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Abstract: Ion beam irradiation-induced nanoporous structure formation was investigated on GaSb,
InSb, and Ge surfaces via controlled point defect creation using a focused ion beam (FIB). This paper
compares the nanoporous structure formation under the same extent of point defect creation while
changing the accelerating voltage and ion dose. Although the same number of point defects were
created in each case, different structures were formed on the different surfaces. The depth direction
density of the point defects was an important factor in this trend. The number of point defects
required for nanoporous structure formation was 4 × 1022 vacancies/m2 at a depth of 18 nm under
the surface, based on a comparison of similar nanoporous structure features in GaSb. The nanoporous
structure formation by ion beam irradiation on GaSb, InSb, and Ge surfaces was controlled by the
number and areal distribution of the created point defects.

Keywords: nanoporous structure; GaSb; InSb; Ge; ion beam irradiation; point defect; interstitial;
vacancy; surface modification; FIB

1. Introduction

Nanoporous structures on semiconductor surfaces have important application potential for
electronic and photonic devices. Ion beam irradiation-induced nanoporous structure formation on
gallium antimonide (GaSb) [1–12], indium antimonide (InSb) [1,13–20], and germanium (Ge) [21–29]
surfaces have been studied previously, with D. Kleitman and H. J. Yearian being the first to report
this phenomenon using deuteron irradiation of GaSb and InSb in 1957 [1]. Such nanoporous structure
formation by ion beam irradiation has only been observed on GaSb, InSb, and Ge surfaces; Si [30],
GaAs [31,32], and InP [33] surfaces were not formed in this way. Layer damage and amorphous
structure formation were only observed as a result of high dose irradiation. Recently, similar
nanoporous structure formation behavior was also observed in Si1−xGex [34,35] and GaAs1−xSbx [36]
irradiated alloys; this formation behavior on Si1−xGex and GaAs1−xSbx was likely influenced by
Ge and GaSb, respectively. This nanoporous structure formation mechanism has been previously
labeled as the migration of ion beam irradiation-induced point defects (Frenkel pair; interstitial and
vacancy) [5]. Many point defects are generated near the surface by collisions cascade from ion beam
irradiation. Small voids or elevations are formed in the early stage of irradiation due to numerous
interstitials and vacancies. The surface roughness increases due to the migration of these interstitials
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and vacancies as a result of nanoporous structure formation on the surface. The amount of point defects
necessary to impact structure formation is also questionable in this mechanism. The dependence on
ion dose on the nanoporous structure size has been reported in numerous prior studies. However, the
relationship between the number of point defects and the nanoporous structure formation has not yet
been examined in detail.

In this paper, ion beam irradiation-induced nanoporous structure formation was investigated
on GaSb, InSb, and Ge surfaces by controlled point defect creation using a focused ion beam (FIB).
An accelerator was used with the FIB to allow the examination of a number of different ion beam
conditions. The nanoporous structure formation mechanism here is predominantly influenced by
point defect behavior. If the same number of point defects is created, the same nanoporous structure
formation behavior is expected. This paper compares nanoporous structure formation on these surfaces
under different accelerating voltages and ion doses, while keeping the number of point defects constant.
The point defects were calculated using stopping and range of ions in matter (SRIM) simulations [37].
The aim of this study is to develop ion beam conditions for the synthesis of nanoporous structures in
order to determine the influence of the number of point defects created.

2. Experimental Procedure

FIB ion beam irradiation was conducted using Ga+ with an FEI Quanta 3D 200i at room
temperature. Single crystals of GaSb, InSb, and Ge (001) as mirror-polished wafers were used.
The accelerating voltages were 2, 5, 8, 16, and 30 kV, at a chamber vacuum of 4 × 10−4 Pa. The Ga ion
irradiation utilized an image scanning mode, in which Ga was irradiated in a 512 × 441 dot array over
a 12.5 µm × 10.8 µm area of the surface in a single scan. The scanning dose was 5 × 1018 ions/m2

for each scan. 2–84 to eighty-four scans were performed for GaSb and InSb, while 10–240 scans were
used for Ge. The total beam dose was 5 × 1018–1.4 × 1021 ions/m2. Structural changes resulting from
ion beam irradiation were observed by field-emission scanning electron microscopy (FE-SEM; JEOL
JSM-7401F). The accelerating voltage was 5 kV.

