGO (http://apps.cytoscape.org/apps/

bingo) [42].

Networks tools

Networks were generated from the STRING db (https://string-db.org/) by importing as sources

the DEG and DMG (primarily, but not only, up-methylated) lists. The annotations reported

on the maps have been obtained by the internal knowledgebase, and cross-checked within

the GeneCards system (http://www.genecards.org/). The ncRNAs listed in the maps were man-

ually curated and superimposed to the maps, after considering the previously computed

associations.

Biological validations

Drug administration for western blot analysis was performed in both HS294T and SKMel-2 by

administering 10 μM 5-Aza-2’-Deoxycytidine (DAC) in culture medium for 72 hours. West-

ern blot analysis was performed: cells were lysed in buffer containing 20 mM TRIS-HCl

(pH = 7.5), 1% SDS, 1 mM Na3VO4, 1 mM PMSF, 5% beta-mercaptoethanol and protease

inhibitors. After sonication, centrifugation and protein quantification by Bradford method,

15micrograms of proteins were subjected to SDS gradient gel (5–20%) electrophoresis and

transferred into a nitrocellulose membrane. Incubation with primary antibodies: anti-PARP1

(Santa Cruz, sc-7150), anti-lamin A (Abcam ab26300) and anti-GAPDH (Millipore) was per-

formed overnight at 4˚C. Secondary antibodies were applied for 20 minutes and immuno-

blotted bands were revealed by Invitrogen ECL detection system. Immunoblotted bands were

analysed by a BioRad Densitometer. Then, statistical analysis was performed from data over

three independent experiments and using the Student’s t-test. Data were reported as mean val-

ues with standard deviation (statistical significance values were associated to symbols as fol-

lows: �: p<0.05; ��: p<0.01; ���: p<0.001).
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Results

Detections

Both protein coding genes and non-coding RNA expression values were considered compo-

nents of interest for the DiP obtainable from each cell line by performing RNA-Seq. Table 1

summarizes these biological entities (details in S1 Tables). Fig 2 lists together with the detec-

tions found in common between cell lines (Venn diagram), the genes considered putative tar-

gets associated to a) lincRNAs, and retrieved within the flanking region of 1MB upstream to

start position and downstream to end position; b) antisense; c) pseudogenes, considering their

parental genes. Note that some of the antisense, pseudogenes and lincRNAs were also identi-

fied as part of the DiP at the transcriptome level. Also note that metastatic values were half dis-

tinctly detected and half shared with the DiP found in the non-metastatic cell line. Table 2

shows the various biotypes observed at transcript level and subsequently annotated. Table 3

shows annotations obtained by both DAVID and BiNGO.

Bio-annotations

The biological annotations (see S6 Tables and S7 Tables) are summarized next. In SKMEL-2

the KEGG pathways point to the top-5 enriched terms that include: cell adhesion molecules
(fdr = 6.59E-04; 35 genes); ECM-receptor integration (fdr = 0.002231; 25 genes); PI3K-Akt sig-
naling (fdr = 0.006324; 61 genes); focal adhesion (fdr = 0.007964; 42 genes); leukocyte transen-
dothelial migration (fdr = 0.024198; 28 genes). Other pathways have been enriched with

reduced significance, as with proteoglycans, platelet activation, cytokine-cytokine receptor inter-
action, Rap1 signaling, and calcium signaling. In terms of molecular functions, the most

enriched terms are extracellular space and region (fdr = 6.52E-17, fdr = 2.88E-07, respectively)

with 230 and 225 genes, respectively, and plasma membrane (fdr = 7.73E-09) with 498 genes.

Cell adhesive properties refer to tumor plasticity and play a central role in the metastatic

process. They involve morphological properties and integrin expression, but also migration

and invasion potential signs. Metastasis drivers act in different directions. First, the ECM-

receptor integration plays a key role during tumor progression through cross-talks between

cancer spots and its surrounding regions. Second, joint with the local microenvironment

(niche) that determines cancer development and in response to ECM signals, also PI3K-Akt

regulates the cell cycle and deals with intracellular signaling, thus affecting cell metabolism,

proliferation, growth, survival and angiogenesis.

With HS294T the annotation evidenced the following terms: cytokine-cytokine receptor
interaction (fdr = 0.01022), NF-kappa B signaling (fdr = 0.044757), leukocyte transendothelial
migration (fdr = 0.048354), these all appearing with acceptable enrichment scores. In terms of

molecular functions, the dominant one is extracellular region with 157 genes (fdr = 6.63E-18),

Table 1. The number of differentially expressed biotypes in HS294T and SKMEL-2 cell lines.

