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Abstract

Transetherification on polyols involving intra- and intermolecular nucleophilic substitutions is reported. Di- or trialkoxide
formation of propane-1,3-diol or 2-(hydroxymethyl)propane-1,3-diol derivatives by NaH triggers the reaction via oxetanes
formation, where the order to add NaH and a polyol significantly influences the yields of products. It was demonstrated that
the protective group on the pentaerythritol skeleton is apparently transferred to the hydrophilic and hydrophobic chain
molecules bearing a leaving group in one-step, and a protective group conversion from tosyl to benzyl was successful using
a benzyl-appending triol to afford a desired product in 67% yield.
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Introduction

An ether synthesis is one of key reactions in preparation of

materials including long hydrophilic or hydrophobic tails [1–10].

Usually, an alkoxy anion, generated by the hydrogen abstraction

from an alcohol with a strong base, reacts with the target long

chain molecule bearing a leaving group, like tosyl and halide

moieties. This methodology is also applicable for preparation of

branched molecules bearing multiple chains like dendrimers,

amphiphiles, or liquid crystalline molecules, where a polyol, such

as pentaerythritol, provides one of the fundamental skeletons to

construct such branched structures [11–22]. Transetherification is

also a useful reaction for the ether synthesis to develop functional

molecules and hyperbranched polymers [23–32]. However,

transetherification can also be an adverse side reaction in a

multi-step reaction scheme [33–35]. Here we report our seren-

dipitous discovery of transetherification, which proceeds by intra-

and intermolecular nucleophilic substitutions starting from pro-

tected pentaerythritols coupled with chain molecules bearing a

leaving group. This reaction scheme would offer a possible route

for preparation of ethers and also predict a side reaction in the

synthesis of branched compounds.

Results and Discussion

In our research project to develop structured poly(ethylene

glycols) [36], we tried Williamson ether synthesis [37] between a

propane-1,3-diol derivative 1 and a tosylate 2a with NaH in

tetrahydrofuran (THF; Figure 1, Table 1, Entry 1). Initially 1 was

mixed with NaH in anhydrous THF, and the mixture was heated

under reflux for generation of the alkoxide. The resulting mixture

gave a deep red solution, where 2a was added at 0uC (Procedure

A). Actually, this reaction afforded the expected product 3a in

13% yield. Meanwhile, 4a (21% yield) was unexpectedly obtained

as the major product with a comparable amount of 5a (12%).

Apparently, transetherification of benzyl and triisopropylsilyl

(TIPS) groups of 1 to 2a took place by substitution with the tosyl

group, together with the formation of the ether linkage at the

hydroxy group of 1 to give 3. A product due to one-to-one

coupling between 1 and 2a was not detected. Such unexpected

products were obtained not only with the oligoethylene glycol

tosylate, but also with tosylate 2b having a hydrophobic alkyl

chain, where the reaction under similar condition resulted in the

formation of 4b and 5b in 21% and 6% yield, respectively, in

addition to 3b (Table 1, Entry 2).

Here, it is of importance that, the MALDI-TOF-MS spectrum

of the crude product with a-cyano-4-hydroxycinnamic acid as a

matrix (Figure 2), extracted with CHCl3 from the reaction mixture

(Table 1, Entry 1), shows molecular ion peaks corresponding to

oxetane derivatives 6 and 7 (Figure 3) (Calcd for C12H16NaO3:

231.0997 ([7+Na]+), C12H15Na2O3: 253.0817 ([7+2Na – H]+),

C12H15KNaO3: 269.0556 ([7+Na+K – H]+), C14H30NaO3Si:

297.1862 ([6+Na]+) and C14H30KO3Si: 313.1601 ([6+K]+)). The

MALDI-TOF-MS spectrum of the crude product with gentisic

acid as a matrix also showed molecular ion peaks corresponding to

oxetane derivatives 6 and 7 (Found: 231.616 ([7+Na]+), 253.397

([7+2Na – H]+), 269.230 ([7+Na+K – H]+) and 297.097

([6+Na]+)). Yields of 6 and 7, evaluated by 1H-NMR spectroscopy,

were 20% and 12%, respectively, which almost correspond to the

yields of 4a (21%) and 5a (12%). This result suggests that the

alkoxide of 1 formed by the reaction with NaH undergoes an

intramolecular nucleophilic substitution to form oxetanes 6 or 7.
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This likely accompanies the formation of nucleophilic benzyloxy

or siloxy anions, which finally react with 2a to yield 4a or 5a,

respectively.