3. Results and Discussion

Figure 1 shows the vacancy distributions of (a) GaSb, (b) InSb, and (c) Ge irradiated with a Ga
ion beam as functions of distance from the surface, calculated using SRIM simulations [37]. Table 1
summarizes the projected range and vacancies per ion in (a) GaSb, (b) InSb, and (c) Ge, as also
calculated by SRIM simulations. SRIM is a Monte Carlo simulation of ion beam collisions in solids.
The number of calculated Ga ions was 10,000. We adopted displacement threshold energy values
obtained by Thommen (6.2 eV for Ga and 7.5 eV for Sb) [38], Bauerlein (5.8 eV for In and 6.8 eV
for Sb) [39], and H. H. Andersen and J. F. Ziegler (15 eV for Ge) [40]. The projected depth and
number of vacancies per ion increased with the increasing accelerating voltage in all calculations.
The vacancy distribution tendency was nearly identical in GaSb and InSb, while Ge featured half
as many vacancies as those. The irradiation doses for the below experiments were determined by
these point defect numbers, resulting in nearly identical numbers of vacancies on these irradiated
surfaces. Here, we should consider the influence of the implanted Ga ions. The Ga ion concentration
was calculated in GaSb unit area. The unit of irradiated region in GaSb 100% was equal to 0.7% Ga ions
(5 × 1018 ions/m2 scan). Therefore, the influence of the implanted Ga ions is clear in this experiment.
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Figure 1. Vacancy distributions of (a) GaSb, (b) InSb, and (c) Ge irradiated with a Ga ion beam as a
function of distance from the surface, calculated by SRIM simulations. Accelerating voltages were 2, 5,
8, 16, and 30 kV.

Figure 2 shows surface SEM images of GaSb irradiated with a Ga+ ion beam at room temperature
(left), at accelerating voltages of 2, 5, 8, 16, and 30 kV. The total number of vacancies created on the
GaSb surface was estimated using the ion dose (ions/m2) multiplied by the vacancies (/ion) from the
SRIM simulation as a function of accelerating voltage (right). Column A shows an average number of
vacancies of 2.3 × 1022 vacancy/m2, column B shows 4.5 × 1022 vacancy/m2, and column C shows
6.8 × 1022 vacancy/m2; very similar numbers of vacancies are present in all cases. The nanoporous
structure formation was examined under different accelerating voltages and ion dose levels, with
a fixed number of point defects. Despite this fixed point defect count, the same structure was not
formed on all surfaces, and the nanoporous structure features are different in each column. Voids were
formed under the surfaces in Figure 2a, while cavities were observed on the surfaces in Figure 2b–e.
In comparing columns A, B, and C, the structure size increases with increasing ion dose. Decreasing the
accelerating voltage causes the structure to change from a thin walled setup to more uneven, rugged
features. The largest structure size was observed at an acceleration voltage of 16 kV, while surface
roughness is observed in Figure 2j,o, resulting from a lower acceleration voltage of 2 kV.

Table 1. Projected range and vacancy per ion calculated by SRIM simulations in (a) GaSb, (b) InSb,
and (c) Ge.

(a) GaSb

Acc. Vol. (kV) 2 5 8 16 30

Ion range (nm) 3.6 6.1 8.2 12.9 20.2
Vacancy (/ion) 154 374 593 1169 2156

(b) InSb

Acc. Vol. (kV) 2 5 8 16 30

Ion range (nm) 4.0 6.8 9.0 13.9 21.9
Vacancy (/ion) 166 408 647 1281 2382

(c) Ge

Acc. Vol. (kV) 2 5 8 16 30

Ion range (nm) 3.2 5.5 7.3 11.7 18.3
Vacancy (/ion) 77 189 298 585 1076
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Figure 2. Surface SEM images of GaSb irradiated with a Ga+ ion beam at room temperature (left).
The accelerating voltages used were 2, 5, 8, 16, and 30 kV at a scanning dose of 5 × 1018 ions/m2 per scan.
The total number of vacancies created on GaSb was estimated using the ion dose (ions/m2) multiplied by
the vacancy count (/ion) as calculated by SRIM simulations, as a function of accelerating voltage (right).