Cell lines Total n. of differentially

expressed biotypes

Cell-specific differentially expressed biotypes

HS294T 1536 808

SKMEL-2 1993 1265

Number of shared differentially
expressed biotypes

728

Note: The DE biotypes were selected based on criteria involving both expression and methylation levels in the

treatment group, i.e. threshold of logFC > 50% quartile of logFC values, and hyper-methylation at the promoter of

unregulated DE values.

https://doi.org/10.1371/journal.pone.0206686.t001
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followed by cell differentiation with 201 genes (fdr = 3.19E-08), cell communication with 143

genes (fdr = 9.82E-06), cell motility with 132 genes (fdr = 5.05E-05), cytoskeletal proteins with

103 genes (fdr = 5.58E-05), cell cycle with 104 genes (fdr = 8.39E-05), and cell adhesion with 95

genes (fdr = 1.94E-04). A major role is played at the signaling level by immunological and

inflammatory factors acting in response to disease and stressors through the binding to specific

receptors of target cells. These factors typically involve cytokines, chemokines and adhesion

molecules, and also leukocyte transmigration.

Chromatin remodeling

By using DAnCER, forty DEGs were matched with the genes involved in chromatin in

HS294T. Twentytwo of them were highly over-expressed, for instance H2AFB2, CTCFL,

Fig 2. Venn diagram of DE biotypes (top). Cell lines detections by biotype.

https://doi.org/10.1371/journal.pone.0206686.g002

Table 2. Decomposition of Differentially expressed biotypes in HS294T and SKMEL-2 cell lines.

Hs294T cell line SKMEL-2 cell line

Biotypes GLM edgeR Biotypes GLM edgeR
NA 35 NA 71

antisense 17 TEC 1

lincRNA 22 antisense 30

pseudogene 15 lincRNA 38

processed_transcript 7 misc_RNA 1

protein_coding 1435 pseudogene 26

rRNA 1 processed_transcript 12

sense_overlapping 4 protein_coding 1810

scRNA 1

sense_intronic 1

sense_overlapping 1

snRNA 1

Note: Outcome of Generalized linear models (GLM) selected in the edgeR function.

https://doi.org/10.1371/journal.pone.0206686.t002
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SYCP3, AURKC, HIST1H2BG, HIST1H3D, HIST1H2BJ, SERPIND, and three were highly

down-expressed, namely ZEB2, MGAM, LMNB1. Beyond being involved in DNA packaging

and chromatin modelling, these genes play a role in cancer, for example the SERPIN family is

involved in metastasis of cancer. Among the down-expressed genes, LMNB1 regulates PAK-

2p34 by protease mediated degradation, MGAM is involved in metabolism and immune system,

ZEB2 is involved in the TGF-β signalling pathway. With SKMEL-2, thirtyfour DEGs were pres-

ent also inDAnCER, of which nineteen genes overlapped with the HS294T cell-line. Instead, fif-

teen DEGs were exclusively found in SKMEL-2, examples being SIRT7, PCSK4, H1F0, BCL6,

SAP30, HIST1H3D, TLE4 etc. In particular, SIRT7 is involved in aging, cancer and circadian

rhythm, while BCL6 is a transcriptional repressor involved in the immune system.

Among the genes considered putatively involved in chromatin remodeling, two were pres-

ent as down-expressed among our DEGs, POU3F2 (transcription factor, logFC = –1.549)

classified as a melanoma gene, and IRF4 (interferon, logFC = -1.833) classified as a skin neo-

plasma gene. Other two genes were matched, but with smaller negative expression, SOX10

(ERK signaling) and GLI2 (Wnt). With SKMEL-2 other matches were found, for instance

NOS3 (logFC = 5.174), mediating VEGF-induced angiogenesis, ACTA2 (logFC = 4.862), an

actin involved in cell motility. And GLI1 (logFC = 2.036), a member of the Kruppel family of

zinc finger proteins encoding a transcription factor activated by the Hedgehog cascade and

regulating stem cell proliferation and also p53 (negatively).

ncRNAs, DEG targets, and a few specific annotations

Considering the identified DE lincRNAs in SKMEL-2, the targets at 1-to-3MB distance from

the genomic locus were identified. There are sixtynine targets, and some deserve attention. For

instance, the over-expressed KLHDC8A, providing an alternative pathway for tumors for

maintaining aggressiveness in the absence of epidermal GFR dependence. Then MZB1, which

causes cell-specific regulation of apoptosis, among other functions, likewise TNFRSF25 and

MX2 (interferon), both important for apoptosis. When looking at the matches of our detec-

tions within the lncRNome db [43] (see S6 Tables), only LINC00337 was found, among those

with target genes within the 1Mb of distance from locus. There are other seven target genes,

namely KCNAB2, CHD5, GPR153, HES2, ESPN, TNFRSF25, PLEKHG5, and six are over-

expressed and only KCNAB2 is down-expressed. Of these, CHD5 is a potential tumor suppres-

sor regulating the expression of genes involved in cell proliferation and differentiation. Down-

stream activated genes may include CDKN2A, which positively regulates the p53/TP53

pathway, which in turn, prevents cell proliferation. GPR153 and HES2 are involved in tran-

scription activity, while TNRFSF25 induces apoptosis.

