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Abstract

Biological signaling processes may be mediated by complex networks in which network components and network sectors
interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of
individual components are considered in the context of the network. The plant immune signaling network, which controls
inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network
upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto
DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network
to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type
were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed
descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the
genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction
procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory
relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The
network model revealed two striking features: (i) the components of the network are highly interconnected; and (ii)
negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a
novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors
and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the
signaling sectors make the plant immune signaling network a ‘‘sector-switching’’ network, which effectively balances two
apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of
immune responses on plant fitness.
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Introduction

To understand the regulation of a particular biological process,

it is important to elucidate what structural features of the signaling

network regulating the process govern the behavior of the

signaling network as a whole [1,2]. With a complex signaling

network, in which components are highly interconnected, this is a

challenging task. One problem is that the function of a sector of

the network can be compensated by some other sector, and,

consequently, functional identification of these sectors by knocking

out each of the sectors is difficult. In this example of network

compensation, it is assumed that these network sectors are

functionally redundant but mechanistically distinct: they are not

composed of homologous molecular components. General strat-

egies to efficiently elucidate the structure of a complex signaling

network are in demand.

The plant immune signaling network, which regulates defense

triggered upon pathogen attack, is such a complex network. Two

modes of plant immunity, pattern- and effector-triggered immu-

nity (PTI and ETI) have been characterized in resistance against

biotrophic and hemi-biotrophic pathogens [3]. PTI is initiated by

recognition of a microbe-associated molecular pattern (MAMP) by

the corresponding pattern recognition receptor (PRR), which is

typically integrated in the plasma membrane. For example, a
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fragment of bacterial flagellin, flg22, is a MAMP, and is

recognized by the FLS2 receptor-like kinase PRR in Arabidopsis

[4]. Pathogens adapted to a particular plant host deliver effectors

which interfere with PTI [5]. Countering pathogen effectors,

plants have acquired another class of receptors, resistance (R)

proteins, that specifically recognize particular effectors, leading to

induction of ETI. For example, the Arabidopsis R protein RPS2

indirectly recognizes the Pseudomonas syringae effector AvrRpt2

[6,7].

Although the way pathogen attack is recognized is distinct

between PTI and ETI, they are not separate, but rather form an

integrated immune system. The intimate relationships between

PTI and ETI have been suggested by the facts that many

downstream events are shared. For example, in Arabidopsis, MAP

kinases 3 and 6 are rapidly and transiently activated in PTI and

activated for an extended period in ETI [8]. Reactive oxygen

species (ROS) production in PTI is absolutely dependent on the

NADPH oxidase RBOHD, and ROS production in ETI is largely

dependent on RBOHD [9,10]. The nitric oxide (NO) signaling

sector comprised of NO-associated 1 (NOA1) protein and NIA1

and NIA2 nitrate reductases is also involved in both PTI and ETI

[11,12]. Furthermore, similarities in the PTI and ETI transcrip-

tome responses have been pointed out [13].

The signaling sectors defined by the phytohormones, salicylic

acid (SA), jasmonic acid (JA), and ethylene (ET), are important in

plant immunity: generally the SA sector for immunity against

biotrophic and hemi-biotrophic pathogens and the JA and ET

sectors for immunity against necrotrophic pathogens [14,15,16].

The iso-chorismate synthase SID2 (ICS1) [17] and the MATE-

type transporter EDS5 [18] are required for SA synthesis in

response to pathogen attack. NPR1 [19] is a major positive

regulator of SA responses. The regulators EDS1 and PAD4 are

important for SA accumulation as well as SA-independent

signaling functions [20,21,22]. The JA sector contains the JAR1

enzyme that produces the JA-Ile conjugate, which is the active

form of JA [23], the F-box protein COI1, which responds to JA-Ile

by targeting the JAZ transcription repressors for degradation [24],

and the JIN1 Myc transcription activator [25]. The metal-ion

transporter EIN2 is required for most ET responses [26], and the

EIN3 transcription activator positively regulates some ET

responses [27]. Other phytohormones, such as abscisic acid,

auxin, brassinosteroids, and gibberellins, are also involved in plant

immune signaling [28]. Although the phytohormone levels change

during PTI and ETI, the specific effects of the phytohormone

sectors in PTI and ETI had been considered to be limited or

unclear [3,29,30].

Recently, we demonstrated that both flg22-triggered PTI (flg22-

PTI) and AvrRpt2-triggered ETI (AvrRpt2-ETI) are mostly

dependent on the signaling network defined by the SA, JA, ET

and PAD4 sectors [31]. Therefore, the signaling machinery is

extensively shared between flg22-PTI and AvrRpt2-ETI. A main

difference between PTI and ETI appears to reside in how the

sectors in the common network interact one another. If this is true,

then to further our understanding of the integrated plant immune

signaling network, it is important to elucidate the global regulatory

relationships among the network components.

One major use of mRNA profiles is as detailed descriptions of

biological states, because an mRNA profile data set is a massive

phenotypic data set. This use was pioneered by the ‘‘compendi-

um’’ approach, in which mutations and chemicals that cause

similar changes in mRNA profiles are hypothesized to be involved

in the same biological processes [32]. In our earlier studies, we

implemented non-linear dimensionality reduction [33] in combi-

nation with graphical representation to reveal multi-dimensional

relationships with locally variable dimensionalities among the

mRNA profiles [34,35,36]. In this way, information about the

nature of similarities between mRNA profiles was obtained in

addition to the scalar similarities, and novel relationships among

Arabidopsis mutants and accessions were discovered.

Here, we report an integrated regulatory relationship model

comprised of 22 components including most of the genetically-

defined major regulators of immunity in Arabidopsis. The network

structure was inferred based on mRNA profiles for 571 immune

response genes of Arabidopsis mutants with defects in immune

regulatory genes. The mRNA profiles were collected at a single

time point six hours post inoculation (hpi) with the bacterial strain

P. syringae pv. tomato DC3000 expressing the effector AvrRpt2 (Pto

DC3000 AvrRpt2). This strain feeds multiple inputs to the

network. The regulatory relationships were inferred by recursively

applying a non-linear dimensionality reduction procedure, which

allowed detection of many weak relationships. The model

correctly predicted 23 out of 25 previously known relationships,

suggesting the accuracy of newly predicted relationships. Two

features of the network model were readily evident: the network

components were highly interconnected; and negative regulatory

relationships between signaling sectors were very common. We

confirmed the latter point in one case by demonstrating a mutual

inhibition between the SA and early MAMP-triggered (EMT)

signaling sectors. Based on the prevalent negative regulatory

relationships, we propose ‘‘sector-switching’’ as an important

property of the plant immune signaling network.

