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Abstract

The discrete modeling formalism of René Thomas is a well known approach for the modeling and analysis of Biological
Regulatory Networks (BRNs). This formalism uses a set of parameters which reflect the dynamics of the BRN under study.
These parameters are initially unknown but may be deduced from the appropriately chosen observed dynamics of a BRN.
The discrete model can be further enriched by using the model checking tool HyTech along with delay parameters. This
paves the way to accurately analyse a BRN and to make predictions about critical trajectories which lead to a normal or
diseased response. In this paper, we apply the formal discrete and hybrid (discrete and continuous) modeling approaches to
characterize behavior of the BRN associated with MyD88-adapter-like (MAL) – a key protein involved with innate immune
response to infections. In order to demonstrate the practical effectiveness of our current work, different trajectories and
corresponding conditions that may lead to the development of cerebral malaria (CM) are identified. Our results suggest that
the system converges towards hyperinflammation if Bruton’s tyrosine kinase (BTK) remains constitutively active along with
pre-existing high cytokine levels which may play an important role in CM pathogenesis.
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Introduction

Severe forms of malaria claim a huge number of lives

worldwide, contributing to over a million deaths annually, mostly

that of children [1]. Malaria is vectored by Anopheles mosquitoes

and is a common infectious disease caused by Plasmodium

parasites that readily infect blood erythrocytes [2]. In a few cases a

severe pathogenesis occurs due to hyperinflammation, usually

following Plasmodium falciparum infection, that may turn fatal.

The blood flow through small blood vessels to the brain is severely

hampered as the infected erythrocytes are sequestered by parasites

causing ischaemic hypoxia and increased nitric oxide production

in brain tissues, leading to coma, a condition known as diffuse

encephalopathy or CM [3–5]. Clinical prognosis depends on

factors ranging from patient’s social conditions to recurrent

parasitic exposure, however current evidence strongly suggests

that the genetics of an individual may play an even more

significant role [6–8].

The human innate immune system is the first line of defence

against such infections and the responses include inflammation

which helps to control the infection and promotes healing. Yet if

left unchecked, this advantageous inflammatory response turns

astray, causing effects ranging from mild allergies to severe

inflammatory disorders [9]. Acute inflammatory response is

initiated following an infection through the production of

proinflammatory cytokines, such as the tumor necrosis factor

alpha (TNF-a) and the interferon gamma (INF-c) that play a

prominent role in parasite destruction. The generation of

inflammation is tightly regulated at multiple levels to control this

production. However, in cases where pathogenesis becomes

severe, chronic over production of cytokines contributes to

elevated levels of a cellular messenger, induced nitric oxide

synthase (iNOS). These elevated levels of iNOS plus the hypoxia

caused by the parasites work in sync to create a condition of

chronic hyperinflammation causing an augmentation of CM

pathogenesis [3,10].

The signal transduction pathway involved in systemic produc-

tion of proinflammatory cytokines in case of malaria is initiated

following the activation of the Toll like receptor 2 (TLR2) and

TLR4 when they recognize glycosylphosphatidylinositols (GPIs)

anchored on plasmodium membrane proteins [11–13]. TLRs are

characteristic type I transmembrane pattern recognition receptors,

used by the innate immune system to recognize conserved

microbial structures or pathogen-associated molecular patterns

(PAMPs). They have a conserved cytoplasmic toll-interleukin 1

receptor (TIR) domain and are included in the interleukin 1

receptor (IL-1R)/TLR super-family [14]. After stimulation by

PAMPs, TLRs form dimers and begin an intricate multifaceted

signalling cascade, initiated by the recruitment of adapter proteins

at their cytoplasmic TIR domain. The myeloid differentiation
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primary response protein (MyD88) and a number of kinases (like

interleukin-1 receptor-associated kinases; IRAKs) are recruited

downstream. The signal transduction culminates with the activation

of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

kB), resulting in the expression of proinflammatory cytokine genes

(see Figure 1) . For details of the TLR signalling see reference [15].

Khor et al. and others [8,16–18] indicate the toll-interleukin 1

receptor domain containing adapter protein (TIRAP), also known

as MyD88-adapter-like (MAL), as a key adapter protein associated

with disease pathogenesis leading to hyperinflammation. They

argue on the basis of single nucleotide polymorphism (SNP)

analysis that wild-type MAL may lead to chronic hyperinflamma-

Figure 1. TLR2/4 signalling pathway. The TLR2/4 signalling pathway starts with recognition (1) of PAMPs by TLRs. This activates (2) BTK which
phosphorylates (3) MAL. MyD88 adapter protein and kinases are recruited (4) and activated around MAL. This eventually leads to the activation (5) of
NF-kB as IkB is degraded. The proinflammatory cytokine genes are expressed (6) producing INCY that are secreted (7). INCY are responsible (8) for the
production of inflammation and activation of their respective receptors. This again activates NF-k B (9a) and through an alternate pathway induces
the production of SOCS-1 (9b). SOCS-1 negatively regulates MAL by polyubiquitination (10a) and blocks NF-k B mediated expression (10b).
Abbreviations: TLR, toll like receptors; PAMPs, pathogen associated molecular patterns; BTK, bruton’s tyrosine kinase; MAL, MyD88 adapter like;
MyD88, myeloid differentiation response protein; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; IkB, inhibitor of kB; INCY,
proinflammatory cytokines; SOCS-1, suppressor of cytokine signaling-1 [15,24,25].
doi:10.1371/journal.pone.0033532.g001
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tion, increasing host susceptibility towards developing CM; while

mutants may confer a protective effect from CM pathogenesis for

its carrier host by controlling the amount of inflammation

produced. Some studies have suggested MAL as an important

therapeutic target for the management of CM pathogenesis [19–

21].

Signalling regulators associated with MAL include Bruton’s

tyrosine kinase (BTK) which is a member of the Tec family of

kinases. It acts as a positive regulator of MAL by activating it

through phosphorylation [22,23]. The inflammatory cytokines

(INCY) produced not only generate inflammation but also induce

SOCS-1 (suppressor of cytokine signaling-1), which degrades

phosphorylated MAL through polyubiquitination. It is also known

to block NF-kB mediated expression, thereby functioning as a

negative regulator for this signalling pathway [24,25].

