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Abstract

Original Article

IntroductIon

The brain is a complex organ made up of billions of nerve cells 
that control the entire nervous system of the body, and any 
problems with it can deteriorate a person’s health as a whole.[1,2] 
Brain tumors are very common, and both young and old people 
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can have them.[3] The first step in treating this kind of disease is 
to investigate the type and extent of the tumor. There are two 
types of brain tumors: Cancerous and noncancerous. Cancerous 
brain tumors cannot be cured, but noncancerous brain tumors 
almost never cause problems that are life-threatening if they are 
found early. The enhancing tumor core (ETC), the peritumoral 
edema (ED), and the necrotic/non-ETC (NCR/NETC) are 
some of the tumor subregions. Gliomas and meningiomas are 
two of the most dangerous types of primary tumors,[4] because 
they are life-threatening, if found too late. Images from a brain 
magnetic resonance imaging (MRI) are mostly used to find 
brain tumors. Medical image processing algorithms, deep 
learning algorithms, and machine learning algorithms can all be 
used to make accurate disease classification and prediction.[5,6]

Intensity normalization[7] plays a pivotal role in the domain 
of medical image analysis, serving as a fundamental 
preprocessing step that addresses inherent variations in image 
intensities. Medical images acquired from diverse sources and 
modalities often exhibit substantial inconsistencies, resulting 
from dissimilar imaging protocols, equipment variability, and 
patient-specific factors.[8]

Feature extraction constitutes a pivotal stage in medical image 
analysis, encompassing a sophisticated process that delineates 
informative patterns and discriminative characteristics from 
complex medical images.[9] With the advent of advanced 
imaging modalities and the proliferation of high-dimensional 
image data, extracting robust and representative features is 
imperative for effective analysis, diagnosis, and prognosis 
in the field of medical image analysis.[10] Feature extraction 
involves the transformation of raw pixel intensities into 
a compact and expressive representation, capturing 
salient visual cues and intrinsic structural attributes. By 
discerning discriminative patterns, textures, shapes, and 
spatial relationships, this procedure enables the extraction 
of essential image descriptors that encapsulate relevant 
anatomical and pathological information.[11-13] The process 
of feature extraction is characterized by a multitude of 
advanced methodologies, including but not limited to 
statistical descriptors, morphological operations, spatial and 
frequency domain transformations, local binary patterns, 
texture analysis, wavelet analysis, and deep learning-based 
approaches.[14]

Feature optimization is also a critical aspect of medical image 
analysis, playing a pivotal role in refining and enhancing 
the discriminative power of extracted features.[15,16] This 
process involves a systematic exploration and fine-tuning of 
feature representations to maximize their utility, relevance, 
and discriminatory capacity. The overarching objective 
is to identify a subset of features that are most pertinent 
to the underlying medical problem, while minimizing 
redundancy, noise, and irrelevant information. Wrapper, 
filter, and embedded methods enable efficient exploration 
of the feature space, facilitating the identification of 
discriminative features that significantly contribute to 

accurate diagnosis and prognosis. To address the curse of 
dimensionality inherent in medical image data, dimensionality 
reduction techniques are employed. Principal component 
analysis (PCA),[17,18] linear discriminant analysis,[19,20] 
and manifold learning methods transform the original 
high-dimensional feature space into a lower-dimensional 
subspace while preserving the discriminative information. 
Feature ranking algorithms assign scores or ranks to each 
feature based on their relevance and discriminative power. 
Statistical measures, information-theoretic approaches, and 
machine learning-based techniques are utilized to estimate 
feature importance.

Therefore, we put forward this approach to tumor region 
classification using machine learning methods. This paper 
aims to develop a mechanized strategy for facilitating the 
localization of distinct tumor regions. To achieve this goal, 
features were extracted from MRI images after applying 
intensity normalization. To get the most accurate results, we 
tweaked the extracted features using hybrid optimal feature 
selection techniques, the particle swarm optimization (PSO) 
combined with PCA feature optimization technique. We 
also used a couple of different classification algorithms, 
as support vector machine (SVM),[21,22] light gradient 
boosting model (LGBM),[23] and extreme gradient boosting 
model (XGBM),[23] for the classification task.