Results

The procedure for inferring the regulatory relationships
among components of the Arabidopsis immune
signaling network

mRNA profiling. mRNA profiling was used to collect

detailed descriptions of the network state, and the changes in the

network state were determined by comparing the mutant mRNA

profiles with the wild-type mRNA profile. One advantage of this

approach is that regulatory mechanisms defined by the mutations

Author Summary

When a plant detects pathogen attack, this information is
conveyed through a molecular signaling network to turn
on a large variety of immune responses. We investigated
how this plant immune signaling network was organized
using the model plant Arabidopsis. Wild type and mutant
plants with defects in immune signaling were challenged
with a pathogen. Then, expression levels of many genes
were measured using microarrays. Detailed analysis of the
mutation effects on gene expression allowed us to build a
signaling network model composed of the genes corre-
sponding to the mutations. This model predicted that the
network components are highly interconnected and that it
is very common for network components that mediate
different signaling events to inhibit each other. The
prevalent signaling inhibitions in the network suggest
that only part of the signaling network is usually used but
that if this part is attacked by pathogens, other parts kick
in and back up the function of the attacked part. We
speculate that plant immune signaling is highly tolerant to
pathogen attack due to this backup mechanism. We also
speculate use of only part of the network at any one time
helps minimize negative impacts of the immune response
on plant fitness.

The Plant Immune Signaling Network
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do not have to be regulated at the mRNA level. For example, a

biological process that is regulated by the activity of a protein

kinase can be studied using the mRNA profile of the protein kinase

mutant even when the mRNA level of the protein kinase is not

regulated in this process. This is because the mRNA levels of

particular genes were not used as proxies for the activities of the

gene products, instead, the mRNA profile changes in a mutant

plant compared with the wild-type plant were used as the effects

caused by the mutation. Another advantage is that the number of

genes in the profiles need not be very high: the genes to be profiled

only need to cover (almost) all the expression patterns across the

mutants used in the study. We previously reported a dedicated

custom microarray that accurately monitors the mRNA levels of

571 Arabidopsis genes, which represent mRNA profile patterns

across many conditions related to pathogen infections [37]. Use of

this small-scale microarray made this project economical even

though we used three biological replicates for profiling.

Inputs to the network. We collected mRNA profiles of the

mutants and the wild type Columbia-0 (Col-0) from leaf tissues

after inoculation of Pto DC3000 AvrRpt2. The inoculation dose

was sufficiently high for most parenchymal cells to have direct

contact with the bacteria. As parenchymal cells are predominant

in leaf tissues, this biological system is relatively homogenous at the

cellular level. The bacterial strain can stimulate multiple signaling

pathways: AvrRpt2 triggers RPS2-mediated ETI, which involves

SA-mediated signaling and ROS and NO bursts [9,38,39,40]; the

phytotoxin coronatine produced by the strain mimics JA-Ile and

activates JA-mediated signaling [41]; MAMPs, such as flg22,

trigger PTI, whose early responses include MAP kinase 3 and 6

(MPK3/6) activation, ROS and ET bursts, and callose deposition

[42,43,44,45]. Thus, this strain feeds inputs into the network from

multiple different points, which allows us to probe a large part of

the network at once.

Perturbations of the network by mutations. Arabidopsis

mutants with defects in canonical immune signaling components

were used to specifically perturb various points in the signaling

network. Table 1 lists the Arabidopsis mutants used in this study,

the functions of the corresponding genes, and their signaling sector

assignments.

Time point. A single time point of six hpi was chosen for

cost-effectiveness. The time point was determined based on our

previous observations [46]: the number of genes with expression

changes was much higher at 6 hpi than 3 hpi; and while the

profile at 9 hpi was similar to that at 6 hpi, we reasoned that the

earlier profile may contain more relatively early effects of the

genetic perturbations.

Network inference. The principle used in network inference

is that genes whose mutations cause similar effects on mRNA

profiles share regulatory relationships: one regulates the other,

both similarly regulate the mRNA levels of the same genes, both

are regulated by the same regulator, or the relationships are a

combination of these. Such regulatory relationships were

visualized by links between the vertices corresponding to the

mutant genes in a graphical representation of the network: a

positive link when the direction of observed mRNA level changes

was the same and a negative link when the direction was opposite.

Table 1. Arabidopsis mutants used in this study.

Mutant
name Locus Short description

Assigned signaling
sectora Reference

noa1-1 At3g47450 NOA1 (NO Associated 1); GTPase/nitric-oxide synthase NO [71]

AtrbohD At5g47910 RBOHD (Respiratory Burst Oxidase Homologue D); NAD(P)H oxidase ROS, EMT [72]

AtrbohF At1g64060 RBOHF (Respiratory Burst Oxidase Homologue F); NAD(P)H oxidase ROS [72]

coi1-1 At2g39940 COI1 (COronatine Insensitive 1); ubiquitin-protein ligase JA [73]

dde2-2 At5g42650 DDE2 (Delayed DEhiscence 2)/AOS (Allene Oxide Synthase); allene oxide synthase JA [74]

ein2-1 At5g03280 EIN2 (Ethylene INsensitive 2); transporter ET, EMT [26]

ein3-1 At3g20770 EIN3 (Ethylene INsensitive 3); transcription factor ET, EMT [27]

jar1-1 At2g46370 JAR1 (JAsmonate Resistant 1); jasmonate-amino synthetase; a member of the GH3 family JA [23]

jin1-1 At1g32640 JIN1 (Jasmonate INsensitive 1); MYC2; transcription factor JA [25]

mpk3 At3g45640 ATMPK3 (Arabidopsis Thaliana Mitogen-Activated Protein Kinase 3); MAP kinase MPK3/6, EMT [75]

mpk6-2 At2g43790 ATMPK6 (Arabidopsis Thaliana Mitogen-Activated Protein Kinase 6); MAP kinase MPK3/6, EMT [76]

nho1-2 At1g80460 NHO1 (Nonhost resistance to P. s. phaseolicola 1); glycerol kinase Misc. [77]

nia2 At1g37130 NIA2 (NItrate reductase Apoprotein2); nitrate reductase NO [78]

ndr1-1 At3g20600 NDR1 (Non race-specific Disease Resistance 1); a plasmamembrane protein R gene [79]

npr1-1 At1g64280 NPR1 (Nonexpresser of PR genes 1); transcription cofactor SA [19]

pad4-1 At3g52430 PAD4 (PhytoAlexin Deficient 4); lipase-like SA [21]

pbs2-1 At5g51700 PBS2 (PphB Susceptible 2); a protein with two zinc binding (CHORD) domains R gene [80,81]

pen2-1 At2g44490 PEN2 (PENetration 2); hydrolase, hydrolyzing O-glycosyl compounds/thioglucosidase Misc. [82]

pmr4-1 At4g03550 PMR4 (Powdery Mildew Resistant 4); GLUCAN SYNTHASE-LIKE 5; 1,3-beta-glucan synthase Callose, EMT [52]

rps2-101C At4g26090 RPS2 (Resistance to P. Syringae 2); a NB-ARC protein R gene [83,84]

sag101-2 At5g14930 SAG101 (Senescence-Associated Gene 101); lipase-like Misc. [85]

sid2-2 At1g74710 SID2 (SALICYLIC ACID INDUCTION DEFICIENT 2); isochorismate synthase 1 (ICS1) SA [17]

aThey indicate signaling sectors mediating signals of Callose, callose deposition; ET, ethylene; JA, jasmonic acid; MPK3/6, MAP kinases 3/6; Misc., miscellaneous function;
NO, nitric oxide; R gene, resistance gene; ROS, reactive oxygen species; SA, salicylic acid; EMT, early MAMP-triggered.