Figure 3 shows surface SEM images of InSb irradiated with a Ga+ ion beam at room temperature
(left), at accelerating voltages of 2, 5, 8, 16, and 30 kV and a scanning dose of 5 × 1018 ions/m2 per
scan. The total number of vacancies created on the InSb were estimated using the ion dose (ions/m2)
multiplied by the vacancy count (/ion) calculated using SRIM simulations as a function of accelerating
voltage (right). Column A indicates an average vacancy count of 2.5 × 1022 vacancy/m2, column B
shows a value of 4.9 × 1022 vacancy/m2, and for column C this number is 7.4 × 1022 vacancy/m2.
As in the case of GaSb, the same structure was not formed on the InSb surface despite the same
number of point defects being present. Compared to GaSb, more spherical structures were present
in InSb, in terms of both void and elevation structures. These spherical structures likely formed due
to the decreased surface energy of this system. Under low accelerating voltage irradiation, rugged
structural features emerged in a similar manner as GaSb. The mechanism of InSb nanoporous structure
formation has been previously reported as a combination of sputtering and re-deposition [17,18].
Table 2 shows sputtering yield (atoms/ion) calculated by SRIM simulations [37] in (a) GaSb, (b) InSb,
and (c) Ge. The sputtering yield in InSb was higher than that in GaSb. This sputtering is more effective
for nanoporous structure formation compared to point defect migration in InSb.

The nanoporous structure was not observed on GaSb in Figure 2j,o, and on InSb in
Figure 3e,h–j,m–o at low accelerating voltages. It was considered that the influence of sputtering
was effective at low accelerating voltages. In spite of the fact that the sputtering yield was low
with decreasing accelerating voltage in Table 2, the nanoporous structure was not formed. This
sputtering is also more effective for nanoporous structure formation compared to point defect
migration at low accelerating voltages. It was considered that the number of point defects was
few at accelerating voltages.

Figure 4 shows surface SEM images of Ge irradiated with a Ga+ ion beam at room temperature
(left), at accelerating voltages of 2, 5, 8, 16, and 30 kV and a scanning dose of 5 × 1018 ions/m2 per scan.
The total number of vacancies created on the Ge surface was estimated using the ion dose (ions/m2)
multiplied by the vacancy count (/ion), as calculated by SRIM simulations [37], as a function of
accelerating voltage (right). Column A indicates an average vacancy count of 5.7 × 1022 vacancy/m2,
column B denotes this value as 8.5 × 1022 vacancy/m2, and column C is 1.1 × 1023 vacancy/m2. The
number of vacancies formed in Ge, based on our SRIM simulations (Table 1), was lower than in both
GaSb and InSb. Therefore, the ion dose reaching the surface during Ge irradiation is approximately
double what was present for GaSb and InSb. Smaller and finer structures were formed on the Ge
surface compared to these other surface types, despite the greater ion dose experienced by Ge. This
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can be explained by the different formation mechanisms between Ge, GaSb, and InSb. In the case of
Ge, an amorphous structure first forms on the Ge surface, from which the final nanoporous structure
grows [25]. A high ion dose is thus needed for this initial amorphization stage.

Figure 3. Surface SEM images of InSb irradiated with a Ga+ ion beam at room temperature (left).
The accelerating voltages used were 2, 5, 8, 16, and 30 kV at a scanning dose of 5 × 1018 ions/m2 per scan.
The total number of vacancies created on InSb was estimated using the ion dose (ions/m2) multiplied by
the vacancy count (/ion) as calculated by SRIM simulations, as a function of accelerating voltage (right).

Figure 4. Surface SEM images of Ge irradiated with a Ga+ ion beam at room temperature (left).
The accelerating voltages used were 2, 5, 8, 16, and 30 kV at a scanning dose of 5 × 1018 ions/m2 per scan.
The total number of vacancies created on Ge was estimated using the ion dose (ions/m2) multiplied by the
vacancy count (/ion) as calculated by SRIM simulations, as a function of accelerating voltage (right).

Table 2. Sputtering yield (atoms/ion) calculated by SRIM simulations [37] in (a) GaSb, (b) InSb,
and (c) Ge.