Table 3. Molecular functions annotated for both cell lines.

source:DAVID source: BiNGO
Cell line

N. of detections

Statistically significant
(p-values <0.05)

Statistically significant (exclusive)
(p-values <0.05)

Statistically significant
(p-values <0.05)

Statistically significant (exclusive)
(p-values <0.05)

HS294T

66 51 12 29 9

SKMEL-2

76 59 21 48 28

Common
functions

51 38 20

Note: details provided in S6 Tables and S7 Tables.

https://doi.org/10.1371/journal.pone.0206686.t003
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Highly differential expressions of ncRNA targets appeared in relation with extracellular

region functions. Considering HS294T, three identifications are worth mentioning: the over-

expressed F5 and PRAP1, involved in cell adhesion, and TNC, which is down-expressed. With

regards to SKMEL-2, of interest is the identification of CD14, involved in programmed cell

death. Another group of functions is relevant, and involves cell junctions, i.e. multiprotein

complexes that allow the contact between neighboring cells or between cells and the extracellu-

lar matrix. Especially three identifications shared across the cell lines and highly over-

expressed are especially relevant: CRB3 (cell polarity in epithelial cells, regulators of morpho-

genesis), XIRP1 (involved with actin), and ARC (cell morphology, migration and cytoskeletal

organization). Other DEGs were instead identified as uniquely over-expressed. For instance,

in HS294T these are: ESAM (endothelial cell adhesion), involved in platelet activation and

immune cell transmigration; GJB4 (gap junctions), providing intracellular communication;

TNS4, involved in cell migration and possibly promoting apoptosis. With SKMEL-2 other

highly over-expressed identifications were uniquely found, namely: CDHR2, a tumor suppres-

sor; PECAM1, involved in leukocyte migration, angiogenesis and integrin activation; GPER1

(G-protein coupled receptor 1); S100A1, a tumor suppressor; SLC30A3, involved in trans-

membrane transported activity.

For the proteinaceous extracellular matrix, SKMEL-2 presents a few highly over-expressed

DEGs, such as MMP9 (cell death regulator) and WNT10A (Wnt signaling), while HS294T

presents SERPINA1 (hypoxia) as over-expressed and a series of down-expressed genes, such as

MMP17 (metabolism), MGP (cell differentiation), CHL1 (cell adhesion and differentiation),

MMP16 (proteolysis), COL11A1 (collagen). Of interest the sign concordance across cell lines

of the over-expressed FBLN2 (cell adhesion) and PTPRZ1 (cell differentiation). Among the

identifications uniquely found, a few appear in SKMEL-2 with the highly overexpressed

WNT1 and WISP2 (Wnt), SOST (cell communication), ADAMTS14 (proteolysis), HAPLN4,

ELN and COL8A2 (cell adhesion and proliferation), while then others identifications appear

in HS294T as the under-expressed cell adhesion genes (among other processes), COL15A1,

FREM1, GPC6 and FLRT1.

Differential network maps

Cross-referencing of transcriptome and methylome DiP leads to network maps as a way to

select regions in which the combined influence may exert effects visible through hubs, hierar-

chies or modules. Since the majority of detected evidences turned into hyper-methylated over

hypo-methylated genes, we focused on cancer genes undergoing inactivation most likely

induced by hyper-methylation, in other words those subject to epigenetic silencing. Here,

treatment via demethylation influences the re-activation of their expression levels. Being these

genes involved in several pathways, an additional constraint was applied by mapping DEGs

from both cell lines that were found upregulated. This implies re-activation of expression levels

induced by treatment.