Noteworthy here is that the order of the addition of reagents,

namely that of NaH, 2a and 1, significantly influenced on the

yields of the products. When NaH was added to the mixture of 1
and 2a, followed by refluxing (Procedure B), 3a was obtained in

93% yield, while the formation of 4a and 5a was negligible (Table

1, Entry 3). Under this condition, the reaction mixture remained

colorless, unlike Procedure A, indicating formation of monoalk-

oxide of 1. Furthermore, when the reaction was carried out with a

half concentration of 1, 2 and NaH in Procedure A (Table 1,

Entry 4), the yield of 3a was increased (37%), while yields of 4a
and 5a were decreased (10% and 9% yield, respectively). The

dilute condition is likely favorable for the formation of the

monoalkoxide of 1. Hence, these results suggest that the

suppression of dialkoxide formation from 1 would be advanta-

geous for the formation of 3a, while being disadvantageous for the

formation of 4a and 5a. Indeed, a reaction between monoalcohol

8 and 2a with NaH, following Procedure A, afforded 9 in 34%

yield, while 4a, 5a, and 10 were not detected (Figure 4a). Thus,

the intra- and intermolecular nucleophilic substitutions to prompt

the transetherification are likely triggered by a dianion formation

from 1.

A tosyl group functions as a protecting group for alcohols

[38,39]. Hence, this transetherification can be regarded as a one-

step method to convert the protecting group from tosyl to another

one such as benzyl or TIPS. To demonstrate the protecting group

conversion from tosyl to benzyl, 2,2-bis((benzyloxy)methyl)pro-

pane-1,3-diol 11 and 2-((benzyloxy)methyl)-2-(hydroxymethyl)pro-

pane-1,3-diol 13 were reacted with tosylate 2a (Figures 4b and 4c).

A reaction between 11 and 2a with NaH in THF following

Procedure A afforded 4a in 27% yield with the formation of 12 in

6% yield. Importantly, a reaction between 13 and 2a resulted in

the formation of 4a in much higher yield (67%), with a trace

amount of 14. Products due to one-to-one and one-to-two

coupling between 13 and 2a were not detected. The neighboring

three hydroxy groups in 13 are likely advantageous for the

formation of dialkoxide or trialkoxide to encourage the transether-

ification. Thus, the triol 13 is a useful reagent for the protecting

group transfer to the tosyl group through the transetherification by

intra- and intermolecular nucleophilic substitutions.

Figure 1. Ether formation between 1 and 2.
doi:10.1371/journal.pone.0091912.g001

Table 1. Ether formation between 1 and 2.

Entry R Procedure
[1]
(mM)

[2]
(mM) Yields (% vs. 1)c)

3 4 5

1a) R-a A 32.5 65.0 13 21 12

2a) R-b A 32.5 65.0 33 21 6

3a) R-a B 32.5 65.0 93 2 1

4b) R-a A 16.5 33.0 37 10 9

a)Reaction conditions: 30 mL THF, 0.972 mmol 1, 1.94 mmol 2, 9.72 mmol NaH;
reflux (ca. 339 K); reaction time: 12 h. b) Reaction conditions: 30 mL THF,
0.486 mmol 1, 0.972 mmol 2, 4.86 mmol NaH; reflux (ca. 339 K); reaction time:
12 h. c) Isolated yields.
doi:10.1371/journal.pone.0091912.t001

Figure 2. MALDI-TOF-MS spectrum of the crude product
extracted by CHCl3 for the reaction in Table 1, Entry 1.
Structures of 6 and 7 are shown in Figure 3. Matrix: a-cyano-4-
hydroxycinnamic acid.
doi:10.1371/journal.pone.0091912.g002
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In this work, transetherification of polyols involving intra- and

intermolecular reactions was reported. It is strongly likely that the

di- or trialkoxide formation triggers the transetherification. These

results are considered not only to lead to new synthetic routes for

preparing ethers and branched compounds, but also to be useful to

avoid adverse side reactions related to Williamson ether synthesis

[40–44]. Using this reaction, one-step transfer of a hydroxy-

protecting group from benzyl to tosyl was also successfully

demonstrated.

Experimental Part

General
Column chromatography: with silica gel (SiO2; 63–210 mm;

Kanto Chemical). 1H-NMR spectra: Bruker BioSpin AVANCE

III 400 and BioSpin AVANCE III 500 FT-NMR spectrometers;

in CDCl3; d in ppm rel. to Me4Si as an internal standard, J in Hz.

where the chemical shifts were determined with respect to Me4Si

as an internal standard. MALDI-TOF-MS spectra (pos. ref.

mode): Bruker Daltonics autoflex speed spectrometer; a-cyano-4-

hydroxycinnamic acid and gentisic acid as a matrix. HR-ESI-

TOF-MS spectra (pos. mode): Bruker Daltonics micrOTOF-Q II

spectrometer.