doi:10.1371/journal.ppat.1001011.t001
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The mRNA profiles were collected in multiple experiment

groups and combined into a single data set using mixed linear

models (MATERIALS AND METHODS, Table S1). The overall

experimental design regarding the experiment group was not

symmetric, and the overlapping genotypes in any particular

combination of experiment groups were limited. These features

may have introduced some biases in the data set. To compare

mutation effects, log2-transformed expression values of genes in

the wild type mRNA profile were subtracted from log2-

transformed expression values of genes in each mutant mRNA

profile, and the obtained log-transformed mRNA profile change

was scaled across the genes, but not centered, to preserve the signs

of the values (which is called a difference profile hereafter). Linear

dimensionality reduction was applied locally (Locally Linear

Embedding, LLE; [33]), so that the same types of mRNA profile

changes do not make redundant links. Although the above

procedure is in principle the same as used in our previous studies

[34,35,36], we implemented an additional concept in the current

study. In the previous procedure, mutant difference profiles that

are local to a particular mutant difference profile are defined based

on the global distance in the difference profile space. However,

mutants that have a weak regulatory relationship, such as one

corresponding to weak cross-talk, may not be detected as their

difference profiles may not be located closely in the global space.

In the new procedure, named Repetitive Euclidean-distance

Locally linear Embedded Graph Generator (RepEdLEGG), the

residual from the first round of LLE was subjected to another

round of LLE. This recursive application of LLE enabled

detection of such weak regulatory relationships (Figure S1). The

overall workflow of the network inference procedure is summa-

rized in Figure 1.

Evaluation of the immune signaling network model
using previous information

With the above procedure, we obtained a regulatory relation-

ship model for 22 genes corresponding to the mutations with 67

undirected links, which we refer to as our network model (Figure 2).

Our network model has a form of an undirected graph since a

single time-point data set does not allow inference of the direction

of relationships without an additional assumption. Forty-eight and

19 links represented positive and negative regulatory relationships,

respectively (Figure 2A and 2B, Figure S2, Table S2). To evaluate

the accuracy of the predicted regulatory relationships, the

published literature was surveyed for supporting experimental

data (Table S3). Twenty-five pairwise regulatory relationships

between genes used in this study, that included information about

the sign of the relationships, were found in published literature.

Our network model correctly predicted 23 out of the 25 known

regulatory relationships. One of the relationships not correctly

inferred was the JIN1-MPK6 relationship: MPK6 was described as

a negative regulator of JIN1 [47] whereas our model predicts a

positive relationship between them. The other was that the model

did not predict a direct relationship corresponding to negative

regulation of SID2 by EIN3, described in Chen et al. [48].

However, when JAR1, which was connected positively and

negatively with EIN3 and SID2, respectively, was removed from

the input data set, the negative regulatory relationship between

EIN3 and SID2 was inferred (Table S4). Under our experimental

conditions, JA signaling could be strong due to coronatine and

may have masked the effect of EIN3, which mediates ET

signaling. Note that the known links were established with data

from diverse experiments conducted using various Arabidopsis-

pathogen interactions, performed by many different research

groups. While such studies helped us to select useful mutants for

our study, our network model was built based solely on mRNA

profile data collected using a single experimental setup with a

single time point. This fact demonstrates the richness of

information in descriptions of the network state consisting of

mRNA profiles and the high efficiency of network inference using

mRNA profiles as detailed descriptions of network states. The high

accuracy in prediction of previously known regulatory relation-

ships suggests the accuracy of newly predicted regulatory

relationships.

The specificities of links can also be examined by removing

the data for one mutant from the data set. For instance, a

positive link between EIN3 and MPK6 was predicted in the

model. This is consistent with the observation in Yoo et al. [49]

that EIN3 is phosphorylated and activated by MPK6. The

direction of this regulatory relationship is from MPK6 to EIN3

but not from EIN3 in the ET sector to MPK6 [49]: in other

words, this link is specific to EIN3 but not for the ET sector in

general. Therefore, a link between EIN2 in the ET sector and

MPK6 should not be made if EIN3 is removed from the model

(i.e., if the model is made using the data set with the ein3

difference profile removed). In the resulting model with EIN3

removed, the link between MPK6 and the other ET signaling

component EIN2 was not generated (Figure S3A and A9, Table

S5). Thus, the specificity of the biochemical regulation was

captured in our network model.

Figure 1. The workflow for network inference.
doi:10.1371/journal.ppat.1001011.g001
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It should be noted that each link may not represent a simple

logical relationship. For example, the link between vertices A and

B may represent expression changes in one subset of genes profiled

and the link between vertices B and C may represent expression

changes in a different subset of genes profiled. Therefore, among

three vertices a circular link of positive, positive, and negative (e.g.,

links among MPK3, MPK6, and NHO1) does not necessarily

present logical conflicts.

Figure 2. The network model for the genes corresponding to the mutations. The difference profiles of the 22 Arabidopsis mutants at 6 hpi
of Pto DC3000 AvrRpt2 were analyzed by RepEdLEGG to obtain this network model. Positive (A), negative (B), and both (C) regulatory relationships
are graphically represented. See the color codes of the coefficients associated with the links in (C). The color codes for the vertices at the bottom of
the figure show the signaling sector assignments for the genes corresponding to the mutations. The links represent the regulatory relationships
between the genes. The color codes for the links show the coefficient values obtained in the RepEdLEGG procedure (x). A larger absolute value of x
represents a stronger regulatory relationship.
doi:10.1371/journal.ppat.1001011.g002

The Plant Immune Signaling Network
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Characteristics of predicted positive regulatory
relationships

As expected, genes assigned to the same signaling sectors were

predicted to have positive regulatory relationships except for the

ROS sector (Figure 2A). Although RBOHD and RBOHF, the two

respiratory burst oxidase homologues, were assigned to the ROS

sector, it is known that single rbohD and rbohF mutants have

different pathogen-responsive ROS accumulation and HR cell

death phenotypes [9,10]. Consistently, difference profiles of the

two mutants were uncorrelated (uncentered Pearson correlation

coefficient between the expression changes from wild type: 0.043).

Thus, it is reasonable that no positive link was predicted between

the two RBOH genes.

Positive regulatory relationships between signaling sectors were

also predicted. Among them, positive regulatory relationships

between the NO and SA sectors were of particular interest. In our

network model, NOA1 had links with NPR1 and PAD4. Indeed,

the noa1 difference profile had higher correlation with the pad4 and

npr1 difference profiles than the nia2 difference profile (uncentered

Pearson correlation coefficients of 0.876, 0.831, and 0.714 with the

pad4, npr1, and nia2 difference profiles, respectively). In the model

made without NOA1, NIA2 replaced NOA1 in the links with the

two SA sector components, PAD4 and NPR1 (Figure S3B and B9,

Table S6). Therefore, the positive regulatory relationships between

NOA1 and the SA sector components are not specific to NOA1,

but they indicate positive regulatory relationships between the NO

and SA sectors in general. On the other hand, the fact that the

predicted regulatory relationships between NOA1 and the SA

sector are stronger than those between NIA2 and the SA sector is

consistent with the observation that NOA1, not NIA1/NIA2, is

responsible for SA-induced NO accumulation [50].