Looking at Fig 3, the SKMEL-2 cell line network map, a number of nodes appear annotated

in various ways. In some cases these are functionally relevant (gene/module annotations

recalled by blue arrows) by either themselves, as with MAPK13 (light green envelope) or

NOTCH3 (involved in several functions, i.e. differentiation, proliferation, apoptosis), or

because of aggregates or modules. This is the case of WNT (WNT3 and WNT10A, yellow

envelope), whose role in tumorigenesis is widely known in relation with proliferation and

migration, or CDH3 and CDH15 (red envelope, bottom right), i.e. cadherin of P and M type,

respectively. In particular, a paralog of CDH3 is CDH1, cadherin of the E type, a known

growth and invasion suppressor whose loss of function contributes to cancer progression
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through augmented proliferation, invasion, and/or metastasis, and whose mutations have

been correlated with various cancers. Table 4 is next shown to indicate the cadherin values

computed in the SKMEL-2 cell line. In the HS294T cell line the significance of logFC was not

high and thresholds were never met at both measurements together. The observed post-treat-

ment effect inducing over-expressions in both CDH3 and CDH15 is therefore neutralizing

the loss of cell-cell dependent adhesion and influencing melanoma development and

progression.

Interestingly, note that also RET (red central envelope) is marked with reference to cad-
herin, and indeed it is considered an atypical cadherin belonging to a group of cadherins
endowed with a diversity of unique structures and functions but still playing a role in cell adhe-

sion and beyond [44]. A relatively long list of lincRNAs is associated with RET. Considering

Table 4 and the interaction network maps, it appears that the role of cadherin genes is more

substantial in SKMEL-2 than in HS294T. Because the maps satisfy two constraints, namely

Fig 3. SKMEL-2 cell line map. Protein-protein Interaction map from STRINGdb obtained from DiP (DEGs and differentially methylated). The effects of treatment

were analyzed in hyper-methylated DEGs to consider silencing effects on expression before treatment. The red names refer to ncRNAs, and lincRNAs depend on 1Mb

distance between their locus and the associated target genes.

https://doi.org/10.1371/journal.pone.0206686.g003
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significantly DEGs that were hyper-methylated in tumor data, at promoter and/or gene body,

the effects of the epigenetic treatment over the inactivated cadherins is to induce a re-activation

of their expression levels. This occurs in a non-metastatic context (SKMEL-2) and not in the

metastatic one (HS294T). Considering this difference, and by seeing the epigenetic treatment

under the lens of cadherin and its loss of function (cell adhesion), it appears that a functional

inhibition by melanoma occurs at an early disease development stage, which is where the epi-

genetic treatment exerts a clear impact. The same is not observed when the disease has already

progressed to a metastatic stage.

Back to RET, this gene is part of central modules (red envelope) including PDGFB and

PDGFRA, which indicate platelet-derived growth factor involved in integrin signaling, cell

migration and focal adhesion (FAK). GRB7is also part of this module, and is known to interact

with integrin signaling, with EGFR and EFNB2 (Ephrin B2, a kinase being crucial for migration

and adhesion), to bind with FAK, and also to communicate with the RET signaling network

(see http://pathcards.genecards.org/card/ret_signaling). EFNB2 is annotated with three lincR-

NAs. Two WNT components are also observed (yellow module) with WNT3 and WNT10A,

both implicated in oncogenesis, DNA damage and PI3K Akt signaling. A list of lincRNAs is

associated with PTK6 (green module), involved in tumor growth. Finally, MAPK13 is involved

in proliferation and differentiation among other processes. Of particular interest is the associa-

tion with the PANDAR ncRNA, which is thought to regulate the response to DNA damage,

and whose deregulation induced cancer progression. We could not find it differentially

expressed among our ncRNA detections.

Looking at the metastatic HS294T cell line network map (Fig 4), fewer modules appeared

relatively to before. MAPK13 (yellow envelope) is annotated here too, together with the associ-

ated PANDAR and the negative regulator DUSP5. Among the different aggregates that were

formed, one involves KISS1, relevant for cytoskeletal reorganization downstream cell matrix

adhesion, a gene known to suppress metastases in melanoma and in some breast cancers too,

by inhibiting invasion. Another gene, ESAM, i.e. endothelial cell adhesion molecule, is inter-

acting with CLDN6 or claudin 6 (blue module), with possible sharing of tight junction func-

tion to enable cell-to-cell adhesion. Claudins are examples of junctional proteins, i.e.

transmembrane proteins that function to promote cell-cell adhesion, and are involved in the

metastatic phenotype as both cancer promoters and tumor suppressors [45]. These proteins

are natural candidates serving as therapeutic targets in cancer at metastatic stages. Associated

to CLDN6 there is also a mini-list of ncRNAs, potential regulators whose functions remain

largely unknown. Note that the network interactors were cross-referenced between STRING
db knowledge base and GeneCards, while ncRNAs were inserted by inspecting the associations

with ncRNA targets at given genomic distances from ncRNA loci. It is definitely less clear

Table 4. Cell adhesion in view of cadherins in SKMEL-2.