MaterIals and Methods

The survival rate of brain tumors varies depending on the 
type and extent of the tumor. As a result, categorizing these 
regions is critical. Machine learning has enormous potential 
for this task and can efficiently classify different tumor regions 
with high accuracy in a short amount of time.[24,25] However, 
training a model can take a long time and a lot of resources. 
Therefore, optimal feature selection[26] is a great technique 
for reducing the time required to train the model with limited 
resources. In this paper, we used hybrid optimization methods 
for the classification of brain tumor regions. For this, we used 
two different datasets, online test dataset (OTD) and (ITD) 
institute test data, which were intensity normalized using 
contrast limited adaptive histogram equalization (CLAHE) to 
enhance the visual features of the image. The features were 
extracted using the pyRadiomics library and optimized using 
the hybrid optimization technique using varying inertia-weight 
PSO and PCA. Finally, three different classification 
models, SVM, LGBM, and XGBM, were used to classify 
the three tumor regions to evaluate the effect of optimization 
techniques.

SVM[27] is very less prone to over fitting, especially effective 
in high-dimensional spaces. It has versatile kernal functions 
such as linear, polynomial, and radial basis function, enabling 
flexibility in modeling complex relationships. At the same 
time, it is very sensitive to noisy data, and outliers can have 
a significant impact on the model and is computationally 
expensive, especially with large datasets. On the other hand, 
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LGBM is designed to be efficient and can handle large 
datasets. It uses a histogram-based approach for splitting 
nodes, making it faster than other algorithms. LGBM[28] 
supports parallel and distributed training, making it suitable 
for scalable and efficient training on large datasets. However, 
with this efficiency, it has limited interpretability and requires 
tuning parameters for optimal performance. Extreme gradient 
boosting (XGB)[29] has a built-in feature importance score, 
aiding in understanding the contribution of each feature to 
the model. It can handle both regression and classification 
problems and can be used with custom loss functions. As 
like SVM, it is computationally expensive, especially with a 
large number of trees and depth. It has multiple parameters 
that require tuning and finding the optimal combination can 
be time-consuming.

Dataset
In this study, a set of three-dimensional (3D) multi-modal 
images from the brain tumor segmentation challenge was 
used. This dataset was made available by the University of 
Pennsylvania’s Center for Biomedical Image Computing 
and Analytics (CBICAs) and downloaded from the CBICA 
image processing portal.[30-32] It had a total of 599 scans in the 
neuroimaging informatics technology initiative format. Each 
scan includes a fluid-attenuated inversion recovery (FLAIR), 
T1, T2-weighted, and T1-contrast enhanced (T1-CE) series 
with its own mask. All the imaging datasets have been 
segmented manually, by four different people following 
the same annotation protocol, and their annotations were 
approved by experienced neuroradiologists. Each annotation 
comprises three different regions of the tumor: The ETC, the 
peritumoral edema (ED), and the necrotic/non-ETC (NCR/
NETC). The data were divided into: Training, validation, 
and testing. Out of 599 images, 569 were used for training 
and validation in the ratios of 70% and 30%, respectively. 
A subset of the remaining 30 scans out of 599 total scans 
was used for testing as OTD. To further evaluate the model, 
in addition to the OTD, another set of 30 patients was taken 
from our own institute as institutional test data (ITD). These 
ITD scans were taken before surgery or any kind of radiation 
or chemotherapy. This dataset contains the MRI images of 
the FLAIR, T1, T1-CE, and T2 types. All these images were 
segmented for different distinct tumor regions, which were, 
peritumoral edema, enhancing-core, and necrotic tumor core, 
by two different persons, and their annotations were approved 
by an expert neuroradiologist.

Intensity normalization
In the context of scientific literature, intensity normalization 
acts as a vital preprocessing step that mitigates the confounding 
effects of inherent intensity variations.[33] The purpose of 
intensity normalization is to rectify disparities found in medical 
images by ensuring consistent intensity scales across different 
medical images. This approach improves the comparability and 
reliability of image characteristics by harmonizing the intensity 
distribution, allowing for more robust and accurate image 
analysis. This technique equips researchers and clinicians 

with a standardized framework for extracting meaningful 
information from medical images, enabling objective and 
reproducible analysis. Leveraging advanced normalization 
algorithms and statistical models, researchers can achieve 
optimal data normalization, thereby improving the accuracy 
and consistency of subsequent analytical methodologies. The 
different intensity normalization methods include minimum–
maximum normalization[34] which linearly maps the intensity 
range of an image to a predefined range, typically (0,1) 
or, (−1,1) Z-score normalization[35] which transforms the 
intensity values of an image to have zero mean and unit 
standard deviation and quantile normalization[36] that aims to 
align the intensity distributions of different images by matching 
their quantiles.