A biological regulatory network (BRN) is a set of interactions

(activation and inhibition) between biological entities (e.g., proteins

in a biological signalling network). The MAL associated BRN

(Figure 2) was abstracted from the TLR2/4 signalling pathway

(Figure 1) and includes: BTK that activates MAL through

phosphorylation; SOCS-1 that degrades phosphorylated MAL

by polyubiquitination; NF-kB which is the key transcription factor

for initiating the expression of proinflammatory genes; and the

INCY which produce the inflammation.

Two tools, GENOTECH [26] and HyTech [27], were used for

the modeling and analysis of this BRN. In GENOTECH tool the

qualitative modeling formalism of René Thomas [28–36] has been

implemented. A BRN in GENOTECH is represented by a

directed graph where nodes represent biological entities and edges

represent interactions among them. The edges are labeled with

integers representing concentration thresholds and signs of

interactions (+for activation and 2for inhibition). Each entity is

assigned a set of logical parameters to generate a state graph

(qualitative model) reflecting the possible steady state behaviors of

the BRN. GENOTECH also generates a hybrid model by

incorporating clocks that measure activation and degradation

delays. This hybrid model is analyzed by HyTech which is a tool

for the analysis of hybrid systems [37] to compute parametric

constraints for the existence of a particular behavior.

This study uses qualitative discrete and hybrid modeling with

delays to model the MAL associated BRN. The model

characterizes conditions when the system may converge toward

hyperinflammation. Initially, a discrete qualitative modeling of the

BRN was done to predict qualitative behaviors or states which

either lead to a normal (normal inflammatory) or diseased

(hyperinflammatory) state. The qualitative model was then refined

with clocks measuring regulation delays to obtain a hybrid model

incorporating discrete and continuous behaviors. Our results

suggest that the system converges towards hyperinflammation

when concentration of cytokines is at high level. Furthermore, we

obtained the conditions for each behavior of the MAL associated

BRN in terms of delay constraints in order to select consistent

models regarding delays (see HyTech results for delay constraints).

These results give useful information such as, which variable is

evolving with high production or degradation rate in order to

follow a particular behavior or path. The delay constraints further

suggest that for some given set of delay values, the behaviors (see

Discussion section) would be very stable and for other set of values

they would not exist.

In summary, we make use of qualitative in-silico modeling; a

kind of computational method [38] used in systems biology, to

characterize the behaviors of MAL associated BRN. At the same

time we follow the trend in systems biology [39] to augment the

descriptive and analytical power of models in systems biology by

formal methods.

Results

This section presents the results obtained by using the modeling

and analysis tools for the MAL associated BRN (Figure 2). The

first subsection describes the results obtained by the qualitative

modeling and analysis of the BRN using the GENOTECH tool

[26]. The results obtained by using the HyTech [27] tool for the

hybrid modeling and analysis of the BRN are given in the second

subsection.

The State Graph of the MAL associated BRN
GENOTECH is a tool for the qualitative (discrete) modeling of

BRNs according to Thomas’ formalism (see methods). It takes a

BRN and corresponding logical parameters from a user in a

simple graphical user interface (GUI) and then automatically

generates the state graph in which stable states, cycles and paths

between any two states can be identified. GENOTECH generates

the state graph (qualitative model) of the MAL associated BRN

(Figure 2) representing all possible transitions from one state to the

other (Figure 3), where each state indicates the concentrations of

every entity at a particular time. A state is represented by BTK,

MAL, NF-kB, INCY and SOCS-1, in the respective order. In a

stable state, the whole system converges, halts and cannot proceed

to any other state. The stable states are called sinks and the

network from any initial state either moves towards these sinks, or

ends up in a cyclic path if there is a cycle in the network. From any

state other than the stable states, a path that leads to and

culminates at a sink is called a trajectory; and all trajectories

culminate at some sink or remain in a cycle. It is an inherent

property of any system to attain stability; therefore whenever the

system is perturbed from its stable state or sink, it tends to shift

back or reach another stable state. For the functional and realistic

Figure 2. MAL associated BRN. Numerals (1 and 2) represent the
threshold levels of interactions; plus (+) signs indicate activation while
inactivation is indicated by a minus (2) sign. Arrows indicate the
direction of activation/inactivation. The thresholds values are set
according to Definition 2.
doi:10.1371/journal.pone.0033532.g002

Modeling and Analysis of the MAL-Associated BRN

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e33532



Modeling and Analysis of the MAL-Associated BRN

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e33532



model of MAL-associated BRN, the generation of a specific stable

state where every component has a zero concentration is

imperative as this state represents the system before any

perturbation ( also called the virgin state).

In our case two stable states (also called stable steady states or

sinks) are produced, indicating zero concentrations for every

component (0,0,0,0,0) in the first state; and zero concentration for

BTK and MAL, 1 for NF-kB, 2 for INCY and 1 for SOCS-1

(0,0,1,2,1) in the second state. The stable state (0,0,0,0,0)
represents the normal behavior where infection is cleared whereas

(0,0,1,2,1) represents the diseased behavior leading to hyperin-

flammation. Since BTK is the initiator for this BRN, the state

(1,0,0,0,0) was taken as the starting state. All possible trajectories

from this starting state leading to the normal and diseased states

were identified (Figure 4). The trajectories leading to the sink

(0,0,0,0,0) are representatives of a normal behavior against

infection, where inflammation is produced to clear the infection

and diminished afterwards.

HyTech Results for Delay Constraints
All possible transitions of normal (towards (0,0,0,0,0)) and

divergent (towards (0,0,1,2,1) pathways are highlighted in Figure 4

and the corresponding conditions are listed in Table 1. The state

(1,0,0,0,0) is the initial state of the hybrid model. There are two

Figure 3. State graph of the MAL associated BRN. The complete state graph is obtained by using the GENOTECH tool. Definitions 2 and 4 assist
in setting the values of the K-parameters. The K-parameters are set such that they result in a model coherent with the observed steady states behaviors. In the
case of MAL-associated BRN these states are (0,0,0,0,0) and (0,0,1,2,1). In the state (0,0,0,0,0) the system does nothing when there is no signal of pathogen or
returns to this state after proper response. In the state (0,0,1,2,1), the system produces inflammation continuously. The set of logical parameters is:
KBTK (fg)~0, KMAL(fg)~0, KMAL(fSOCS{1g)~0, KMAL(fBTKg)~1, KMAL(fBTK ,SOCS{1g)~1, KNF{kB(fg)~0, KNF{kB(fSOCS{1g)~0,
KNF{kB(fINCYg)~1, KNF{kB(fMALg)~1, KNF{kB(fINCY ,SOCS{1g)~1, KNF{kB(fMAL,INCYg)~1, KNF{kB(fMAL,SOCS{1g)~1,
KNF{kB(fMAL,INCY ,SOCS{1g)~1, KINCY (fg)~0, KINCY (fNF{kBg)~2, KSOCS{1(fg)~0 and KSOCS{1(fINCYg)~1.
doi:10.1371/journal.pone.0033532.g003