Characteristics of predicted negative regulatory
relationships

Negative regulatory relationships are very common between

signaling sectors in our network model while negative regulatory

relationships within each signaling sector are absent. The NO

sector was an exception as it does not have any negative links with

other sectors. The JA sector had negative relationships with most

of the other signaling sectors tested. The SA sector was negatively

linked with PMR4, MPK3/6, and the ET and JA sectors.

Prevalent negative regulatory relationships between sectors

strongly suggest that a limited number of signaling sectors are

highly activated at a given time as the active sectors suppress the

other sectors.

Regulatory relationships between the EMT and the SA
sectors

Both the EMT and the SA sectors positively contribute to

defense against the virulent strain Pto DC3000 [43,45,51].

Figure 3A illustrates a subnetwork of our network model featuring

the EMT and SA sectors. We consider that RBOHD, PMR4,

MPK3/6, and the ET sector comprise the EMT sectors because

RBOHD-dependent ROS production [10], PMR4-dependent

callose deposition [52], MPK3/6 activation [43], and ET

accumulation [44] are early MAMP responses. Note that although

we designate them as the EMT sectors, RBOHD-dependent ROS

production and MPK3/6 activation also occur for extended

periods during ETI [8,9]. We previously reported that MAMPs

can trigger accumulation of SA and thereby activate SA signaling

[30], i.e., the EMT sectors positively regulate the SA sector.

However, our network model contains negative links as well as

positive ones between the sectors, suggesting that the regulatory

relationships between the sectors can be positive or negative,

depending on the context. In the following sections, we closely

investigate this subnetwork of the EMT and SA sectors.

The callose synthase PMR4 and the SA sector mutually
inhibit each other

Callose deposition is a cell wall-based defense following

recognition of pathogens [53]. PMR4 is the callose synthase

responsible for callose deposition upon infection with pathogens or

treatment with elicitors [52,53,54]. Our model predicted a

negative relationship between PMR4 and SID2 (Figure 3A). It

was previously reported that SA-mediated signaling is up-

regulated in pmr4-1 plants [52], i.e., PMR4 negatively regulates

the SA sector, which can explain the predicted negative regulatory

relationship between PMR4 and SID2. Can SA signaling also

affect callose deposition? We quantified callose deposition in the

SA sector mutants, npr1-1 and sid2-2, after flg22 treatment

according to the method described in Denoux et al. [55]. Together

with the SA sector mutants, pbs2-1 (a mutant with a RAR1

deletion) was included as a mutant with potentially enhanced

callose deposition. RAR1 has a negative link with PMR4 in our

network model, and different RAR1 alleles rar1-20 and rar1-29

were reported to have enhanced callose deposition phenotypes

[56]. The callose deposition level in cotyledons of 10 day-old

seedlings grown in liquid culture was measured at 6 and 16 hours

post treatment (hpt) with 1mM flg22 (Figure 3B). Consistent with a

previous report [45], no significant difference in the flg22-triggered

callose deposition level was observed at 16 hpt between Col-0 wild

type and the SA sector mutants. However, the callose deposition

levels at 6 hpt in the SA sector mutants were significantly higher

than in Col-0. At 6 hpt, the callose deposition level in Col-0 was

not significantly different from the flg22-receptor mutant fls2C, so

the Col-0 level was the background noise level. These results

indicate that flg22-triggered callose deposition is enhanced in the

SA sector mutants at an early time point: the SA sector negatively

regulates the PMR4 sector. Thus, negative regulatory relationships

between PMR4 and the SA sector are mutual.

There is also a positive relationship between PMR4 and NPR1.

It has been reported that pretreatment with SA can compensate

loss of the flg22-triggered callose deposition caused by a pen2

mutation [45]. The positive PMR4-NPR1 link may correspond to

this SA-enhanced callose deposition in pen2 plants. Such context-

dependent regulatory relationships involving PMR4 were antici-

pated as PMR4 has a higher number of links compared with other

genes in our network model.

The SA sector positively regulates RBOHD-dependent
ROS production

ROS production minutes after treatment with flg22 is one of the

very early MAMP-triggered responses. RBOHD is required for

flg22-triggered ROS production [10]. A positive regulatory

relationship between the SA sector and ROS production was

predicted as RBOHD has a positive link with NPR1 in our

network model (Figure 3A). We tested whether pretreatment with

SA and/or a mutation in NPR1 affect flg22-triggered ROS

production. Pretreatment of plant tissues with SA rather than co-

treatment with SA and flg22 was chosen since flg22-triggered

ROS production starts within a few minutes after addition of flg22.

Col-0 and npr1-1 were pretreated with 5mM SA or water for

3 hours before they were treated with 1mM flg22 or water.

Pretreatment with SA enhanced ROS production in Col-0 wild

type during the period between 3 and 12 minutes after treatment

with flg22 (Table S7). This enhanced ROS production was
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Figure 3. Complex regulatory relationships involving the EMT and SA sectors. (A) A subnetwork of Figure 2C that contains the EMT and SA
sectors. (B) flg22-triggered callose deposition was enhanced in SA sector mutants at an early stage. The callose deposition density was measured in
wild-type Col-0 and fls2C, npr1-1, pbs2-1, and sid2-2 mutants at 6 hpt with 1 mM flg22. Ten-day old seedlings in liquid culture were used in this assay.
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abolished in npr1-1, which indicates that SA positively regulates

ROS production in an NPR1-dependent manner. This observa-

tion is consistent with the model prediction of an NPR1-RBOHD

positive regulatory relationship (Figure 2A).

The EMT and the SA sectors negatively regulate each
other in transcriptional activation of marker genes

To further examine regulatory relationships between the EMT

and the SA sectors, effects of SA and flg22 on the EMT and SA

sectors, respectively, were examined using the mRNA level of a

marker gene as a proxy for activity of each sector. Wild-type

seedlings grown in liquid culture were treated with flg22 and/or

SA. The mRNA levels of a putative chitinase (At3g43620) [30]

and the PR-1 (At2g14610) genes were quantified for the EMT and

SA sector activities, respectively (Figure 4). Induction of SA

accumulation by flg22 was not significant at 3 hpt [30]. We

measured the marker gene mRNA levels up to 3 hpt, so SA

accumulation caused by flg22 treatment was negligible. Treatment

with 500 or 5 mM SA induced PR-1 mRNA accumulation by

3 hpt. An inhibitory effect of 1 mM flg22 on PR-1 mRNA

induction was observed with 5 mM SA at 3 hpt but not with

500 mM SA. An inhibitory effect of 500 mM but not 5 mM SA on

induction of the chitinase mRNA accumulation by 1 mM flg22 was

observed at 3 hpt. Significant inhibitory effects of 1 mM flg22 and

500 or 5mM SA were not observed 1 or 2 hpt (Figure S4). Thus,

the EMT and SA sectors have mutual inhibitory effects in a dose-

dependent manner.