In our study, we utilized an alternative method for intensity 
normalization known as CLAHE.[37] This technique is 
an advanced approach that combines the advantages of 
adaptive histogram equalization with contrast limitation. 
The primary goal of CLAHE is to enhance image contrast 
while mitigating the risk of amplifying noise and artifacts 
that can occur with traditional histogram equalization 
methods. CLAHE operates by dividing the image into 
smaller overlapping sections called tiles. For each tile, a 
histogram equalization process is performed to improve 
the local contrast within that specific region. However, to 
avoid excessive amplification of noise, a contrast limitation 
mechanism is applied. The CLAHE intensity normalization 
method offers several benefits over other methods. First, 
as it operates on smaller regions, therefore allowing for 
localized contrast enhancement. This aspect is particularly 
advantageous when dealing with medical images that exhibit 
variations in contrast and intensity across different regions. 
The statistical properties of the image, such as intensity 
distribution, provide valuable information for the diagnosis 
or analysis. Second, CLAHE incorporates a contrast 
limitation mechanism to prevent excessive amplification of 
noise and artifacts. This ensures that the enhanced image 
maintains the local statistical characteristics of the original 
image to some extent, preserving important information. It 
also offers control over various parameters, such as the size 
of the tiles, histogram bins, and the contrast limit which 
helps in fine tuning the process of intensity normalization. 
CLAHE proves to be a valuable technique for intensity 
normalization, providing localized contrast enhancement 
while effectively managing noise and maintaining important 
statistical properties of the image.

Feature extraction
To transform unstructured data into a form amenable to 
further analysis is known as feature extraction.[38] For 
this study, statistical features, shape features, gray-level 
co-occurrence matrix (GLCM),[39] and gray-level run length 
matrix (GLRLM)[40] were extracted using the pyRadiomics 
library.[14] It include first order statistics, 2D shape-based, 3D 
shape-based, GLCM, GLRLM, (NGTDM) Neighbouring Gray 
Tone Difference Matrix, etc.
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Statistics‑based features
We had first-order statistics features in this, which describe the 
distribution of voxel intensities within the image region defined 
by the mask using commonly used metrics. Total energy is the 
value of the energy feature multiplied by the voxel volume 
in cubic mm. The entropy of an image is a measure of the 
uncertain or random of its values. It is a standard for gauging 
how much data is typically needed to encode the image values. 
Skewness is defined as the degree of deviation from the normal 
distribution in a set of data and can be either positive, negative, 
zero, or undefined. Below equation represents the skewness 
mathematically, where X is the number of voxels included in 
the region of interest (ROI) and Xm is the average gray level 
intensity within the ROI.

( )

( )

3
=1

3
=1

1 ( - X )
= 

1 ( - X )

N
i

N
i

X i m
NSkewness

X i m
N

Σ

Σ

Shape‑based features
Every tumor has different features based on the shape of tumor 
or ROI. The extracted shape-based features were flatness, 
sphericity, elongation, surface area, and voxel volume. The 
shape-based features are independent from the gray level 
intensity distribution in the ROI and are therefore only 
calculated on the nonderived image and mask.

Gray‑level co‑occurrence matrix
The GLCM, also called the gray-level spatial dependence 
matrix, is a statistical way to look at texture that takes into 
account how pixels are placed in space. The GLCM functions 
describe an image’s texture by figuring out how often pairs of 
pixels with certain values and in a certain location appear in an 
image and then extract statistical measures from this matrix. 
Gray-level size zone matrix quantifies gray level zones in an 
image. A gray level zone is defined as the number of connected 
voxels that share the same gray level intensity.