(a) GaSb

Acc. Vol. (kV) 2 5 8 16 30

Total 3.553 4.939 5.671 6.367 6.928
III element 1.80 2.48 2.87 3.24 3.52
V element 1.75 2.46 2.80 3.13 3.41
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Table 2. Cont.

(b) InSb

Acc. Vol. (kV) 2 5 8 16 30

Total 4.142 5.822 6.660 7.975 8.537
III element 2.18 3.06 3.50 4.19 4.47
V element 1.96 2.77 3.16 3.78 4.07

(c) Ge

Acc. Vol. (kV) 2 5 8 16 30

Total 2.965 4.215 4.810 5.766 4.801

The nanoporous structure size is expected to decrease with the decreasing accelerating voltages.
However, the largest structure features were observed 16 kV irradiation (Figures 2–4). The reason for
this behavior is based on the density of the created point defects. As shown in Figure 2g,k, similar
GaSb structures were formed in spite of the different number of point defects present in both cases.
The ion beam conditions and number of point defects are compared for these samples in Table 3. The
accelerating voltage was 16 kV; compared to an accelerating voltage of 30 kV, the ion dose was 1.3
times higher and the number of point defects was 0.7 that of the latter voltage. The number of point
defects was low in the case of 16 kV irradiation, but large-scale structures were formed. To compare
the distribution of point defects in the depth direction, Figure 5 shows the vacancy distributions of
GaSb irradiated with a Ga ion beam as a function of distance from the surface (re-arranged from
Figure 1a). The accelerating voltages were (a) 16 kV and (b) 30 kV. The gray hatched regions are 18 nm
below the surface. The integrated number of vacancies at this depth was 1363 at 16 kV and 1034 at
30 kV. The number of point defects was estimated at this depth based on the ion dose (ions/m2) and
vacancies present (/ion). It is expected that these vacancies require the same formation features as the
nanoporous structures. The number of point defects required for nanoporous structure formation was
4 × 1022 vacancies/m2 at a depth of 18 nm from the surface in GaSb.

Figure 5. Vacancy distributions of GaSb irradiated with a Ga ion beam as a function of distance from
the surface, calculated using SRIM simulations [37] (re-arranged in Figure 1a). Accelerating voltages
were (a) 16 kV and (b) 30 kV. The gray hatched regions indicate the region 18 nm below the surface.

Table 3. Comparison of ion beam conditions and point defects calculated by SRIM simulations [37] on
similar structure formation of GaSb in Figure 2g,k.

Acc. Vol.
(kV) Scan Scan Dose

(ions/m2 scan)
Total Dose
(ions/m2)

Vacancy
(/ion)

Total Vacancy
(/m2)

Vacancy (/ion) under
18 nm from the Surface

Total Vacancy (/m2) under
18 nm from the Surface

16 8 5 × 1018 4 × 1019 1169 4.7 × 1022 1363 4.1 × 1022

30 6 5 × 1018 3 × 1019 2156 6.5 × 1022 1034 4.1 × 1022

These evaluated vacancy counts have been validated by previous experiments. In 800 kV Cu+ [41]
and 270 kV C60

2+ [42] fullerene ion beam irradiation, a vacancy count of 4 × 1022 vacancies/m2
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appeared at this same depth from the surface in GaSb. Nanoporous structures were also formed on the
surfaces in these conditions, despite the different ion species present. This indicates that, while the
ion beam conditions such as ion dose, accelerating voltage, and ion species differed, the number of
vacancies and their distribution was much more important. Controlled point defect creation is useful
for nanoporous structure formation using ion beam irradiation on GaSb, InSb, and Ge surfaces.

4. Conclusions

Ion beam irradiation with the same number of created point defects led to different types of
nanoporous structure formation on GaSb, InSb, and Ge surfaces. The depth direction density of the
point defect distribution was an important factor for nanoporous structure formation. The required
number of created point defects for nanoporous structure formation was 4 × 1022 vacancies/m2 at a
depth of 18 nm from the surface in the case of GaSb. Nanoporous structure formation by ion beam
irradiation on GaSb, InSb, and Ge surfaces can be controlled based on the number and distribution of
point defects, which can serve as an index for nanoporous structure formation in general.
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