Ether Formation
Procedure A: A mixture of 1 (0.372 g, 0.972 mmol) and NaH

(0.233 g, 9.72 mmol) in anhydrous THF (15 mL) was refluxed

(about 339 K) under Ar for 30 min in the dark, where the reaction

mixture turned into deep red from a colorless suspension. After the

mixture was cooled to 273 K, an anhydrous THF solution (15 mL)

of 2a (0.911 g, 1.94 mmol) was added dropwise to the resulting

mixture. After the reaction mixture was refluxed for 12 h in the

dark, water (50 mL) was added to the resulting mixture at 0uC,

and organic components were extracted with CHCl3 (3650 mL).

The organic extract was dried over Na2SO4 and filtered off from

insoluble substances. The filtrate was evaporated to dryness under

reduced pressure at 313 K, and the residue was purified by column

chromatography (EtOAc/hexanes/MeOH 90:10:0 to 100:0:0 to

90:0:10) to afford 1 (recovered, 0.134 g, 0.350 mmol, 36%), 3a
(0.123 g, 0.126 mmol, 13%), 4a (0.083 g, 0.204 mmol, 21%), and

5a (0.055 g, 0.117 mmol, 12%).

Procedure B: To an anhydrous THF (30 mL) solution of 1
(0.371 g, 0.972 mmol) and 2a (0.909 g, 1.94 mmol) was added

NaH (0.234 g, 9.72 mmol) at 0uC under Ar. After the reaction

mixture was refluxed (about 339 K) for 12 h in the dark, water

(50 mL) was added to the resulting mixture at 273 K, and organic

components were extracted with CHCl3 (3650 mL). The organic

extract was dried over Na2SO4 and filtered off from insoluble

substances. The filtrate was evaporated to dryness under reduced

pressure at 313 K, and the residue was purified by column

chromatography (EtOAc/hexanes/MeOH 90:10:0 to 100:0:0 to

90:0:10) to afford 1 (recovered, 0.007 g, 2%), 3a (0.882 g,

0.904 mmol, 93%), 4a (0.008 g, 0.019 mmol, 2%), and 5a
(0.005 g, 0.0097 mmol, 1%).

For characterization of 1, 2a, 3a, 8 and 13, see [36].

Data of 2b: 1H-NMR: 1.21–1.35 (m, 14H); 1.56–1.64 (m, 4H);

2.45 (s, 3H); 3.43 (t, J = 6.5, 2H); 3.80 (s, 3H); 4.02 (t, J = 6.5, 2H);

4.43 (s, 2H); 6.88 (d, J = 8.0, 2H); 7.27 (d, J = 7.0, 2H); 7.34 (d,

J = 8.0, 2H); 7.79 (d, J = 7.0, 2H). MALDI-TOF-MS: 485.30

([M+Na]+, C26H38NaO5S+; calc. 485.23).

Data of 3b: 1H-NMR: 1.02–1.08 (m, 18H); 1.26–1.35 (m, 28H);

1.51 (m, 3H); 1.56–1.61 (m, 8H); 3.33–3.46 (m, 16H); 3.80 (s, 6H);

4.43 (s, 4H); 4.48 (s, 2H); 6.87 (d, J = 8.5, 4H); 7.25–7.31 (m, 9H).

Figure 3. A plausible reaction mechanism of the intra- and intermolecular nucleophilic substitutions to prompt transetherification.
doi:10.1371/journal.pone.0091912.g003
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HR-ESI-TOF-MS: 985.6926 ([M+Na]+, C59H98NaO8Si+; calc.

985.6929).

Data of 4a: 1H-NMR: 3.58–3.68 (m, 16H); 3.80 (s, 3H,); 4.49 (s,

2H); 4.56 (s, 2H); 6.87 (d, J = 8.5, 2H); 7.27 (m, 4H); 7.33 (m, 3H).

HR-ESI-TOF-MS: 427.2098 ([M+Na]+, C23H32NaO6
+; calc.

427.2097).