Gray level run length matrix
Features are a class of features based on creating a 
histogram of co-occurring pixel intensities at a given run 
length and orientation. Specifically, run length refers to 
the consecutive pixels with the same gray level value in 
a particular direction. GLRLM features have been found 
to be effective in capturing texture information in images 
and have been used in a variety of applications, including 
medical imaging analysis.

Optimal feature selection
As the size and variety of datasets grow, it is critical to reduce 
their size so that it can fit into system memory for further 
analysis. Feature selection techniques are used to reduce 
the number of input variables by removing redundant or 
irrelevant features and narrowing the set of features down 
to those which are most relevant to the machine learning 
model.[41,42] Irrelevant, redundant, and noisy features can clog 

an algorithm, lowering learning performance, accuracy, and 
computational cost.

Particle‑swarm optimization method with varying inertia 
weight
The original PSO algorithm, also known as the “bird swarm 
algorithm,” was developed by Kenny and Eberhart[43] back 
in 1995.[44] Mathematically speaking, PSO is an approach to 
optimization problems. According to PSO, if a bird is flying 
around aimlessly searching for food, the other birds in the flock 
can benefit from the bird’s discovery by hearing about it and 
then going on to find even more. Mathematical calculations for 
the particle’s speed and location send “solutions” (particles) 
whizzing over each issue. Particles’ velocities are controlled 
by their fitness values, which are evaluated using the fitness 
function that needs optimizing. It is a random optimization 
algorithm and used in computational techniques for feature 
selection and classification.

The mathematical representation for updating velocity of 
particles in PSO is shown in the following equation

( )t+1 t t t t
i i 1 1 bi i

t t t
2 2 bi i

F (j+1) = .F (j) + n  .r A (j) - X (j)

+n  .r  (B (j) - X (j))

ω

Where ω is the inertia weight, a constant that is always 
positive. This parameter is important for balancing the 
global search (exploration, when higher values are set) and 
the local search (exploitation, when lower values are set). In 
each iteration, two “best” values are added to each feature. 
F is the initial speed, which is between Imin and Imax, and the 
solution is X. t is the size of the search space, j is the number 
of iterations, n1, n2 are acceleration factors, and r1, r2 are two 
random numbers between 0 and 1. Ab is the personal best 
solution (the best solution that has been found so far), and Bb 
is the global best solution that the particle swarm optimizer 
keeps track of.

However, the above formula is likely to cause the local 
optimization with premature convergence phenomenon, 
and to accomplish the desired objective, the value of w 
should be gradually decreased as the optimization process 
progresses, aligning with the advancement of iterations. This 
gradual reduction of w over time proves more advantageous 
than employing a fixed value. We used three different 
strategies in this study to gradually decrease the w over time 
as follow.

Inertia weight with linearly decreasing strategy
Shi and Eberhart[45] proposed this strategy based on the idea that 
exploration is preferred at the beginning of the optimization 
process and exploitation is preferred at the conclusion. W is 
defined at each iteration as follows:

W1(t) = wmax − (wmax − wmin) × (t/T)

In this strategy, w is decreased linearly from wmax at the early 
iterations to wmin at the later. In the early stages, a higher 
inertia weight encourages exploration, allowing particles 
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to cover a broader search space. As optimization advances, 
a linear reduction in inertia drives exploitation, with an 
emphasis on local optima to improve. This technique seeks 
to maintain a balance between global exploration and local 
exploitation throughout the optimization process. Figure 1a 
shows the behavior of this strategy for out ITD dataset over 100 
iterations.

Inertia weight with nonlinear coefficient decreasing 
strategy
Yang et al.[46] presented the nonlinear coefficient reducing 
technique to increase the performance of PSO that employs 
linear updating strategy, W at each iteration is defined as;

W2(t) = wmax − (wmax − wmin) × (t/T) α

Where α is suggested by the authors to be α =1/π2. This method 
enables for a more adaptable change of the inertia weight, 
potentially responding more dynamically to the optimization 
environment. Nonlinear techniques may be adjusted to 
individual optimization circumstances, giving them the 
flexibility to address a wide range of problem characteristics. 
It can be tailored to the task at hand, potentially leading to 
improved performance in various instances. Figure 1b shows 
the behavior of this strategy.