Figure 4. Normal and Divergent paths. Each circle represents a particular state (configuration) and inside the circle the values 0,1 and 2
represent qualitative levels of proteins according to the order (BTK, MAL, NF-kB, INCY, SOCS-1). The solid lines show the transition which leads to
normal state (0,0,0,0,0) and the dotted lines show the transitions towards the state of hyperinflammation (0,0,1,2,1). The conditions for all the
transitions in this figure are given in Table 1.
doi:10.1371/journal.pone.0033532.g004
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possible outer transitions which are towards (0,0,0,0,0) and

(1,1,0,0,0) from the initial state. The constraint dz
MAL§d{

BTK

shows that if the deactivation (or degradation) delay of BTK is less

than or equal to the activation delay of MAL, then the next

location of the system will be (0,0,0,0,0), which is a stable state

representing normal behavior. The transition (1,0,0,0,0)?
(1,1,0,0,0) (Figure 4 and Table 1 - Transition 1) can only occur

if the positive delay of MAL (dz
MAL) is less than or equal to the

degradation delay of BTK (d{
BTK ), i.e. if the rate of activation of

MAL is faster than the rate of degradation of BTK. The transition

(1,1,0,0,0)?(0,1,0,0,0) can only occur if the sum of the activation

delays of MAL and NF-kB will be greater than or equal to the

degradation delay of BTK (see transition 2 in Table 1). The

transition (0,1,0,0,0)?(0,1,1,0,0) will occur unconditionally

because there is only one outer transition from state (0,1,0,0,0)

and this will occur after some delay (dz
NFkB) which is needed to

activate NF{kB. The transitions which lead to divergence from

normal pathways (shown as dotted lines in Figure 4) are important

because these can provide useful information about the BRN

dynamics. The state (0,1,1,1,0) has two transitions, one towards a

normal and the other towards a divergent path (see Figure 4,

transitions 5 and 15). The transition (0,1,1,1,0)?(0,1,1,1,1) is

only possible if SOCS-1 becomes active before the cytokines

reaches level 2 (INCY2). If this is not the case, then the net-

work will be in state (0,1,1,2,0), which ultimately leads to the

diseased state (0,0,1,2,1). Another very sensitive transition is

(0,0,1,1,1)?(0,0,1,2,1), which directly leads into a diseased state

due to the high level of cytokines (level 2). In order to follow a

particular path all conditions (see Table 1) of individual transitions

must be satisfied. The conditions for all paths leading to the stable

states are given in Table 1 and 2 respectively. All the constraints of

Table 1 and 2 were computed in 0:24 seconds on Intel Core i7

machine.

Discussion

MAL is imperative for TLR2/4 downstream signaling, acting

both as an adapter sorter by bringing in other adapter proteins to

the TLR cytoplasmic TIR domain. It also acts as a site for the

assembly of several kinases important for downstream signal

transduction leading to inflammation. Although production of

inflammation in response to infection is not just limited to the TLR

Table 1. Delay constraints for transitions.

Transition number Transitions Conditions for the transitions

1 10000?11000 dz
MALƒd{

BTK

2 11000?01000 d{
BTK ƒdz

MALzdz
NFkB

3 01000?01100 dz
NFkB§0

4 01100?01110 dz
INCY §0

5 01110?01111 dz
SOCSƒdz

INCY2

6 01111?00111 d{
MALzdz

SOCS{1ƒdz
INCY 2

7 00111?00011 d{
MALzd{

NFkBzdz
SOCS{1ƒdz

INCY2

8 00011?00001 d{
INCY §0

9 00001?00000 d{
SOCS{1§0

10 11000?11100 dz
MALzdz

NFkBƒd{
BTK

11 11100?01100 d{
BTK ƒdz

MALzdz
NFkBzdz

INCY

12 11100?11110 dz
MALzdz

NFkBzdz
INCY ƒd{

BTK

13 11110?01110 d{
BTK §dz

MALzdz
NFkBzdz

INCY zdz
SOCS{1

14 11110?11111 dz
SOCS{1ƒdz

INCY2

15 11111?01111 d{
BTK ƒdz

MALzdz
NFkBzdz

INCY zdz
INCY2

16 11110?11120 dz
INCY2ƒdz

SOCS{1

17 11120?01120 dz
MALzdz

NFkBzdz
INCY zdz

SOCS{1ƒd{
BTK

18 11121?01121 d{
BTK §0

19 01121?00121 d{
MAL§0

20 11120?11121 dz
MALzdz

NFkBzdz
INCY zdz

INCY 2ƒd{
BTK

21 01120?01121 dz
SOCS{1§0

22 11111?11121 d{
BTK §dz

MALzdz
NFkBzdz

INCY zdz
INCY2

23 01110?01120 dz
INCY2ƒdz

SOCS{1

24 00111?00121 d{
MALzd{

NFkBzdz
SOCS{1§dz

INCY2

25 10000?00000 dz
MAL§d{

BTK

26 01111?01121 dz
INCY2ƒd{

MALzdz
SOCS{1

The delay constraints of all paths starting from state (10000) are automatically generated by HyTech. Constraints related to paths identified (Figure 10) are arranged in
tabular form as shown in Table 2. dz

i (resp. d{
i ) is the delay for the evolution of a protein i from level 0 to 1 (resp. from level 1 to 0). Similarly, dz

i2 (resp. d{
i2 ) is the delay

for the evolution of a protein i from level 1 to 2 (resp. from level 2 to 1).
doi:10.1371/journal.pone.0033532.t001
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pathway, studies by Khor et al. and others have indicated a

putative role of MAL in the pathogenesis of CM due to

hyperinflammation [8,16–18]. In this study we use discrete

qualitative and hybrid modeling with delay constraints to

characterize the behavior of MAL associated BRN.