Discussion

Use of mRNA profiles as detailed descriptions of network
states

We used mRNA profiles of mutant plants for inference of

regulatory relationships among the genes corresponding to the

mutations. This use of mRNA profiles was pioneered by the

‘‘compendium’’ approach [32], and further developed, for

example, to the ‘‘connectivity map’’ approach [57]. However,

these approaches focused on the most prominent similarities in the

global space and did not intend to dissect combinations of

similarities to reveal multi-dimensional similarity relationships

among mRNA profiles. In our earlier work, we combined the LLE

algorithm [33] and graphical representation to visualize differ-

ences among similarities in mRNA profiles of Arabidopsis mutants

with variable local dimensionalities to reveal different mechanisms

used in plant immunity [34]. However, the analysis in our earlier

work was limited to the local space defined by the global distance.

In the current study we used RepEdLEGG, in which LLE was

recursively applied to the residual of the first round of LLE. This

approach enabled us to detect weak regulatory relationships and to

reveal a highly interconnected network structure.

A limitation of using mRNA profiles as descriptions of the

network state is that the resolution of the network is determined by

the number of network states measured – e.g., in our study, the

number of Arabidopsis mutants profiled. It should be noted that in

our network model, when the genes corresponding to the

mutations were linked, the link means that the genes or some

other network components near the genes in the actual signaling

network have regulatory relationships.

On the other hand, an advantage of this approach is that the

regulatory mode of the gene defined by a mutation does not have

to be transcriptional although mRNA profiles are used for network

*, p,0.05; **, p,0.005, compared to the Col-0 value. (C) flg22-triggered ROS generation was enhanced by SA pre-treatment in an NPR1-dependent
manner. ROS generation after treatment with either 1 mM flg22 (red, black) or mock (pink, blue) was measured in arbitrary luminescence units in wild-
type Col-0 (left) and npr1-1 (right) over time. Leaf disks prepared from 6-week old plants were pretreated with 5 mM SA (red, pink) or mock (black,
blue) 3 hours prior to flg22 treatment. The solid and dashed curves indicate the mean estimates and the 95% confidence intervals, respectively.
doi:10.1371/journal.ppat.1001011.g003

Figure 4. Mutual inhibition between the EMT and SA sectors.
The mRNA levels of the PR-1 and putative chitinase (At2g43620) genes
were measured by qRT-PCR and used as proxies for the SA and EMT
sector activities, respectively. The Actin 2 mRNA level was used to
normalize the mRNA measurements. Ten-day old seedlings were
treated with indicated concentrations of SA and/or flg22 and harvested
for mRNA measurements at the indicated times. *, p,0.05 for the
indicated comparisons.
doi:10.1371/journal.ppat.1001011.g004
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inference. For example, we detected the regulatory relationship in

the MPK6-EIN3 link even though MPK6 does not affect EIN3

expression, but rather its phosphorylation. Because the plant

immune signaling network contains many major non-transcrip-

tional regulatory components [9,24,43,58], this advantage of the

approach was essential for us to obtain a global network model

using a single methodology.

Using the predicted relationships between the EMT and SA

sectors as examples, we have demonstrated that the resulting

undirected regulatory relationships are highly informative in

generation of hypotheses to guide intensive studies in focused

parts of the network. We built this highly informative model in a

cost-effective manner: mRNA profiling using a small-scale array at

a single time point under a single experimental condition.

Therefore, applications of this approach should be beneficial in

studies of complex signaling networks in any genetically tractable

organisms.

Complex regulatory relationships among the network components

strongly suggest that many relationships are dependent on context,

such as the quantities and the states of other network components. To

deepen our understanding of the signaling network, it will be

important to elucidate the dynamic relationships among the network

components. As the cost of mRNA profiling is rapidly decreasing, it

will soon be practical to collect mRNA profiles of wild-type and many

mutant plants at many time points. Such time-series mRNA profile

data will enable extension of our network model to include

information about network dynamics.

Furthermore, cost reduction in mRNA profiling will improve

applications of the approach used in this study. First, it could allow

a symmetric and highly-overlapping experiment group design,

which would reduce potential biases in the data set. Second, it

could allow inclusion of mRNA profiles from uninfected plants of

all the genotypes. Inclusion of such profiles would enable

separating the genotype effect and the genotype:infection

interaction for each profiled gene, which we cannot do with the

current data set that only includes infected plants. However,

expression level information from many genes is combined as the

network state description in our approach. Different genes have

different ratios between the genotype effect and the genotype:in-

fection interaction. A data set that includes information from such

genes allows incorporation of information about the genotype

effect and the genotype:infection interaction in the network

inference. This may have contributed to the success of our

approach in the absence of mRNA profiles from uninfected plants.

Third, cost reduction could allow profiling of many more genes. If

many more genes are profiled, some aspects of the network states

that evaded detection in mRNA profiles of a limited number of

genes (571 genes in this study) may be detected, which could lead

to discovery of additional weak regulatory relationships among the

network components.

Detection of weak regulatory relationships by
RepEdLEGG

Implementation of RepEdLEGG was a key to building the

highly interconnected network model. Thirty-two out of 67 links

predicted were obtained in the second round of LLE using the

residuals from the first round of LLE as the response. Eight out of

the 32 links found in the second round were supported by previous

evidence. These links found in the second round connect vertices

whose global distances are not particularly small and represent

weak regulatory relationships. The validities of many links found

in the second round of LLE indicate that common multivariate

analysis methods that depend solely on the global distance are not

ideal for inference of a highly interconnected network.

Among existing methods, partial correlation is a method that

can detect weak regulatory relationships [59], like RepEdLEGG.

The partial correlation between vertices X and Y is defined, when

all the other vertices are Z1, …, Zn, as the correlation between the

residual of the linear regression of X with Z1, …, Zn and the

residual of the linear regression of Y with Z1, …, Zn. When the

results of RepEdLEGG and the partial correlation were compared

using the data set used in this study (q,0.01), 51 links were

predicted in common (Figure S5). There were 16 and 5 links

unique to RepEdLEGG and the partial correlation, respectively.

Whereas 7 out of the 16 links uniquely predicted by RepEdLEGG

had supporting literature evidence, none of the links unique to the

partial correlation did. This result suggests a higher accuracy of

inference by RepEdLEGG than by partial correlation. We

speculate that the difference between the two methods resulted

from a difference in the size of the space that is considered linear

for each vertex. While RepEdLEGG constrains the linear space to

that delimited by the neighboring vertices found in the first and

second rounds of LLE, partial correlation assumes that the entire

global space is linear. Although RepEdLEGG is hampered by the

arbitrariness in determining the size of the linear space (i.e.,

determining the number of neighbor vertices), the superior

performance of RepEdLEGG over the partial correlation suggests

that constraining the size of the linear space is important in

modeling of a complex regulatory network.

Mutual inhibition between the EMT and SA sectors
Guided by our network model, we have demonstrated that the

EMT and SA sectors can antagonize each other. Such mutual

inhibition is not intuitive since both sectors positively contribute to

resistance against Pto DC3000 [30,45]. In addition, it appears to

contradict our previous report that MAMPs trigger SA accumu-

lation [30], which is equivalent to positive regulation of the SA

sector by the EMT sectors. It should be noted that two important

aspects, kinetic and quantitative effects, are overlooked in these

simplified arguments. The induction of SA accumulation by flg22

clearly takes longer than 3 hpt [30] while the mutual inhibition

between the EMT and the SA sectors was evident at 3 hpt

(Figure 4). In addition, we observed dose dependence in the

mutual inhibition: inhibition of the SA sector by flg22 was effective

only when SA signaling was weak while inhibition of the EMT

sectors by SA was effective only when SA signaling was strong

(Figure 4). We think that such kinetic and quantitative effects play

important roles in coordinating positive and negative regulatory

relationships between these sectors.