Inertia weight with logarithmic strategy
Gao et al.[47] proposed a logarithmic decreasing technique to 
update the w value across repetitions using equation;

W3(t) = wmax + (wmax − wmin) × log10[a + 10(t/T)]

Where a is a constant that set to 1 by the authors. Logarithmic 
strategies involve using logarithmic functions to decrease 
the inertia weight, which provides a slow decrease at the 
beginning, promoting exploration in the early stages when 
the algorithm is searching broadly. As the search advances, 
the inertia weight drops more quickly, promoting exploitation, 
and convergence on favorable locations. This method can help 
to balance the exploration-exploitation trade-off by allowing 
the algorithm to first explore the solution space completely 
before focusing on refining the results. Figure 1c shows the 
behavior of this strategy.

These different strategies were used to select the optimal 
number of features using PSO. In this study, for all of these 

strategies, we had taken wmin as 0.1 and wmax as 0.9, n1 as 0.8 
and n2 as 0.9.

Fitness function
In machine learning models, the fitness function, also known 
as the objective function, quantifies how well the model 
performs its task.[48,49] The fitness function varies depending 
on the specific machine learning task, such as classification, 
regression, or clustering, and the desired outcome. The common 
fitness functions for classification include cross-entropy loss, 
hinge loss, and log loss.

For this study, we had log loss as the fitness function. In 
the context of machine learning, log loss (also known as 
cross-entropy loss)[50] is a widely used fitness function 
for multi-class classification problems. It measures the 
performance of a model by evaluating the difference 
between the predicted class probabilities and the true class 
labels. The goal is to minimize this difference, indicating a 
better fit between the predicted and actual outcomes.[51] To 
understand log loss, let’s consider a multi-class classification 
problem with N classes. Each data point in the training set 
has a set of features and belongs to one of the N classes. The 
model assigns probabilities to each class for a given input, 
and the sum of these probabilities is equal to 1. Log loss is 
defined as the negative logarithm of the predicted probability 
assigned to the correct class. The formula for log loss is as 
follows:

log loss = − (1/N) × Σ [Σ (yij * log (pij))]

where: N is the number of data points in the training set. yij is 
an indicator function that equals 1 if data point i belongs to 
class j, and 0 otherwise. pij is the predicted probability of data 
point i belonging to class j.

The log loss penalizes the model for both confidently incorrect 
predictions and uncertain predictions. A confident incorrect 
prediction, where the model assigns a high probability to the 
wrong class, will result in a high log loss value. Similarly, an 
uncertain prediction, where the model assigns low probabilities 
to all classes, will also contribute to a high log loss value. 
By minimizing the log loss, the model aims to improve its 
predictions and optimize the class probabilities for each 
input. This process involves adjusting the model’s internal 
parameters, such as weights and biases, through techniques 

Figure 1: Represents the different weight varying strategies with iteration over time for hundred iterations. (a) Progression of Inertia weight with linearly 
decreasing strategy (b) Progression of Inertia weight with nonlinear coefficient decreasing strategy (c) Progression of Inertia weight with logarithmic strategy

cba
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such as gradient descent or other optimization algorithms. Log 
loss has become a popular choice for multi-class classification 
tasks because it provides a continuous, differentiable measure 
of the model’s performance.[52]

Principal component analysis
PCA is an advanced statistical technique that plays a 
pivotal role in exploratory data analysis and dimensionality 
reduction.[15] It serves as a powerful tool to extract the most 
salient features from high-dimensional datasets, revealing 
the fundamental patterns and relationships inherent in 
the data.[53] PCA achieves this by transforming a set of 
correlated variables into a new set of uncorrelated variables 
known as principal components. These components, 
organized in the descending order of importance, are the 
linear combinations of the original variables. The primary 
objective of PCA is to capture the maximum variance in the 
data through the first principal component, with subsequent 
components capturing decreasing amounts of variance. By 
representing the data in terms of these principal components, 
it becomes possible to effectively reduce the dimensionality 
of the dataset while retaining the most significant 
information. This reduction is valuable in uncovering 
hidden structures and underlying dimensions within complex 
datasets, providing a fresh perspective for visualization and 
comprehension.[54]

Hybrid optimization technique
In this study, we also explored the combination of PCA 
and PSO. The integration of PCA and PSO leverages the 
strengths of both methods to tackle complex data analysis 
and optimization problems. PSO’s ability to search and 
explore the solution space efficiently makes it well-suited for 
a wide range of optimization tasks. By iteratively updating a 
population of particles based on their individual and collective 

experiences, PSO aims to find the optimal solution in a timely 
manner. For classification task, we had used SVM, LGBM, and 
XGBM. The complete workflow of the paper is shown in Figure 2.