SKMEL-2

Cell line TUMOR TREATED Log(FC) Log(CPM) Methylation Threshold

Promoter Gene Body T > 2.24 M > 4.25

CDH1 0.64 5.14 2.86 3.76 3.44 21.02 T (yes) M (No)

CDH3 0.28 2.09 2.72 2.35 25.99 9.28 T (yes) M (yes)

CDH15 0.62 6.28 3.2 3.26 6.96 7.81 T (yes) M (yes)

RET 0.01 0.75 7.88 0.91 4.9 3.22 T (yes) M (yes)

Note: edgeR delivers logFC or log fold change and logCPM or log counts per million. Thresholds at transcriptome (T = 2.24) and methylome (M = 4.25) levels were

computed according to quantiles (50%).

https://doi.org/10.1371/journal.pone.0206686.t004
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and surely less pervasive the effects induced by the demethylant with HS294T, which

suggests a limited impact of the treatment in the reprogramming action against the metastatic

process.

Systems analysis of T-Antigens

Table 5 and Table 6 refer to the list of antigens searched via the TANTIGEN db (Tumor T-cell

Antigen Database) [46]. This is a resource on human tumor antigens based on HLA ligands,

predicted binding peptides and T cell epitopes, and including reference to gene expression,

isoforms, mutations. Two types of results were obtained from our profiles cross-referencing,

namely the ‘best match’ and the ‘one-mismatch’ (tabulated evidences are reported in S8

Tables). Looking at the results, a few considerations follow. First, the networks establish co-

expressions between nodes and/or interactions. Fig 5 for HS294T shows two panels: at the top

level, one with all the gene selections with best-matched antigens; at the bottom level, one with

the gene list restricted by the application of thresholds in the transcriptome (logFC>1.5,

Fig 4. HS294T cell line map. Protein-protein Interaction map from STRINGdb obtained from DiP (DEGs and differentially methylated). The effects of treatment were

analyzed in hyper-methylated DEGs to consider silencing effects on expression before treatment. The red names refer to ncRNAs, and lincRNAs depend on 1Mb

distance between their locus and the associated target genes. expression before treatment.

https://doi.org/10.1371/journal.pone.0206686.g004
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logFC<-1.5) and methylome (2.9 at promoter level, 8.39 at gene body level, as a result of 50%

quintiles) values. The top unconstrained map shows the presence of various singletons, such as

FMNL1 (formin-like protein 1) involved in morphogenesis, cytokinesis and cell polarity, plus

Table 5. HS294 antigens.

Gene name Protein ID Length Antigenic peptide

name

Antigenic peptide seq Loc LogFC Methylation level

promoter

Methylation level gene

body

BIRC3 XP_016873132.1 604 T000939 RLQEERTCKV 550 1.808209

BCL2 XP_011524437.1 224 T000947 NIALWMTEYL 172 -2.10161 1.083 9.978

DCT XP_011519351.1 456 T000114 LLGPGRPYR 134 -2.79781

EPHA3 XP_005264772.1 982 T000393 DVTFNIICKKCG 356 -2.39375

FLT1 XP_016875974.1 1300 T000789 GVLLWEIFSL 1048 -1.46441 7.443 1.712

GFl1 XP_005270806.1 422 T001014 QPR(S)PGPDYSL

[QPRSPGPDYSL]

17 3.3185 18.065 12.974

LCK XP_011539755.1 516 T000743 DYLRSVLEDF 495 7.500057

MAGEB2 XP_011543814.1 319 T000252 FLWGPRAYA 273 1.8108824

MDM2 XP_005268929.1 491 T000674 YTMKEVLFYL 48 1.815603 0.397 17.749

NFATC2 XP_011527126.1 940 T000980 KPY(S)PLASL[KPYSPLASL] 70 -1.81647 18.28 22.764

CLCA2 XP_011540750.1 616 T000385 LLGNCLPTV 425 2.206476

MSLN XP_005255091.1 621 T000796 FLLFSLGWV 23 1.457531 3.75 4.516

TRPM8 XP_011510112.1 1115 T000883 GLMKYIGEV 187 -1.61673

ARHGAP30 XP_005245127.1 1044 T001046 RPAK(S)MDSL

[RPAKSMDSL]

323 4.162052

MAGEA2B XP_016884895.1 314 T000162 TTINYTLWR 73 -8.76344

MAGEA9B XP_005278249.1 315 T000196 VALELVHFLL 112 2.124184

Note: values passing transcriptome and methylome thresholds.

https://doi.org/10.1371/journal.pone.0206686.t005

Table 6. SKMEL-2 antigens.