The plant immune system must be robust against various

perturbations caused by pathogens, which typically evolve much

faster than plants. At the same time, not only are immune

responses energy-expensive [60] but at least some are also

detrimental to the plant fitness [61,62,63]. Therefore, ideally

immune responses should be contained at the minimally necessary

level. We speculate that to balance these apparently conflicting

selection pressures, the EMT and SA sectors adjust the level of

immune responses according to demand through the positive and

negative regulatory relationships between them (Figure 5). When

the plant is attacked by a pathogen, the EMT sectors are activated

based on recognition of MAMPs. While the activation of the EMT

sectors starts the activation of the SA sector with a delay, the SA

sector does not become highly activated due to suppression by the

strongly-activated EMT sectors. This is probably because

detrimental effects of defense components controlled by the

EMT sectors are less severe than those of the SA sector: if defense

components controlled by the SA sector are not necessary, it is

better not to activate them. The delay in activation of the SA
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sector by the EMT sectors is important in buying time for

evaluation of the effect of the EMT sector-mediated defense.

However, if the pathogen is to some extent adapted to the plant

host and its effectors interfere with the EMT sectors, the resulting

weakened activity of the EMT sectors could release the SA sector

from suppression. In fact, several P. syringae effectors, such as

HopAI1 [10], target components of the EMT sectors. Using the

SA sector-controlled defense components against more virulent

pathogens is reasonable, as the SA sector-controlled defenses are

known to be potent in defense against biotrophic and hemi-

biotrophic pathogens [39]. Thus, an elaborate combination of

positive and negative regulatory relationships between the EMT

and the SA sectors may enable shifting the balance between the

EMT sectors for defense against less virulent pathogens to keep

negative impacts of the immune response on plant fitness low and

to reserve the SA sector for defense against more virulent

biotrophic and hemi-biotrophic pathogens.

The plant immune signaling network appears to have a
sector-switching property

In our network model there are many inter-sector regulatory

relationships. Such a high connectivity suggests a democratic

network, in which each component of the network has a relatively

small contribution to the function of the network and the level of

contribution from each component is similar. We recently

demonstrated that the AvrRpt2-ETI is robust against network

perturbations because of positive contributions from each sector to

immunity and compensatory interactions among them [31]. So,

the network for AvrRpt2-ETI signaling appeared to be demo-

cratic. However, our current study showed that negative

regulatory relationships are very common between different

signaling sectors, such as between the EMT and the SA sectors.

We speculate that the EMT and SA sectors are not exactly

democratic: one of them is more active under a particular

condition, and the other is suppressed by the active one; if the

active sector is inhibited, the other sector gets activated to

compensate. So, the apparent redundancy in immune signaling

does not result from simple functional redundancy but from

switching between the sectors. The prevalence of inter-sector

negative regulatory relationships suggests that such sector-

switching is common at the whole network level, not just between

the EMT and SA sectors. In fact, an antagonistic relationship

between the SA and JA sectors is well documented [64]. We

propose to call this property of the signaling network ‘‘sector-

switching’’. If robustness of the immune system against fast-

evolving pathogens had been the only driver in evolution, the

signaling network could have evolved to be a simple redundant,

democratic network. However, immune responses are generally

deleterious to the host, and they impose fitness costs when the

pressure from particular pathogens is not high [63]. Together with

the demand to minimize negative impacts of immune response, we

speculate that the signaling network has evolved to have a sector-

switching property, so that the activities of the signaling sectors are

switched in response to inputs to the network, such as inputs for

induction of PTI and ETI, and to external perturbations, such as

perturbations by pathogen effectors, to balance the performance

and the negative impacts of the integrated immune system.

Materials and Methods

Plants and bacteria
All Arabidopsis plants, wild type and mutants, used in the study

had the genetic background of accession Col-0. For mRNA

profiling and ROS production assays, plants were grown in a

controlled environment chamber at 22uC with 75% relative

humidity and a 12h/12h light/dark cycle. For the assays using

seedlings in liquid culture, seedlings were prepared essentially as

described in Denoux et al. [55] with the following modifications:

0.25g/L as the concentration of sucrose in the culture medium,

Figure 5. A hypothesis of sector switching. First, recognition of MAMPs leads to activation of the EMT sectors (A), which then activates the SA
sector (B) [30]. If pathogen effectors perturb the EMT sectors, the inhibition of the SA sector by the EMT sectors becomes negligible, and the SA sector
becomes highly activated, including signal amplification involving positive feedback [70], and deploys a potent defense response (C). If pathogen
effectors perturb the SA sector, the inhibition of the EMT sectors by the SA sector becomes negligible, and the EMT sectors become highly activated
and deploy a strong defense response (D). Note that the EMT sectors and the SA sector are not highly activated simultaneously.
doi:10.1371/journal.ppat.1001011.g005
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and the culture was incubated at 22uC. Pseudomonas syringae pv.

tomato DC3000 carrying pLAFR3-avrRpt2 (Pto DC3000 AvrRpt2)

[65] was used for inoculation of plants subjected to mRNA

profiling.

Treatments
Pto DC3000 AvrRpt2 was cultured in King’s B medium at room

temperature (,22uC) overnight and inocula were prepared at an

OD600 of 0.05 in water. Leaves were infiltrated using a needle-less

syringe as described in [66]. The flg22 peptide (QRLSTGSRIN-

SAKDDAAGLQIA) was synthesized by EzBiolab Inc. (IN, USA)

and was used at indicated concentrations. Sodium salicylate

(Fisher Scientific, PA, USA) was used to prepare SA solutions at 5

or 500 mM. For treatment of seedlings, plates were centrifuged at

500 rpm for 10 seconds to remove condensation 1 day before

treatment.

mRNA profiling
Twenty-two mutants were divided into five experiment groups,

and three biological replicates were made for each group, except

for one (group 00) with two biological replicates. The data

collection for the biological replicates was conducted at least one

week apart. Each experiment group consisted of Col-0 in addition

to seven mutants. Detailed information about grouping is provided

in Table S1. The eight plants were grown at the outside positions

of a 363 grid pattern in a 60660 pot, and an additional Col-0

plant, which was not used for data collection, was grown in the

center position of the grid pattern. The positions of the eight plants

in each pot were randomly assigned. Some mutants in these

experiments were irrelevant to this study and were excluded from

analyses following normalization of mRNA profiles. The 5th

experiment group (group 00) consisting of one or two mutants used

in each of three experiment groups (groups 01, 02, and 03) and

Col-0 was included to reduce potential bias associated with the

experiment groups, e.g., biases associated with particular dates

when experiments were conducted or particular combinations of

genotypes tested together.

Two fully-developed leaves of each 4 week-old plant were

inoculated with Pto DC3000 AvrRpt2. For each mRNA profile,

inoculated leaves were harvested from three plants of the same

genotype from three different pots at 6 hpi and pooled.