Discrete Modeling
A qualitative discrete model based on the kinetic logic of

Thomas is obtained using GENOTECH by providing it

information of component interactions and their respective

threshold concentration levels. The GENOTECH results are

Table 2. Delay constraints for paths.

10000?00000:dz
MAL§d{

BTK

10000?11000?01000?01100?01110?01111?00111?00011?0001?00000:

(dz
MALƒd{

BTK )^ (d{
BTK ƒdz

MALzdz
NFkB)^ (dz

NFkB§0)^ (dz
INCY §0)

^ (dz
SOCS{1ƒdz

INCY2)^ d{
MALzdz

SOCS{1ƒdz
INCY2

^ (d{
MALzd{

NFkBzdz
SOCS{1ƒdz

INCY 2)^ (d{
INCY §0)^ (d{

SOCS{1§0)

10000?11000?11100?01100?01110?01111?00111?00011?0001?00000:

(dz
MALƒd{

BTK )^ (dz
MALzdz

NFkBƒd{
BTK )^ (d{

BTKƒdz
MALzdz

NFkBzdz
INCY )

^ (dz
INCY §0)^ (dz

SOCS{1ƒdz
INCY2)^ d{

MALzdz
SOCS{1ƒdz

INCY 2

^ (d{
MALzd{

NFkBzdz
SOCS{1ƒdz

INCY 2)^
(d{

INCY §0)^ (d{
SOCS{1§0)

10000?11000?11100?11110?01110?01111?00111?00011?0001?00000:

(dz
MALƒd{

BTK )^ (dz
MALzdz

NFkBƒd{
BTK )^ (dz

MALzdz
NFkBzdz

INCY ƒd{
BTK )

^ ((d{
BTKƒdz

SOCS{1)^ (d{
BTK ƒdz

INCY 2))^ (dz
SOCS{1ƒdz

INCY 2)

^ d{
MALzdz

SOCS{1ƒdz
INCY2

(d{
MALzd{

NFkBzdz
SOCS{1ƒdz

INCY2)^ (d{
INCY §0)^ (d{

SOCS{1§0)

10000?11000?11100?11110?11111?01111?00111?00011?0001?00000:

(dz
MALƒd{

BTK )^ (dz
MALzdz

NFkBƒd{
BTK )^ (dz

MALzdz
NFkBzdz

INCY ƒd{
BTK )

^ (dz
SOCS{1ƒdz

INCY2)^ (d{
BTK ƒdz

MALzdz
NFkBzdz

INCY zdz
INCY 2)

^ d{
MALzdz

SOCS{1ƒdz
INCY2 ^ (d{

MALzd{
NFkBzdz

SOCS{1ƒdz
INCY 2)

^ (d{
INCY §0^ d{

SOCS{1§0)

10000?11000?01000?01100?01110?01111?00111?00121:

(dz
MAL§d{

BTK )^ (d{
BTK ƒdz

MALzdz
NFkB)^ (dz

NFkB§0)^ (dz
SOCS{1ƒdz

INCY 2)

^ d{
MALzdz

SOCS{1ƒdz
INCY2 ^ (dz

INCY2ƒd{
NFkB)

10000?11000?01000?01100?01110?01120?01121?00121:

(dz
MAL§d{

BTK )^ (d{
BTK ƒdz

MALzdz
NFkB)^ (dz

NFkB§0)^ (dz
SOCS{1ƒdz

INCY 2)

^ (dz
INCY2ƒdz

SOCS{1)^ (d{
SOCS{1§0)^ (d{

MAL§0)

10000?11000?11100?11110?11120?11121?01121?00121:

(dz
MALƒd{

BTK )^ (dz
MALzdz

NFkBƒd{
BTK )^ (d{

BTKƒdz
MALzdz

NFkBzdz
INCY )

^( dz
INCY §0)^ (dz

INCY2ƒdz
SOCS{1)^ (dz

MALzdz
NFkBzdz

INCY zdz
INCY2ƒd{

BTK )

^ (d{
BTK§0)^ (d{

MAL§0)

10000?11000?11100?11110?11120?01120?01121?00121:

(dz
MALƒd{

BTK )^ (dz
MALzdz

NFkBƒd{
BTK )^ (d{

BTKƒdz
MALzdz

NFkBzdz
INCY )

^ (dz
INCY §0)^ (dz

MALzdz
NFkBzdz

INCY zdz
SOCS{1ƒd{

BTK )

^ (dz
SOCS{1§0)^ (d{

MAL§0)

10000?11000?11100?11110?11111?11121?01121?00121:

(dz
MALƒd{

BTK )^ (dz
MALzdz

NFkBƒd{
BTK )

^ (dz
MALzdz

NFkBzdz
INCY ƒd{

BTK )

^ (dz
SOCS{1ƒdz

INCY2)^ (d{
BTK §dz

INCY2)^ (d{
BTK§0)^ (d{

MAL§0)

Delay constraints for the normal and diverging paths of Figure 10. All paths ending with the state (0000) are normal while others ending with (00121) are divergent. The
symbol ^ is the conjunction operator. dz

i (resp. d{
i ) is the delay for the evolution of a protein i from level 0 to 1 (resp. from level 1 to 0). Similarly, dz

i2 (resp. d{
i2 ) is the

delay for the evolution of a protein i from level 1 to 2 (resp. from level 2 to 1).
doi:10.1371/journal.pone.0033532.t002
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rendered as a state transition graph (Figure 3) referred to as the

MAL state space from here on and it represents different

configurations the system may reside in as an inflammatory

response is initiated. The two stable states or sinks generated

indicate two distinct behaviors for the system, parallel to the

normal and diseased behaviors, and any configuration of the

system may eventually move toward either of these two sinks

through specific trajectories or paths (Figure 3 and 4). These two

states are (0,0,0,0,0), indicating zero concentration for every

component; and (0,0,1,2,1), indicating zero concentration for

BTK and MAL, one for NF-kB, two for INCY and one for

SOCS-1 respectively. The sink (0,0,0,0,0) represents the normal

behavior where inflammation is produced in response to infection

and the system reverts to this resting state after mounting an

inflammatory response. In contrast, the sink (0,0,1,2,1) represents

a diseased behavior where INCY levels are very high and a

condition of hyperinflammation is produced. MAL state space

allows for transitions between different states forming trajectories

or paths that lead toward either the (0,0,0,0,0) or the (0,0,1,2,1)

sink and the significance of these transitions is that they represent

the indigenous ability of the system to attain stability.