Gene name Protein ID Length Antigenic peptide

name

Antigenic peptide seq Loc LogFC Methylation level

promoter

Methylation level gene

body

PLIN2 XP_016869748.1 445 T000366 SVASTITGV 129 5.632593 13.151 25.123

BIRC3 XP_016873132.1 604 T000939 RLQEERTCKV 550 2.404825

FMNL1 XP_006722125.1 1164 T000850 RLPERMTTL 799 2.028542 7.675 8.02

GFI1 XP_005270806.1 422 T001014 QPR(S)PGPDYSL

[QPRSPGPDYSL]

17 3.026243 11.808 11.394

LCK XP_011539755.1 516 T000743 DYLRSVLEDF 495 7.499478

OCA2 XP_011519942.1 852 T000618 IMLCLIAAV 427 -2.63585 2.826 13.916

PTHLH XP_011519076.1 177 T000876 FLHHLIAEI 59 1.809974 7.344 1.106

ABCC3 XP_005257820.1 1463 T000825 LYAWEOSFL 439 4.109376 0.99 5.013

IGF2BP1 XP_005257012.2 565 T000906 KTVNELQNL 496 2.309944 27.031 3.641

SYNPO XP_005268427.1 903 T000979 RPSRS(S)PGL[RPSRSSPGL] 615 1.504201

RAB38 XP_016872944.1 177 T000663 VLHWDPETV 50 -1.22612 0.428 0.892

ARHGAP30 XP_005245127.1 1044 T001046 RPAK(S)MDSL[RPAKSMDSL] 323 1.867114

MAGEA2B XP_016884895.1 314 T000162 TTINYTLWR 73 8.94263

CCDC88B XP_006718582.1 1560 T001017 SPEKAGRR(S)SL

[SPEKAGRRSSL]

588 2.423258

XAGE1B XP_016885238.1 146 T000840 CATWKVICKSCISQTPG 98 1.782175

MAGEA9B XP_005278249.1 315 T000196 VALELVHFLL 112 3.747172

Note: values passing transcriptome and methylome thresholds.

https://doi.org/10.1371/journal.pone.0206686.t006
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members of the MAGE family of antigens (especially tumor specific proteins belonging to

CTA group), whose exact functions is not completely known but appear to regulate cell cycle

progression and apoptosis.

Of interest are the connectivity paths, and these are visible in the unconstrained map, less

so in the constrained maps. In the former context, the following chain of nodes is noted: TTK,

a mitotic kinase associated with cell proliferation through mitosis because critical for the regu-

lation of cell division; TOP2A, a gene known as target for anticancer agents whose mutations

are linked to drug resistance, and which encodes an enzyme altering DNA during transcrip-

tion and replication; BCL2, encoding an anti-apoptotic protein (affecting lymphocytes, for

instance), and the associated BCL2L1, also inhibiting cell death, and BIRC3, an inhibitor of

apoptosis; MSLN, or megakaryocyte potentiating factor, involved in mesothelin generation,

which is a sort of cell adhesion protein appearing overexpressed in some cancers; MDM2,

which can promote tumor formation by targeting tumor suppressor proteins such as p53 and

whose overexpression has been seen in various cancers; FLT1, or Fms-related Tyrosine Kinase

1, encoding a member of VEGFR of relevance to angiogenesis and vasculogenesis; LCK, of the

Src family of protein tyrosin kinases and key signaling molecule involved with T-cells by bind-

ing to various cell surface receptors, also playing a key role in the T-cell antigen receptor-

linked signaling transduction patwhays; EPHA3, of the ephrin receptor (part of the protein

tyrosine kinases), involved in cell-cell adhesion, cytoskeletal organization and cell migration

processes.

When the same analysis is performed over the SKMEL-2 map in Fig 6, much smaller con-

nectivity is observed and the presence of singletons is dominant under constraints. The appli-

cation of such constraints dissolves the connectivity observed with the entire list of genes for

which the antigens were matched, and in which two paths had appeared: a) OCA2, a trans-

membrane protein involved in the transport of tyrosine, linked to TYR (tyrosinase) and

GPR143 (tyrosine binding); b) BCL2, LCK, BCL2L1 and BIRC3. MAGE and XAGE (member

of GAGE family, useful markers in melanoma and associated with poor prognosis) genes are

present too.