Data of 4b: 1H-NMR: 1.07–1.36 (m, 14H); 1.57–1.63 (m, 4H);

3.36–3.48 (m, 4H); 3.80 (s, 3H); 4.43 (s, 2H); 4.51 (s, 2H); 6.88 (d,

J = 8.5, 2H); 7.26 (d, J = 8.5, 2H); 7.27–7.31 (m, 5H). HR-ESI-

TOF-MS: 421.2718 ([M+Na]+, C26H38NaO3
+; calc. 421.2719).

Data of 5a: 1H-NMR: 1.02–1.11 (m, 21H); 3.56–3.68 (m, 14H);

3.80 (s, 3H); 3.83 (t, J = 5.5, 2H); 4.49 (s, 2H); 6.87 (d, J = 8.5, 2H);

7.26 (d, J = 8.5, 2H). HR-ESI-TOF-MS: 493.2965 ([M+Na]+,

C25H46NaO6Si+; calc. 493.2961); 509.2704 ([M+K]+,

C25H46KO6Si+; calc. 509.2701).

Data of 5b: 1H-NMR: 1.03–1.08 (m, 18H); 1.26–1.35 (m, 16H);

1.55–1.59 (m, 5H); 3.43 (t, J = 7.0, 2H); 3.75 (t, J = 7.0, 2H); 3.80

(s, 3H); 4.43 (s, 2H); 4.48 (s, 2H); 6.87 (d, J = 8.5, 2H); 7.29 (d,

J = 8.5, 2H). HR-ESI-TOF-MS: 487.3585 ([M+Na]+,

C28H52NaO3Si+; calc. 487.3583).

Data of 6: 1H-NMR: 1.04 (s, 6H); 1.05 (s, 12H); 1.57 (m, 3H);

3.70 (s, 2H); 3.94 (s, 2H); 4.45 (d, J = 6.0, 2H); 4.48 (d, J = 6.0, 2H).

MALDI-TOF-MS: 297.189 ([M+Na]+, C14H30NaO3Si+; calc.

297.186); 313.165 ([M+K]+, C14H30KO3Si+; calc. 313.160).

Data of 7: 1H-NMR: 3.70 (s, 2H); 3.95 (s, 2H); 4.45 (d, J = 6.0,

2H); 4.49 (d, J = 6.0, 2H); 4.54 (s, 2H); 7.29–7.35 (m, 5H). MALDI-

TOF-MS: 231.101 ([M+Na]+, C12H16NaO3
+; calc. 231.100).

Data of 9: 1H-NMR: 0.92–1.01 (m, 21H); 3.16–3.69 (m, 16H);

3.55 (s, 6H); 3.63 (s, 2H); 4.43 (s, 2H); 4.47 (s, 2H); 6.85 (d, J = 8.5,

2H); 7.17–7.27 (m, 20H); 7.40 (d, J = 8.0, 2H). HR-ESI-TOF-MS:

943.5151 ([M+Na]+, C56H76NaO9Si+; calc. 943.5156); 959.4890

([M+K]+, C56H76KO9Si+; calc. 959.4896).

Data of 11: 1H-NMR: 2.59 (t, J = 6.0, 2H); 3.57 (s, 4H); 3.69 (s,

4H); 4.50 (s, 4H); 7.26–7.33 (m, 10H). HR-ESI-TOF-MS:

339.1576 ([M+Na]+, C19H24NaO4
+; calc. 339.1572).

Data of 12: 1H-NMR: 3.54–3.68 (m, 40H); 3.80 (s, 3H); 4.49 (s,

2H); 4.50 (s, 2H); 6.87 (d, J = 8.5, 2H); 7.26–7.30 (m, 14H).

MALDI-TOF-MS: 931.46 ([M+Na]+, C51H72NaO14
+; calc.

931.48); 947.43 ([M+K]+, C51H72NaO14
+; calc. 947.45).

Data of 14: 1H-NMR: 3.37–3.67 (m, 48H); 3.793 (s, 6H); 3.802

(s, 3H); 4.46 (s, 2H); 4.485 (s, 4H); 4.494 (s, 2H); 6.86–6.88 (m,

Figure 4. Ether formation between tetraethylene glycol tosylate 2a and a) monoalcohol 8, b) propane-1,3-diol 11 and c) 2-
(hydroxymethyl)propane-1,3-diol 13. Reaction time was 12 h. Yields were calculated based on the isolated amounts. ND: not detected.
doi:10.1371/journal.pone.0091912.g004
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6H); 7.25–7.31 (m, 14H). HR-ESI-TOF-MS: 1153.5716 ([M+K]+,

C60H90KO19
+; calc. 1153.5713).
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