The complete state space is very large and it becomes important

to isolate key trajectories that lead either to a normal or diseased

sink. The shortest possible route toward the normal sink was

identified and used as the reference trajectory (Figure 4). Small

divergences from this trajectory that culminate at the normal state

were also identified. Other critical divergences were those that lead

to the diseased state and these present the perturbations the system

may encounter. Divergences that eventually lead to the normal

state indicate perturbations that the system can tolerate, while

divergences that can only lead to the diseased state are

perturbations that put too much stress on the system resulting in

a collapse of the system controls.

This MAL state space suggests that the system maintains the

capacity to stabilize itself after perturbations as long as the

concentration of INCY for any particular state within the system

remains at level 1. But once the concentration of INCY attains

level 2, the system enters trajectories that lead only to the sink

(0,0,1,2,1), representing the diseased behavior. It is important to

note that the threshold concentration level for INCY for the

diseased state is 2. This indication is supported by the

experimental observations made in the case of bacterial sepsis

where the pathogenesis is associated with the over production of

INCY and hyperinflammation [40,41]. The pathogenesis and

tissue injury in case of sepsis is closely related to the severe malarial

pathogenesis [42].

Another important indication is that the moment INCY

appears, the system is at risk of entering trajectories that may

only lead to the diseased state (Figure 4, transitions 23 and 24). For

the normal trajectory the INCY concentration level is maintained

at 1, however when concentration level of 2 for INCY is acquired,

the system loses its capacity to revert toward normality and moves

towards the diseased state in a progressive manner. Furthermore,

since INCY are produced through several alternate pathways, the

Figure 5. Activation and degradation of entities. (A.) Sigmoidal (above) and Step function (below) representation of activation. (B.) Sigmoidal
(above) and Step function (below) representation of degradation (inhibition).
doi:10.1371/journal.pone.0033532.g005
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model suggests that if INCY levels are already elevated due to some

other reason, like prior inflammatory condition, the chance of the

system shifting towards diseased state elevates. The state (0,0,1,1,1)

is indicative of this where it culminates directly at the diseased state

with only one transition (Figure 4, transition 24). Moreover, the

model also indicates that an important component for this BRN

(apart from MAL) is BTK which remains constitutively active in the

cases where the divergence from the normal trajectory leads to the

diseased state (Figure 4, for example the trajectory with transitions

1, 10, 12, 14, 22, 18 and 19). BTK is important for activation of

MAL through phosphorylation, and this suggests that BTK may

also play an important role in pushing the system towards

hyperinflammation, and warrants further investigation.

Hybrid Modeling
The rate at which a component of a BRN is regulated in

relation to other components determines the direction of the

evolution of the system. These rates are proportional to the

threshold concentrations for each component and are modeled as

unvalued parameters with delays. HyTech [27] uses these delays

as unvalued parameters along with the discrete model of our BRN

to calculate the conditions, in the form of constraints that are

required for a transition between two states to occur. A path in the

model is a sequence of states leading to a particular stable steady

state and HyTech synthesizes the conditions for transitions

between the states (Table 1). The conjunctions of all the

constraints of the path constitute the conditions for that path to

be followed (Table 2). Only when these conditions are satisfied, the

system will reach a stable state representing either normal or

diseased behavior.

(1,1,1,1,0) ? (1,1,1,2,0) & (0,1,1,1,0) ? (0,1,1,2,0) (transitions

16 & 23): These transitions require that the rate of production of

INCY in order to reach high level (level 2) should be faster than

the induction of SOCS-1, suggesting that reducing high cytokine

levels and inducing SOCS-1 can help to avoid this transition.

(1,1,1,1,1) ? (1,1,1,2,1) (transition 22): The conditions for this

transition suggest that if BTK remains active for a long period of

time, the system will lead to the diseased state. This can be due to

continuous activation of MAL by BTK and adapting strategies to

prevent this is suggested.

(0,1,1,1,1) ? (0,1,1,2,1) & (0,0,1,1,1) ? (0,0,1,2,1) (transitions

26 & 24): These transitions suggests that the system may also move

towards diseased state due to multiple factors being involved that

include: high rate of production of INCY; slow rate of deactivation

of MAL, induction of SOCS-1, and deactivation of NF-kB. To

avoid these transitions, intervention at multiple levels is suggested

that include: reducing high cytokine levels, NF-kB and their

effects; faster rate of deactivation of MAL which in turn is affected

by higher rate of SOCS-1 induction; slower rate of activation of

MAL being controlled by BTK.

The conditions (Table 1) for transition between these states

imply that, to avoid hyperinflammation, strategies should be

designed that: i) inhibit continuous activation of MAL by BTK, ii)

reduce the effect of high cytokine levels and iii) induce SOCS-1.

Our results suggest that under certain conditions, MAL related

inflammatory response in malaria patients, may cause hyperin-

flammation leading to CM. We hypothesize that constitutively

active BTK keeps activating MAL to produce the diseased

behavior and may be an important drug target. BTK, a tyrosine

kinase enzyme, is an attractive drug target and inhibitors are

already being developed against it for a number of diseases like B-

cell lymphomas and some autoimmune disorders [43].

The rate at which INCY are produced within the system is

crucial and will determine its fate [44]. These key divergence states

Table 3. Table of states, resources and logical parameters.

xx xy xz Qxx
Qxy

Qxz
Kx(Qxx

) Ky(xxy
) Ky(Qxy

)

0 0 0 –} –} –} 0 0 0

0 0 1 fzg –} –} 1 0 0

0 1 0 –} –} fyg 0 0 1

0 1 1 fzg –} fyg 1 0 1

1 0 0 –} fxg –} 0 1 0

1 0 1 fzg fxg –} 1 1 0

1 1 0 –} fxg fyg 0 1 1

1 1 1 fzg fxg fyg 1 1 1

This table lists all the states, set of resources and logical parameters of the BRN in Figure 2.
doi:10.1371/journal.pone.0033532.t003

Figure 6. A toy BRN. A toy example of a BRN where x, y and z
represent biological entities. The labels ‘+’ and ‘1’ represent the
activation and the threshold concentration respectively.
doi:10.1371/journal.pone.0033532.g006
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have INCY at level 1 and the system is at risk of going into the

diseased state if these levels are further increased. Individuals can

have high INCY levels due to various reasons which may include

genetic predisposition, repeated exposure to infectious agents or

chronic inflammatory conditions. Such conditions may partially

explain prevalence of CM in some Sub Saharan African

populations where malaria is endemic all year round and cytokine

levels are high due to asymptomatic parasitaemia [45–49]. The

effects of high cytokine levels may be controlled through the use of

anti-inflammatory agents. A recent study by Franklin et al., 2011

[50], emphasizes the relationship between elevated levels of

inflammatory cytokines and CM. They report a promising strategy

for the management of malarial severity by interfering with the

release of cytokines through inactivation of TLRs using antago-

nists. This supports our second hypothesis that suggests an

association between a preexisting high level of cytokines and the

progression of malaria towards CM. We suggest that such

individuals or population groups may be more susceptible to

develop CM and this opens up new avenues for future

investigations.