Biological validation

Features of programmed cell death consist of a very particular nuclear behavior involving

DNA cleavage, destruction of the structural chromatin organization and proteolysis of nuclear

membrane and nuclear lamina components [47]. Poly(ADP-ribose) polymerase 1 (PARP1)

and Lamin A/C are cleaved in apoptotic nuclei by proteolitic enzymes, called caspases, at the

late stage of apoptotic process [48, 49]. Therefore, we used these markers and tested their apo-

ptotic cleavage by western blot analysis. Both HS294T and SKMEL-2 melanoma cells under-

went apoptosis after 72 hours of treatment with 5-Aza-2’-Deoxycytidine (DAC) as indicated

by cleavage of PARP1 and lamin A/C (S1 Fig). The densometric analysis indicates that PARP1

cleavage (85 kDa) was detectable in both DAC-treated cell types while significantly increasing

in DAC-treated SKMEL-2, and cleaved Lamin A (45 kDa) significantly increased in both

DAC- treated cell lines.

Discussion

Gene expression profiles from melanoma cell lines may display different transcriptome states,

such as of proliferative and invasive ones, which tend to switch when temporally observed and

the initially observed proliferative-to-invasive state transition seems induced by chromatin-

dependent transcriptional changes, among other regulatory network dynamics [25]. These

states prefigure two transcriptional signatures beyond the influence of genetic mutations, as

Network assessment of demethylation treatment effects in melanoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0206686 November 28, 2018 17 / 26

https://doi.org/10.1371/journal.pone.0206686


these alone are not sufficient to explain the reprogramming and also reversible dynamics, and

most likely influenced by the microenvironment [50]. Mutations involved in the growth of

tumor are rare but may generate aberrations (i.e. amino acid substitutions) in protein

sequences, making thus the latter potential targets in view of tumor-specific immune response

[51].

Fig 5. HS294T Antigen-driven map. Protein-protein interaction map from STRING db obtained from all best matched antigens (top panel)—see Table 5 and S8

Tables.

https://doi.org/10.1371/journal.pone.0206686.g005
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Our melanoma data were obtained from two cell lines, only one being metastatic. Coupled

profiling was performed, and methylomes are expected to reflect characteristics that are

unique to each cancer type, thus justifying differences in patterns or signatures. We

Fig 6. SKMEL-2 Antigen-driven map. Protein-protein interaction map from STRING db obtained from all best matched antigens (top panel)—see Table 6 and S8

Tables.

https://doi.org/10.1371/journal.pone.0206686.g006
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hypothesize that by these signatures we might better decipher complex regulation mechanisms

underlying the observed data. Transcriptomes and methylomes have been combined in many

studies, but there is still not a clear understanding of how this merge can improve early diagno-

sis, prognosis and prediction of therapeutic response. The advantage of investigating DNA

hyper-methylation versus standard tumor biomarkers is that the former can be highly relevant

in predictive terms, such as monitoring the stages of cancer progression, and including early

and premalignant conditions. The best example provided by our study concerns cadherins, in

particular CDH3 and CDH15, for which a clear mark of post-treatment appears through the

over-expressions of both genes. Treatment therefore contrasts the loss of cell-cell dependent

adhesion underpinning melanoma development and progression, and indicating the opportu-

nity for targeted clinical intervention similarly to what has been observed in the so-called

‘actin-diseases’, i.e. those with a disruption of the E-cadherin and actin connection [52].

Gene expression is known to be affected by DNA methylation. In particular, a repressive

epigenetic mark is usually investigated at both promoter and gene-body located sequences. In

general, methylated promoters are negatively correlated with gene expression because associ-

ated with gene silencing, while non-methylated promoters may associate independently on

transcription states [53,54]. In fact, it is still to be clearly assessed whether gene body methyla-

tion levels are more or less predictive than TSS regions. In our study we noticed negatively cor-

related behavior between transcriptome and methylome levels at promoters, but could not

observe this pattern at gene-body levels. We supported these evidences with a model employ-

ing simple statistical regressions and testing the significance for the coefficients in relation

with the two profiles at both promoter and gene body level. When considering profile coverage

of coding and non-coding genomic regions, correlations were assessed only at the coding

regions, which is where methylome measures were obtained by reduced sequencing.

Aberrant DNA methylation affects many cancer genes, suggesting a potential use as bio-

markers for early diagnosis, prognosis and also prediction of therapy response [55]. Due to the

reversibility of such aberrations, there is potential for therapeutic targeting combining DNA

demethylation with candidate target selection. Since hyper-methylated genes can be reacti-

vated after treatment with methylation inhibitors, mapping these genes onto networks may

elucidate possible but hard to measure correlation with differential expression. The advantage

of using networks is that connected paths identified among DEGs represent a robust measure

of association at a biological level. Functional epigenetic modules have been recently indicated

as good instruments for integrated use with scaffold networks, especially but not only with

protein networks. They are aimed at identifying hotspots, i.e. significant epigenetic dysregula-

tion associated to key phenotypes. Examples of integrative tools are provided by FEM [56],

BioNet [57] and SMITE [58]. Other tools have been provided without explicit use of correlated

profiles (see EMDN [12]).