Algorithm: The code used to select the optimal features 
using hybrid optimization technique
Input: Set of MRI images and mask (training dataset)
Output: Subset of optimal features
1. Four types of MRI images stacked together, with corresponding 
mask (I, m)
2. Intensity normalization: CLAHE methods for intensity normalization 
of MRI images (INorm)
3. Input - INorm, m to the pyRadiomics Library to extract Radiomics 
features (ASet)
4. Initialize PSO: Set wmin=0.1, wmax=0.9, n_population=4000, n1=0.8 and 
n2=0.9
5. Fitness function: log_loss = (− (1/N) × Σ [Σ (yij×log (pij))])
6. PSO=Particle Swarm Optimization (Fitness function, n_iteration=100, 
n_population)
7. fit (model, X_train, y_train, X_valid, y_valid)
ω = W1(iteration)/W2(iteration)//W3(iteration)
update position and velocity
return best_feature_list
8. Bsubset

A=best_feature_list
9. PCA.fit (Bsubset

A)
10. Return subset of optimal features
CLAHE: Contrast limited adaptive histogram equalisation, 
PSO: Particle-swarm optimization, MRI: Magnetic resonance imaging, 
PCA: Principal component analysis

results

The model’s performance was assessed using the various 
classification metrics, including accuracy, classification 
error, precision, F1 score, recall, sensitivity, false negative 
rate, false positive rate (FPR), and Matthew’s correlation 
coefficient (MCC). False positives (FP) occur when an 

Figure 2: Represents the complete workflow for this study. PSO: Particle‑swarm optimisation, PCA: Principal component analysis, GLCM: Gray‑level 
co‑occurrence matrix, GLRLM: Gray‑level run length matrix, SVM: Support vector machine, LGBM: Light gradient boosting model, XGBM: Extreme 
gradient boosting model, GLSZM: Gray level size zone matrix, GLDM: Gray level dependence matrix 
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observation is incorrectly predicted as belonging to a certain 
class (Type I error), while false negatives (FN) occur when an 
observation is incorrectly predicted as not belonging to a certain 
class (Type II error). The MCC[52] is a reliable statistical measure 
that considers all the four categories of the confusion matrix (true 
positives, true negative, false negatives, and false positives) in 
proportion to the positive and negative elements in the dataset. It 
produces a high score only if the prediction performs well in all 
categories. The area under the receiver operating characteristic 
curve (AUC-ROC)[53] quantifies the overall performance of the 
model by measuring the area beneath the ROC curve, which 
represents the trade-off between true positive rate and FPR across 
different classification thresholds. The images before intensity 
normalization and after intensity normalization with CLAHE 
method are shown in Figure 3. Table 1 shows the different types 
of features extracted and corresponding selected features by 
using PSO and hybrid optimization method.

Features selected using different inertia weight varying 
methods
We have trained three different models with three different 
inertia weight varying strategies. Table 2 shows the results 

of accuracy for W1, W2, and W3 inertia weight varying 
strategies and number of features selected with each strategy. 
As we can see from the table, inertia weight with linearly 
decreasing strategy gives maximum accuracy of 0.995 for 
classification when used with XGB model. Furthermore, if 
we combine the PCA and PSO (inertia weight with linearly 
decreasing strategy) to further optimize the feature, the 
accuracy was around 0.999. The different classification 
metrics for the ITD dataset are shown in Figure 4. As we can 
see from the graphs, the maximum classification accuracy 
achieved was 0.998, with an F1 score of 0.998, MCC of 0.997, 
specificity of 0.997, sensitivity of 0.995, and ROC-AUC 
of 0.993 using the XGB model with PCA combined with 
PSO (inertia weight with linearly decreasing strategy) feature 
optimization methods.

We had also compared the proposed methods performance 
using the OTD dataset and the ITD dataset. Figure 5 shows 
the comparison of the accuracies of ITD and OTD datasets. 
It shows the accuracy of the proposed method on the unseen 
dataset was comparable to the trained dataset, which shows 
the high efficacy of the proposed technique.