Conclusions
The normal (inflammatory) and abnormal behaviors (hyperin-

flammatory), presented by this qualitative model are consistent

with experimental observations. They are commonly observed

among population groups where in some the malarial infection is

Figure 7. State graph. The state graph of the BRN in Figure 3. Each
node represents a qualitative (discrete) state of the BRN. The values
inside a state represent the concentrations of the entities x, y and z.
doi:10.1371/journal.pone.0033532.g007

Figure 8. Snapshot of the MAL associated BRN construction in GENOTECH. The BRN is constructed as a directed graph by using the Gene’
New and Interaction’New menu options. An edge between two entities shows an interaction which is labeled with threshold and the sign of
interaction (+for activation and 2for degradation).
doi:10.1371/journal.pone.0033532.g008
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cleared after a normal inflammatory response, while in others

severe malaria (CM) may develop due to hyperinflammation.

This study suggests an association between pre-existing high

cytokine levels and progression of malaria towards CM, and opens

up new avenues of investigation. This means that screening

population groups, in areas where CM is endemic, for inflamma-

tory cytokine levels may help identify ‘at risk’ individuals. This can

be used as a predictive indicator that such an individual may

progress towards CM. Multiple strategies that interfere with the

TLR signal transduction, e.g. the use of BTK inhibitors and

antinflammatory agents along with existing treatments should be

further explored.

This study also shows that formal methods can support BRN

modeling, which in turn facilitates state space exploration and

trajectory computation. In future we plan to conduct the formal

probabilistic analysis [51] to gain more insight into the MAL

signaling network.

Materials and Methods

Qualitative modeling
Biological systems are traditionally modelled with ordinary

differential equations that refer to the time derivative of each

quantity (concentration, rates and temperature etc.). Due to the

inherent complexity of biological systems, the exact amounts of

these quantities are rarely known. In 1970, René Thomas [38]

introduced a Boolean logic based method for the modeling of

biological regulatory networks in which the system dynamics are

modelled qualitatively. He proved the effectiveness of his modeling

approach by analyzing the lambda phage genetic switch [38,52–

55]. According to René Thomas, the Boolean modeling suffers from

some limitations because it has only two levels, 0 or 1, which are not

sufficient to formalize all kinds of relevant problems. Later on,

Thomas generalized the Boolean logic to ‘kinetic logic’ [28–36] and

showed its practical effectiveness by applying it to different genetic

regulatory systems. An interesting feature of ‘kinetic logic’ is that it

closely approximates the differential equations based modeling [29].

The Kinetic Logic formalism of René Thomas
The kinetic logic formalism models BRNs by focussing on

threshold effects. The entities (usually proteins) of biological

systems can interact with each other either positively or negatively;

that is the concentration level of one element can increase or

decrease the rate of activation of other elements. In our setting

activation means production of a particular protein, if it is absent,

or its activation from an inactive state. Similarly, inactivation

Figure 9. Snapshot of the logical parameters. Each entity of the BRN is assigned a set of logical parameters by using the properties option
accessible by right clicking that entity.
doi:10.1371/journal.pone.0033532.g009
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means inhibition of a particular protein or its degradation.

Following are the two types of biological regulation which are of

sigmoid (nonlinear bounded curve) nature.

Activation
If a product a increases the rate of activation of product b, it is a

positive regulator. In this situation the rate of activation of b

increases with increasing concentration of a , which can be

depicted by a sigmoidal representation as shown in Figure 5. It can

be seen that there is little effect of a on the rate of activation of b

for as long as it remains below a given threshold, h. Once a

reaches this threshold, the rate of activation of b increases rapidly

until b is saturated. In other words we can say that a was ‘inactive’

when avh and ‘active’ for a§h, this suggests the approximation

of the sigmoidal curve by a step function as shown in Figure 5(A.).

Inhibition
If product a reduces the rate of activation of product b, it is

called a negative regulator or inhibitor. The effect of this negative

regulation or inhibition is shown in Figure 5(B.).

Semantics of the Kinetic Logic Formalism
This section presents the semantics of Thomas’s formalism with

a hypothetical running example of a gene regulatory network

involving three genes (x, y and z).

Definition 1 (Directed Graph). A directed graph is an ordered

pair G(N,E), where

N N is the set of all nodes and

N E(N|N is the set of ordered pairs called edges or arcs

An edge (a,b) is considered to be directed from a to b; a is called

the head and b is called the tail of the edge. In a directed graph

G(N,E), G{(x) and Gz(x) denote the set of predecessors and

successors of a node x[N, respectively.

Figure 6 shows a network represented by a directed graph

showing the genes in which N~fx,y,zg and E~f(x,y),
(y,z),(z,x)g are the sets of nodes and edges, respectively. In case

of gene x, (The set of regulators of x) G{(x)~fzg and

Gz(x) = fyg represents the predecessors and successors of x.

Definition 2 (Biological Regulatory Network). A biological

regulatory network (BRN) is a labeled directed graph G(N,E), where N is a

Figure 10. Snapshot of the state graph in GENOTECH. The stable states are highlighted in red. The right panel shows the analysis command
which include: show path which highlights paths between two selected states; show cycle which highlights existing cycles (closed path), if any, in the
state graph; show neighboring states highlights all the neighboring states of the selected state. The conversion menu contains the commands to
export the graph to DOT and HyTech formats.
doi:10.1371/journal.pone.0033532.g010

Modeling and Analysis of the MAL-Associated BRN

PLoS ONE | www.plosone.org 12 March 2012 | Volume 7 | Issue 3 | e33532



set of nodes which represents biological entities and E(N|N , is a set of all

possible edges which represent the interaction between entities.