Procedures from target preparation to microarray data

collection were performed as described in Sato et al. [37].

Data preprocessing
Raw expression data were normalized using the stable gene-

based quantile normalization (SBQ) method [37]. For comparison

of profiles among different plant genotypes tested in different

experiment groups, it was necessary to compensate for potential

bias caused by separating genotypes to different groups. A 2-stage

mixed effect linear model was fitted to the data from each

experiment group separately:

Ygtr~1zRrzcgtr

cgtr~G :TgtzG :Rgrzegtr

where Y, G, T, R, c, and e are log2-transformed expression level

value, gene, genotype, replicate, residual of the 1st model, and

residual of the 2nd model. G and T are fixed effects, and R, c, and e
are random effects. The second model was fitted for each gene

separately.

Using the G:T values for the genotypes common between pairs

of the experiment groups, calibration values among the experi-

ment groups were calculated for each gene. The values in the

initial SBQ-normalized data set containing all the experiment

groups were corrected using the calibration values and were used

to fit another 2-stage model:

Ygter~1zTtzE=Rerzcgter

cgter~GgzG :TgtzG : E=Rð Þgerzegter

where Y, G, T, E, R, c, and e are log2-transformed expression level

value, gene, genotype, experiment group, replicate, residual of the

1st model, and residual of the 2nd model. G and T are fixed effects,

and E, R, c, and e are random effects. The second model was fitted

for each gene separately. The contrasts in the model were made to

obtain the difference value between each mutant and Col-0 in

each Tt + G:Tgt.

Network inference by RepEdLEGG
A data set with 480 genes each of which had at least one mutant

genotype with the significant log2-transformed ratio value (q,0.05)

were used to compare mRNA profiles of the genotypes (480

genes622 genotypes). The log2-transformed ratio values were not

centered but scaled across the genes for each genotype (difference

profiles). In this way, the order of the pairwise distances of the

genotype difference profiles is invariant when either the uncen-

tered Pearson correlation coefficient or the Euclidean distance is

used. EdLEGG was modified from LEGG [36] to use the

Euclidean distance instead of the uncentered Pearson correlation,

so that multiple regression can be used for the calculation. Briefly,

in a data set of n genes 6 m genotypes, the difference profile of

genotype i is denoted as a vector~xxi in an n-dimensional space. For

the vector of each genotype i, k closest neighboring genotype

vectors~yyj were identified using the uncentered Pearson correlation

coefficient. Pi is the set of such j (DPi D~k,1ƒkvm). The value k

defines the size of the local space. Then the following multiple

regression was fitted by minimizing the residual vector size D~eei D:

~xxi~
X
j[Pi

aij~yyjz~eei

In this first round of EdLEGG, the condition, Vaij§0, was applied

to allow only positive regulatory relationships for the identification

of major components illustrated in Figure S1B. k = 6 was used in

this study as this made some of aij for most i insignificant, which

suggests that each local space was sufficiently sampled.

In RepEdLEGG, each residual vector ~eei was subjected to a

second round of EdLEGG. For each ~eei, l closest neighboring

genotype vectors~yyj were identified using the absolute value of the

uncentered Pearson correlation coefficient. Qi is the set of such j

(DQi D~l,1ƒlvm{k). In this way, the genotype vectors that are

negatively correlated as well as positively correlated can be

identified as neighbors, which allows detection of both negative

and positive regulatory relationships. The following multiple

regression was fitted by minimizing the residual vector size D~cci D:

~eei~
X
j[Qi

bij~yyjz~cci

In this second round, the coefficients bij were allowed to take
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positive or negative values to include negative regulatory

relationships. l = 5 was used in this study as this made some of

bij for most i insignificant, which suggests that each local space was

sufficiently sampled. The p-value associated with each of the

coefficients aij and bij, obtained from multiple regression, was

corrected using the Benjamini-Hochberg False Discovery Rate

(FDR) [67] to obtain the q-value, and the neighboring genotype

vectors with coefficients significant for the indicated q-value

threshold, ~yyj , were identified for each genotype i

(j[Si,Si(Pi|Qi).

The output of RepEdLEGG was further evaluated using a

leave-one-out (LOO) cross-validation. In each case, the profile for

one of the 22 mutants was removed from the data set, and this

LOO data set was subjected to RepEdLEGG analysis. Links that

were found in at least 18 LOO cross-validation cases were

considered significant. Note that for a particular link, 20 LOO

data sets have both the genotypes flanking the link.

Then, all the LOO-filtered neighboring genotype vectors from

both rounds were subjected to multiple regression together to

obtain the final coefficients cij, which could be positive or negative,

and their associated p-values by minimizing the residual vector

size, D~ggi D:

~xxi~
X
j[Si

cij~yyjz~ggi

The obtained p-value was FDR-corrected to obtain the q-value.

When two significant coefficients were found for a single link (aij

and aji), the coefficient with the smaller q-value was selected.

In the model, the significant links between the mutant genotypes

are represented as the links between the genes corresponding to

the mutations. The links are color-coded in Figure 2 according to

their associated coefficient values.

Literature analysis
To collect experimentally validated regulatory relationships, a

systematic search of literature describing the 22 genes in our

network model was conducted. ‘‘LocusPublished.20091204.txt’’

in TAIR (ftp://ftp.arabidopsis.org/home/tair/User_Requests/

LocusPublished.20091204.txt) was used to map genes to literature.

A custom Perl script was used to parse information about each

gene of interest in the file to identify publications, each of which

was simultaneously mapped to any pair of the 22 genes, and to

generate hyperlinks to the PubMed records (http://www.ncbi.

nlm.nih.gov/pubmed/) for the identified publications. Next, the

contents of the identified publications were inspected for

appropriateness. This relatively unbiased procedure identified 22

known regulatory relationships. Three more known regulatory

relationships were added based on publications that were not

included in ‘‘LocusPublished.20091204.txt’’ but that we knew. To

our knowledge, these 25 relationships are the only relationships

known for the 22 genes.

Callose deposition assay
Ten day-old Col-0 seedlings grown in liquid culture were

incubated with 1 mM flg22 for 6 or 16 hours. Cotyledons were

harvested for staining with aniline blue. Staining and visualization

procedures were described in Wang et al. [68]. One image was

obtained from each cotyledon. Stained callose deposits were

counted using a custom macro combined with a custom plug-in for

Image J (http:// rsb.info.nih.gov/ij/). The macro performs noise

reduction, binarizing images, and counting objects with filtering

for a particular size range.

ROS production assay
Six week-old adult plants grown under the conditions described

above were used. Eight leaf discs with a diameter of 4 mm were

prepared and incubated for ,15 hours in sterilized water in 24-

well flat-bottom cell culture plates (Corning, Inc., MA, USA)

before pre-treatments with water or 5 mM SA. Leaf discs for mock

and SA pre-treatments were collected from each half of the same

leaves. Eight leaf discs were used for a single sample, and four

replicated samples were made using different individual plants for

each combination of genotype and treatment. Leaf disks pre-

treated for 3 hours were then treated with 1 mM flg22 or water.