Figure 3: Images before applying any intensity normalisation (left), images after applying contrast limited adaptive histogram equalization intensity 
normalization methods (right)

Table 1: The number of different types of features extracted and number of chosen features using particle-swarm 
optimization and hybrid optimization method

Type of feature Extracted PSO PSO + PCA (hybrid optimization)

W1 W2 W3 W1 + PCA W2 + PCA W3 + PCA
First order statistics 19 8 10 11 6 9 10
Shape based 2D 16 8 7 8 7 7 7
Shape based 3D 10 4 5 4 4 5 4
GLCM 8 6 5 2 6 5 2
GLSZM 18 9 9 8 7 8 8
GLRLM 10 5 4 6 5 4 6
NGTDM 5 3 2 3 3 2 3
Morphological features 58 8 16 15 5 10 10
Total 144 51 58 57 43 50 50
PSO: Particle-swarm optimization, PCA: Principal component analysis, GLCM: Gray-level co-occurrence matrix, GLRLM: Gray-level run length matrix, 
NGTDM: neighbouring gray tone difference matrix, GLSZM: Gray level size zone matrix
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Comparison with existing work
We also compared the outcomes of our methods to those 

of other methods. Table 3 shows that the proposed method 
outperforms the other on every classification metric.

Table 2: The accuracy and number of features selected using different optimization methods

Dataset Model PSO with different strategies (number of selected features) PSO+PCA (number of selected features)

W1 (51) W2 (58) W3 (57) W1 + PCA (43) W2 + PCA (50) W3 + PCA (50)
OTD SVM 0.990 0.991 0.987 0.996 0.997 0.991

LGB 0.992 0.993 0.991 0.996 0.997 0.994
XGB 0.994 0.995 0.992 0.998 0.999 0.997

PCA: Principal component analysis, PSO: Particle-swarm optimization, OTD: Online test dataset, SVM: Support vector machine, LGB: Light gradient 
boosting, XGB: Extreme gradient boosting
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Figure 4: Represents the accuray, precision, recall, F1 score, specificity, area under the receiver operating characteristic curve, and sensitivity for 
the ITD dataset. PCA: Principal component analysis, SVM: Support vector machine, LGB: Light gradient boosting, XGB: Extreme gradient boosting, 
MCC: Matthew’s correlation coefficient, ROC‑AUC: Area under the receiver operating characteristic curve
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dIscussIon

This study explored the robust classification model using 
different combinations of optimization strategies. Due to the 
strong impact of image normalization on the performance 
of a machine learning classifier, special attention should 
be provided in the image preprocessing step before typical 
radiomic analysis are performed. To remove this impact 
due to normalization, we had used the CLAHE intensity 
normalization method.

For every population-based metaheuristic algorithm, the 
optimization process comprises two fundamental stages: 
Exploration and exploitation. Ideally, an algorithm should 
initially prioritize the utilization of the exploration operator 
over the exploitation operator. A specific parameter or set of 
parameters within the algorithm is assigned this pivotal role. In 
the case of PSO, inertia weight plays the role of that parameter. 
Therefore, the proper variation of inertia weight with each 
iteration is crucial to achieving better classification accuracy. 
In our study, the different weight-varying strategies produced 
a very good classification result.

To further select the component with the highest variance 
from the optimized parameters, the combination of PCA and 
PSO offers several advantages. First, it enables more effective 
optimization by operating on a reduced feature space obtained 
through PCA, which eliminates redundant and irrelevant 
features. This improves the efficiency and effectiveness of the 
optimization process. Second, the optimal features provided 
by PSO allow PCA to work with a more manageable and 
interpretable representation of the data, leading to better 
understanding and insights into the underlying problem. 
Dimensionality reduction mitigates computational complexity, 
enhances visualization, and improves classification and 
clustering performance.

In our study, the hybrid methodology adopted by leveraging 
PSO for optimization and PCA for further optimization 
which improved efficiency, interpretability, and effectiveness 
in solving this problem of classification. Furthermore, 
when we compared our proposed method with the other 
available methods, it showed better results on every metric of 
classification tasks, which shows the novelty of the proposed 
approach.