N Each edge x?y is labeled by a pair (jxy,gxy), where jxy is

positive integer (qualitative level representing a threshold) and

gxy is either the (+) sign or the (2) sign, where (+) represents

activation and (2) inhibition. For an example see Figure 6,

where jxy~1, jyz~1, jzx~1 and similarly gxy~z, gyz~z,

gzx~z.

N Each node x has a limit px, which is equal to out-degree of x

(the total number of targets of x), such that Vy[Gz(x) each

jxy[f1,2,::::,rxg where rxƒpx.

N Each entity x has its abstract concentration in the set

Zx~f0,1,::::,rxg.

It is important to consider the possible number of states and

transitions between them to understand the behavior of the BRN.

Definition 3 (States). Let G be a BRN. The state of a BRN is a

tuple s[S, where

S~Pa[N Za

The qualitative states are represented by vector (sxa
)Va[N , where

xa denotes the level of concentration of product a. A qualitative

state represents a configuration of all the elements of a BRN at any

instant of time. The number of activators of a particular variable at

a given level of concentration are represented by its set of resources

(see the definition of Resources given below). In the following

definition, we formally define the set of resources which represents

all the activators of an entity at any instance of time.

Definition 4 (Resources). Let G be a BRN. The set of resources

Qxa
of a variable a[N at a level x is defined as Qxa

= fb[G{(a)D
(xb§jba and gba~z) or (xbvjba and gba~{)g.

The dynamic behaviors of BRN depends on logical parameters.

The set of these logical parameters is defined as

K(G)~fKa(Qxa
)[ZaVa[Ng.

The parameter Ka(Qxa
) (at a level x of a) gives the information

about the evolution of x. There are three cases: 1) if xavKa(Qxa
) then

xa increases by one unit, 2) if xawKa(Qxa
) then xa decreases by one

unit, and 3), if xa~Ka(Qxa
) then xa cannot evolve from its current

level. In case of the running example of three genes (Figure 6), the set of

resources and logical parameters are shown in Table 3.

It is convenient to describe the evolution from one level to the

other by an evolution operator [56], which is defined as follows:

xa Ka(Qxa )~

xaz1 if xa v Ka(Qxa ) ;

xa{1 if xa w Ka(Qxa ) ;

xa if xa ~ Ka(Qxa ) :

8><
>:

where xa and Ka(Qxa )[Z§0

Definition 5 (State Graph). Let G be a BRN and sxa
represents

the concentration level of entity a in a state s[S. Then the state graph of the

BRN will be the directed graph G~(S,T) , where S is set of states and

T(S|S represents a relation between states, called the transition relation,

such that s?s’[T if and only if:

1. A a unique aeN such that sxa
=sxa

0 and sxa

0~sxa
Ka(Qxa

), and

2. V beN\fagsxb

0~sxb
.

From the table of resources (Table 3), interesting information

regarding its dynamic behavior can be derived, c.f. Figure 7. It is

clear from the state graph that there are two stable states, namely

(000) and (111).

Discrete Modeling of MAL associated BRN using
GENOTECH

GENOTECH [26] facilitates modeling of BRNs according to

Thomas’ formalism. It takes a BRN and the corresponding logical

parameters form a user in a simple graphical user interface (GUI).

It automatically produces the whole state space in which stable

states, cycles and paths between any two states can be identified.

The software tool GINsim (Gene Interaction Network simulation)

[57] could also be used for the qualitative modeling and analysis of

BRNs. GENOTECH is available for download at http://code.

google.com/p/genotech/downloads/list and the following step

are required for modeling a BRN in GENOTECH.

1. Construction of a BRN as a labeled directed graph: The GUI

of GENOTECH provides a set of commands to create, edit

and save a BRN. The two drop down menus Gene and

Interaction are used to construct the nodes and edges of a BRN

respectively; and each biological entity is assigned a set of

logical parameters (see Figure 8 and 9).

2. Generation of a state graph: After the construction of the BRN,

a state graph can be generated by using the command state

graph in the File menu. The state graph, showing stable states

in red, appears in a new window with its own set of commands

to find cycles, paths between two states, and neighboring states

(see Figure 10). GENOTECH also provides an option to save

the state graph in DOT format [58] for visualization in

Graphviz tool [59].

Figure 11. Timing diagram. Timing diagram showing the evolution
of proteins involved in BRN. Here the concentrations are represented by
two levels x and x+1 on the vertical axis. The horizontal axis represent
the time of evolution. The dotted lines are the boundaries of the
different configurations of the discrete concentrations. Each configu-
ration is according to the order (BTK , MAL, NF-kB, INCY, SOCS-1).
doi:10.1371/journal.pone.0033532.g011

Modeling and Analysis of the MAL-Associated BRN

PLoS ONE | www.plosone.org 13 March 2012 | Volume 7 | Issue 3 | e33532



The complexity of a state graph increases depending on the

number of entities, their interactions, thresholds and logical

parameters. In order to make this method more scalable, a

simplification technique based on the coloration method, which

extracts the desirable parts of the state graph, has been proposed in

our previous work [60] – the future versions of GENOTECH will

implement this technique.

Figure 1 shows the TLR2/4 molecular pathway adapted from

literature [15,24,25]. The MAL associated BRN was abstracted

from this pathway and is shown in Figure 2. The Network flow is

as follows: BTK activates MAL and MAL activates NF-kB after

reaching threshold level of 1; INCY are activated by NF-kB at a

threshold level of 1; there are two interactions of INCY which are

the activations of SOCS-1 and NF-kB at level 1 and level 2

respectively; and SOCS-1 inhibits MAL and NF-kB at threshold

level 1. Using the Thomas’ formalism presented in the previous

section, preliminary insilico experiments were performed to set the

threshold orders and to determine the values of logical parameters

(see Figure 3) in order to make the model consistent with naturally

observed behaviors (steady states).

Hybrid modeling to enhance the discrete modeling with
delays

A hybrid model of a BRN involves discrete locations associated

with some continuous variables (clocks). The continuous transi-

tions represent time that elapses in a location, whereas discrete

transitions show the instantaneous change between locations [61].