In the context of our cell lines, a feature shared by the two cell lines is MAP-kinase signaling

associated with regulation of cell proliferation, something already noticed with different can-

cers and analyzed through network oncomarkers [12]. Several studies have pointed out the re-

activation of the MAPK pathway as an effector of mechanisms of acquired resistance, and

holding especially in view of MITF or SOX10 activity [59]. In our study, the modular protein

interaction networks evidenced MAPK13, a target associated with the PANDAR ncRNA of

relevance to therapy because aberrantly expressed across various cancers. However, since it is

the diversity from metastatic levels that we are interest in, we observed the effects of demethyl-

ation under such cell-specific metastatic potential. Under non-metastatic conditions various

re-activated pathways appear deeply involved in cancer hallmarks. Due to hyper-methylation

induced by tumor, these pathways were altered, and the epigenetic treatment is reconfiguring

them in an intricate map of network relationships. Such complex regulations include the roles
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of ncRNAs detected as differentially expressed and contextualized in network maps with their

putative targets. Both the map configuration and the presence of ncRNAs change substantially

under metastatic conditions, as the more advanced stage of melanoma progression implies a

different degree of involvement of pathways. Interestingly, this emerging differentiality indi-

cates a demethylation impact stronger at the early disease stage, most likely the best time for

therapeutic intervention.

The other instruments explored in this study are the differential antigen maps, and here are

a few remarks. Tumor antigens refer to tumor molecules interactive with the immune system,

being some specific (not present in normal tissue) and some associated (overexpressed in

tumor compared to normal) [46]. These types can be recognized by T cells and present on the

cell surface by human by so-called HLA or human leukocyte antigen molecules. T cells can

reject tumor due to such molecules thus eliciting immune response.

Our evidences point to a few directions, all deserving a few final remarks that we summa-

rize in five points. First, when antigen maps are created to capture differential configurations

in the two cell line scenarios, a superior connectivity appears in the HS294-T cell line vs the

SKMEL-2 cell line. While some commonalities persist when considering the unconstrained

gene lists, the established thresholds enable constraints that lead only for the HS294-T map to

trackable and interpretable paths. These differential network signatures seem to reflect the

metastatic potential of the cell lines. Therefore, by exploiting the identified antigens the con-

nected target genes suggest that targets are better actionable in the presence of an increased

metastatic potential.

Second, the expression thresholds that we adopted exert substantial effects, and expectedly

constrain the systems under study by reducing the potential of exploitable target connectivity

observed under unconstrained scenarios. This effect shows up by complete link depletion in

the non-metastatic case. The thresholds are surely affected by the re-activation of expression

levels induced by the demethylation treatment. However, an increased number of re-activated

genes doesn’t necessarily means that more melanoma targets become available. Indeed these

targets appear as associated to the metastatic power. In other terms, while the protein-protein

interaction network maps revealed increased treatment effects in the context of non-metastatic

cell line, the antigen network maps showed more actionable targets with the metastatic cell

line. Target actionability in a network context adheres strictly to the property of network con-

nectivity, and the topological measures such as degree and centrality that can be derived. Intui-

tively, the presence of connected target paths translates into increased chances to be able to use

if not directly these targets, at least their close interactors.

Third, any current evidence must be seen in light of technological limitations, one being

that the database resources here used are specific. In general, a systematic and/or comparative

evaluation of putative antigens as targets of antitumor immunity is not yet available [60]. Con-

versely, the impact of cancer immunotherapy is constantly growing, particularly in light of the

fact that the mutational load is a limited marker by itself. Whether T cell activity is the ultimate

effector mechanism is something deserving further study, in association with other aspects

making more complete the present cancer-immune interactome, and thus refining the “cancer

immunogram” towards personalized treatments [61].

Fourth, while significant methylation appears at both promoter and gene body levels, it is

quite hard to measure the influence of these values over the potential of connected targets at

varying metastatic stages in view of tumor T-cell antigens. It is a topic that deserves further

investigation, and here probably suffers from the incompleteness of the available data for

which a clear coupled-profiles correlation is observed only at promoter level. Nonetheless, the

complex regulations in the presence of differential metastatic potential have pinpointed inter-

esting identifications that may guide the choice of candidate genes for further validation stages.
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Fifth and last point is a general limitation in our study. The observed patterns may provide

insights into biological processes driving metastasis transition, but the limitations imposed by

the scale of the experiments must be considered too. Therefore, further confirmation of the

findings relative to the observed phenotypes require additional verification that can ultimately

be achieved through scaled up validations and applications of biological models.
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