On the other hand, this study has several limitations also. First, 
the small number of patients included in the experiments may 
be deemed insufficient for effective model validation. Our 
intention is to address this limitation by pursuing and validating 
the analysis with the patients’ data from different institutions 
from all over the Indian sub-continent or different continents, 
which is still in the progress stage. In this study, we utilized 
two types of datasets, which were relatively small in size, 
preventing us from conducting a stratified analysis considering 
each center individually. Imbalanced datasets pose another 
significant challenge, potentially biasing models toward the 
majority class and compromising performance on minority 
classes. The quality of the data and preprocessing steps also 
influence model performance, as noisy or incomplete data can 
lead to suboptimal outcomes. Ensuring robustness through 
rigorous preprocessing, handling missing values, outliers, and 
addressing mislabeled instances are crucial for reliable results. 
Moreover, the interpretability of complex models becomes a 
concern, as high accuracy may come at the cost of understanding 

Table 3: Comparison of the proposed method with existing methods

Work done by Accuracy Sensitivity Specificity ROC_AUC F1 score
Acquitter et al.[55] 0.750 0.750 0.760 NA NA
Gao et al.[56] 0.903 0.947 0.817 0.958 -
Bacchi et al.[57] 0.823 NA NA 0.800 0.860
Ramtekkar et al.[58] 0.989 NA NA NA 0.990
Vijithananda et al.[59] 0.845 NA NA NA 0.890
Noreen et al.[60] 0.947 NA 0.947 NA 0.940
Kumar et al.[61] 0.959 NA 0.957 NA NA
Zahid et al.[62] 0.959 NA 0.959 NA 0.959
Hossain et al.[23] 0.970 NA 0.980 NA 0.968
Proposed 0.998 0.995 0.997 0.997 0.998
NA: Not reported, AUC_ROC: Area under the receiver operating characteristic curve

W1 W2 W3 W1+PCA W2+PCA W3+PCA
OTD 0.990 0.991 0.987 0.996 0.997 0.991
OTD 0.992 0.993 0.991 0.996 0.997 0.994
OTD 0.994 0.995 0.992 0.998 0.999 0.997
ITD 0.991 0.990 0.989 0.995 0.996 0.992
ITD 0.990 0.991 0.989 0.992 0.995 0.993
ITD 0.993 0.995 0.991 0.997 0.998 0.997
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Figure 5: Shows the comparison of accuracies of the ITD and online 
test dataset datasets for different optimization techniques. ITD: institute 
test data
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the model’s decision-making process. Achieving a balance 
between accuracy and interpretability is essential, particularly 
in applications where transparency is crucial. Transferability to 
other domains adds another layer of complexity, necessitating 
assessments of a model’s adaptability and robustness across 
diverse datasets and real-world scenarios. Data leakage, 
experimental setup, algorithm selection bias, and ethical 
considerations further contribute to the nuanced landscape of 
challenges. Unintentional data leakage, for instance, can lead 
to overly optimistic performance estimates, emphasizing the 
importance of meticulous experimental design.

Future work should prioritize conducting model validation on 
an external dataset to enhance the study’s statistical power. 
Furthermore, expanding the dataset size would allow for more 
robust validation of a radiomic signature for discriminating 
different tumor regions.

conclusIon

This study proposed an intelligent technique for distinguishing 
between different brain tumor regions. The free python-based 
library extracted the features, and the optimal feature selection 
was accomplished using various methods. Our experimental 
results demonstrate that, although the PSO technique with 
varying inertia weight strategies selects a robust subset of 
features, but these features can be further reduced by the use 
of PCA to achieve promising classification accuracy and other 
classification metrics for different tumor region classifications. 
This study also outperforms the other available methods in 
the literature. This research can be further expanded to other 
classification tasks also like, differentiation of lung nodules 
based on their size and other factors, and for classification 
of tumor for any site and for any type of tumor, etc., In 
conclusion, we can say that deep learning has shown potential 
in medical image analysis, but it also has limitations in terms 
of time and resource requirements and data privacy concerns. 
Alternative methods, such as feature engineering-based 
machine learning algorithms, may provide a more effective 
and efficient solution for real-time medical image analysis 
with high accuracy and the proposed method does this job 
very efficiently.
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