The timing diagram of one normal path is shown in Figure 11. It

depicts proteins evolving from one level to another (from x to x+1

or x+1 to x) in a discrete fashion (Figure 12). In reality, however,

the concentrations of these proteins evolve in a nonlinear and

continuous manner and this behavior cannot be represented in a

discrete modeling framework. Various formalisms [62,63] have

been proposed for biological modeling to overcome this limitation

of discrete modeling. Ahmad et al. [64] proposed the refinement of

discrete modeling by hybrid modeling, where sigmoidal nature

evolutions are modelled with piecewise linear curves. This

contrasts discrete modeling, in which these evolutions are

modelled using step functions (Figure 12). Considering that a

delay is required for the evolution of a protein from level x to

xz1, or from xz1 to x, it is important to introduce some

additional concepts, namely time intervals and clocks.

The approach of Siebert and Bockmayr [63] is similar to our

approach. The authors incorporate time delays in the logical

formalism of René Thomas using timed automaton [65] which is a

more restrictively expressive model than hybrid automaton, since

it does not deal with non-increasing variables.

Clocks are continuous variables used in timed automaton based

models [65], which are a subclass of hybrid automata [66]. Each

protein is associated with a clock variable h that synchronously

evolves with time. These clock intervals reflect the characteristics

of continuous dynamics within the available discrete formalism

[61,64]. The time measured by the clock variable h between two

levels is called the delay between these levels. The initial value of

the clock variable is set to zero and when the value of this clock

variable is equal to delay time dz or d{ the transition between

Figure 12. Different representations of the evolution of an entity. Evolutions of an entity a is shown as: sigmoidal representation of the
activation (A.), discrete approximation of the activation (B.), piece-wise linear approximation of the activation (C.), sigmoidal representation of the
degradation (D.), discrete approximation of the degradation (E.) and piece-wise linear approximation of the degradation (F.).
doi:10.1371/journal.pone.0033532.g012
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two levels takes place. The delays dz or d{ represents time taken

from x to xz1 (positive delay or production delay) or xz1 to x

(negative delay or degradation delay), respectively (Figure 12). The

speed by which the clock variables h evolve is modelled by the first

order derivatives dh=dt~r, where r lies in the set f0,1g. This value

characterizes the evolution of the associated variable, which

normally represents the concentration level of a protein [61,64].

We thus obtain a hybrid model that is suitable to represent the

discrete and continuous dynamics of the systems that we consider.

In this work, delays are considered as unvalued parameters, which

motivate the introduction of Parametric Bio Linear Hybrid

Automata (Bio-LHA) for the modeling of the MAL associated

BRN, as presented in the next subsection.

Parametric Bio-LHA
Parametric Bio-LHA was originally proposed by Ahmad et al.

[26] for the linear hybrid modeling of BRN. This framework

refines the discrete (qualitative) model by incorporating clocks and

time delays in it. The resultant model is then suitable for the

computation of exact conditions in the form of delay constraints

for the existence of the behaviors of BRN.

Let C~(X ,P) (resp. Cƒ(X ,P)) be the set of constraints using

only ~ (resp. ƒ) where X and P are the sets of real valued

variables and parameters respectively.

Definition 6 (Parametric Bio-LHA). A parametric Bio-LHA

H is a tuple (L,l0,X ,P,E,Inv,Dif ) where

N L is a finite set of locations.

N l0[L is the initial location.

N P is a finite set of parameters (delays).

N X is a finite set real-valued variables (clocks).

N E(L|C~(X ,P)|2X |L is a finite set of edges, e~(l,g,R,l’)[E

represents an edge from the location l to the location l’ with the

guard g and the reset set R(X ; we require that the set of clocks in

g is a subset of R.

N Inv : L?Cƒ(X ,P) assigns an invariant to any location.

N Dif : L|X?f0,1g maps each pair (l,h) to an evolution rate.

The semantics of a parametric Bio-LHA is a timed transition

system. We define the semantics according to the time domain T.

We let T�~T\f0g.
Definition 7 (Semantics of Bio-LHA). Let c be a valuation for

the parameters P and n represents the values of clocks in a location. The

(T,c)-semantics of a parametric Bio-LHA H~(L,‘0,X ,P,E,Inv,Dif ) is

defined as a timed transition system SH~(S,s0,T,?) where: (1)

S~f(‘,n) D‘[Landn � Inv(‘)g; (2) s0 is the initial state and (3) the

relation ?(S|T|S is defined for t[T as:

N discrete transitions: (‘,n)
0

(‘’,n’) iff A(‘,g,R,‘’)[E such that

g(n)~true, n’(h)~0 if h[R and n’(h)~n(h) if h =[R.

N continuous transitions: For t[T�, (‘,n)
t

(‘’,n’) iff ‘’~‘, n’(h)~
n(h)zDif (‘,h)|t, and for every t’[½0,t�, (n(h)zDif (‘,h)|
t’) � Inv(‘).

The partial Bio-LHA of the MAL associated BRN is shown in

Figure 13. For the sake of simplicity, only three locations are

considered in this model. The inequalities, such as (hBTKƒd{
BTK ),

represent invariants or the stay conditions for the BRN to remain

in a particular configuration (location). For example,

(hBTKƒd{
BTK ) requires that the clock variable hBTK of BTK

should be less than or equal to the degradation delay (time

required to change level xz1 to x ) of BTK.

The rate dhBTK (HyTech representation of dhBTK/dt)

provides an indication about the evolution from one level to

another. The clock variables hi (i-th protein) measure the time

taken by associated proteins in a particular level, and clocks are set

to zero once the transition has occurred. The complete Bio-LHA

involves forty eight locations and five clock variables associated

with each protein involved in the BRN (Figure 2).

The next section presents the investigation of causality

conditions for the normal and the divergent behaviors.

Synthesis of delay parameters using HyTech: A Linear
Hybrid Model checking approach

In this study, a Bio-LHA was used for the hybrid modeling of

the MAL associated BRN. As discussed above, the unvalued

delays represent parameters in the Bio-LHA. In order to analyze

this model, the linear hybrid model checking tool HyTech was

used, which is widely applied to the modeling and verification of

hybrid systems. The main motivation for using HyTech for the

analysis of this class of systems is its very rich set of analysis

commands as well as the parameter synthesis capabilities of this

tool (Table 1 and 2).

Figure 13. Bio-LHA. Partial view of Bio-LHA of the MAL associated
BRN. The labels 11000, 01000 and 11100 shows the state (configuration)
of BRN consisting of five entities (BTK, MAL, NF-kB, INCY, SOCS-1).
doi:10.1371/journal.pone.0033532.g013
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