These were considered to be four conditions: 2 pre-treatments62

treatments. The ROS production level was measured as the

relative luminescence value as described in Trujiro et al. [69]. The

results were analyzed by fitting a polynomial linear model through

the ROS production curves of individual measurements and using

a mixed-effect linear model on the coefficients of these curves [36]:

Fijkl~G :TijzG :T : TmzTm2zTm3zTm4
� �

ij

z 1zTmzTm2zTm3zTm4
� �

Sj ijk

� �
z 1 Rljð Þzeijkl ,

where F, G, T, Tm, S, R, and e are measured ROS production

value, genotype, condition, time, sample, replicate, and residual,

respectively. G, T, and Tm are fixed effects, and S, R, and e are

random effects. To avoid convergence problems, the coefficients of

the (1+Tm+Tm2+Tm3+Tm4)|Sijk random effect were assumed to be

independent and time was centered and scaled to range from 21

to 1.

flg22-SA competition assay
Ten-day old Col-0 seedlings were treated with SA at an

indicated concentration and/or 1 mM flg22, or water for 3 hours

and harvested for RNA extraction. RNA extraction and

quantitative RT-PCR were performed as described in Tsuda

et al. [31]. The Ct values of a putative chitinase (At3g43620) and

PR-1 relative to Actin2 (At2g18780) were fitted to a mixed linear

model:

Cgtr~G :TgtzRrzegtr,

where C, G:T, R, and e are relative Ct value, gene:treatment

interaction, replicate effect and residual, respectively. G and T are

fixed effects, and R and e are random effects. The mean estimate

of the gene:treatment interaction was used as the modeled Ct

value. For the t-tests, the standard error appropriate for each

comparison was calculated using the variance and covariance

values obtained from the model fitting.

Accession numbers
The Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.

nih.gov/geo) accession numbers for data discussed in this paper

are GSE19663 and GSM490922 to GSM490978.

Supporting Information

Figure S1 Analysis of residuals from the first round of LLE in

RepEdLEGG allows detection of minor similarity (Conceptual

diagram). For the sake of visualization, log-transformed

expression level ratio values of two genes (i.e., two dimensions)

are plotted for 70 mutant plants, which correspond to the data

points. (A) Major similarities among the data points can be

identified as clusters in the global space. Four clusters are
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indicated by different colors of the data points. (B) For each of

the red and blue clusters, major components (thick gray arrows)

are identified. This can be achieved by the first round of LLE.

(C) Once the major components are subtracted from the red

and blue clusters (i.e., residuals), minor similarities (the star-like

shapes of the clusters) can be identified. Note that since it is

impossible to represent events in a high-dimensional space

accurately in a two-dimensional space, this figure is by no

means an accurate representation of the RepEdLEGG

procedure. Instead, the purpose of this figure is to illustrate

the idea that analysis of residuals allows detection of minor

similarities in expression profile data, which correspond to

weak regulatory relationships among the genes corresponding

to the mutations.

Found at: doi:10.1371/journal.ppat.1001011.s001 (4.81 MB TIF)

Figure S2 Categories of links inferred by RepEdLEGG. (A)

Links inferred by the RepEdLEGG procedure are classified into

those inferred in the first and second rounds of the LLE procedure.

The links inferred in the second round are further divided into

positive and negative links. (B) Links with supporting, conflicting

or no evidence. The chart in the inset indicates the proportion of

evidence-supported links inferred in the first and second rounds.

1st evidence (+), evidence-supported links inferred in the first round

of LLE; 2nd+ evidence (+), evidence-supported links for positive

regulatory relationships inferred in the second round of LLE; 2nd-

evidence (+), evidence-supported links for negative regulatory

relationships inferred in the second round of LLE. Supporting

evidence is listed in Table S3.

Found at: doi:10.1371/journal.ppat.1001011.s002 (0.24 MB TIF)

Figure S3 Analyses of the link specificities. (A and A9) The link

between EIN3 and MPK6 is not ET signaling-dependent. To test

specificity of the link between EIN3 and MPK6, the ein3 profile

was removed from the data set, and the RepEdLEGG analysis was

performed. A, The links involving EIN3 are highlighted in the full

model (Figure 2C). A9, The links involving EIN2 are highlighted in

the model with EIN3 removed. (B and B9) The NO sector has

positive relationships with the SA sector. To analyze the specificity

of links between the NO sector components (NOA1 and NIA2)

and the SA sector components, the RepEdLEGG analysis was

performed with the data set with the noa1 profile removed. B, The

links involving the NO signaling components are highlighted in

the full model (Figure 2C). B9, The links involving NIA2 are

highlighted in the model without NOA1. Links inferred 17 times

in the LOO cross-validation results were considered significant

when a data set with one mutant profile removed is used. Note

that a link can be inferred 19 times at maximum when one

component is removed. The color codes of the links were

determined based on coefficients associated with the links. The

color codes for the vertices at the bottom of the figure show the

signaling sector assignments of the genes corresponding to the

mutations.

Found at: doi:10.1371/journal.ppat.1001011.s003 (1.01 MB TIF)

Figure S4 Time-course analysis of mutual inhibition between

the EMT and SA sectors. The mRNA levels of the PR-1 and

putative chitinase (At2g43620) genes were measured by qRT-PCR

and used as proxies of the SA and EMT sector activities,

respectively. The Actin 2 mRNA level was used to normalize the

mRNA measurements. Ten-day old seedlings were treated with

indicated concentrations of SA and/or flg22 and harvested for

mRNA measurements at the indicated times. *, p,0.05 for the

indicated comparisons.

Found at: doi:10.1371/journal.ppat.1001011.s004 (0.32 MB TIF)

Figure S5 Comparison of RepEdlEGG with partial correlation.

The expression ratios between mutants and Col-0 wild-type (22

genotypes6480 genes) were analyzed using RepEdLEGG and

partial correlation with LOO cross-validation. Links inferred 18

times in the LOO results were considered significant.

Found at: doi:10.1371/journal.ppat.1001011.s005 (0.19 MB TIF)

Table S1 Experiment groups in mRNA profiling

Found at: doi:10.1371/journal.ppat.1001011.s006 (0.03 MB XLS)

Table S2 Statistics for the Arabidopsis immune signaling

network model

Found at: doi:10.1371/journal.ppat.1001011.s007 (0.04 MB XLS)

Table S3 Regulatory relationships among the 22 genes support-

ed by literature

Found at: doi:10.1371/journal.ppat.1001011.s008 (0.03 MB XLS)

Table S4 The EIN3-SID2 relationship is masked by JAR1 in the

full model.

Found at: doi:10.1371/journal.ppat.1001011.s009 (0.04 MB XLS)

Table S5 Statistics for the network model without EIN3 (for

Figs. S3 A and A9)

Found at: doi:10.1371/journal.ppat.1001011.s010 (0.04 MB XLS)

Table S6 Statistics for the network model without NOA1 (for

Figs. S3 B and B9)

Found at: doi:10.1371/journal.ppat.1001011.s011 (0.04 MB XLS)

Table S7 Statistics for effects of SA pretreatment on flg22-

triggered ROS production

Found at: doi:10.1371/journal.ppat.1001011.s012 (0.03 MB XLS)
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