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Abstract

How can we effectively regularize BERT? Although BERT proves its effectiveness in various
NLP tasks, it often overfits when there are only a small number of training instances. A
promising direction to regularize BERT is based on pruning its attention heads with a proxy
score for head importance. However, these methods are usually suboptimal since they
resort to arbitrarily determined numbers of attention heads to be pruned and do not directly
aim for the performance enhancement. In order to overcome such a limitation, we propose
AUBER, an automated BERT regularization method, that leverages reinforcement learning
to automatically prune the proper attention heads from BERT. We also minimize the model
complexity and the action search space by proposing a low-dimensional state representa-
tion and dually-greedy approach for training. Experimental results show that AUBER outper-
forms existing pruning methods by achieving up to 9.58% better performance. In addition,
the ablation study demonstrates the effectiveness of design choices for AUBER.

Introduction

How can we effectively regularize BERT (Bidirectional Encoder Representations from Trans-
formers) [1]? In NLP (Natural Language Processing), fine-tuning a large-scale pre-trained lan-
guage model has greatly enhanced generalization. In particular, BERT has demonstrated
effectiveness through improvements in many downstream NLP tasks such as sentence classifi-
cation and question answering.

Despite its recent success and wide adoption, fine-tuning BERT on a downstream task is
prone to overfitting due to overparameterization; BERT-base has 110M parameters and
BERT-large has 340M parameters. The overfitting worsens when the target downstream task
has only a small number of training examples. [1-3] show that datasets with 10,000 or less
training examples sometimes fail to fine-tune BERT.

To mitigate this critical issue, multiple studies attempt to regularize BERT by pruning
parameters or using dropout to decrease its model complexity [4-6]. Among these approaches,
we focus on regularizing BERT by pruning attention heads since pruning yields simple and
explainable results and it can be used along with other regularization methods. In order to
avoid combinatorial search, whose computational complexity grows exponentially with the
number of heads, the existing methods measure the importance of each attention head based
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data collection and analysis, decision to publish, or

on heuristics such as an approximation of sensitivity of BERT to pruning a specific attention
preparation of the manuscript.

head. However, these approaches are based on hand-crafted heuristics that are not directly
Competing interests: The authors have declared related to the model performance, and therefore, would result in suboptimal performance.

that no competing interests exist. Moreover, all the existing methods cannot find out the optimal number of the attention heads
to be pruned. Thus, the number has to be arbitrarily selected even though the optimal number
significantly differs depending on the tasks.

In this paper, we propose AUBER, an effective method for regularizing BERT. AUBER
overcomes the limitation of past attempts to prune attention heads from BERT by leveraging
reinforcement learning. When pruning attention heads from BERT, our method automates
this process by learning policies rather than relying on a rule-based policy and heuristics.
Thanks to the automation, AUBER does not require us to predetermine any of the key param-
eters, such as the number of the attention heads to be pruned. AUBER prunes BERT sequen-
tially in a layer-wise manner so as to avoid prohibitively large search space. For each layer,
AUBER extracts features that represent the state of the layer and feeds the features to the rein-
forcement learning agent to determine which attention head to prune from the layer. Among
numerous methods to represent the state, AUBER effectively summarizes the state of the layer
into a low-dimensional vector for the sake of the scalability of the reinforcement learning
agent. The final pruning policy found by the reinforcement learning agent is used to prune the
corresponding layer. Before AUBER proceeds to process the next layer, BERT is fine-tuned to
recapture the information lost due to pruning attention heads.

Fig 1 shows the superiority of AUBER compared to the existing methods for pruning BERT
attention head. An overview of AUBER transitioning from the second to the third layer of
BERT is demonstrated in Fig 2. Our contributions are summarized as follows:
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Fig 1. Performance of AUBER and its competitors on 4 GLUE datasets. AUBER successfully regularizes BERT model, enhancing the model
performance up to 9.58%. AUBER provides the best performance among the state-of-the-art BERT attention head pruning methods.

https://doi.org/10.1371/journal.pone.0253241.g001
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Fig 2. Overview of transitioning in AUBER. The figure shows the transition from Layer 2 to Layer 3 in AUBER with BERT-base.
https://doi.org/10.1371/journal.pone.0253241.g002

o Method. We propose AUBER to automatically learn how to effectively regularize BERT
exploiting reinforcement learning. AUBER is designed to carefully represent the state of
BERT with a low-dimensional vector and reduce the action search cost by the dually-greedy
pruning, a training method we proposed for AUBER.

o Analysis. We theoretically justify our design choice of using the L1 norm of the value matrix
of each attention head as an element of a state vector (see Theorem 1).

» Experiments. We perform extensive experiments and show that AUBER successfully regu-
larizes BERT improving the performance by up to 9.58% and outperforms other head prun-
ing methods. Through ablation studies, we empirically show that our design choices for
AUBER are effective.

In the rest of this paper, we first introduce the related works and preliminaries. Then, we
describe our proposed method and experimentally evaluate the performance of AUBER and
its competitors. The code for AUBER can be found in https://github.com/snudatalab/AUBER.

Related work
BERT regularization

To prevent overfitting of BERT on downstream NLP tasks, various regularization techniques
have been proposed. Variants of dropout improve the stability of fine-tuning large pre-trained
language models even when presented with a small number of training examples [6, 7]. Using
a slanted triangular learning rate schedule and discriminative fine-tuning has been proven to
effectively prevent overfitting [8]. [9] proposes SMART, which regularizes the BERT model by
smoothing it and preventing aggressive updates while [10] trains the BERT model with a
multi-task learning algorithm to remedy overfitting. Introducing adversarial training to
enhance the generalization of BERT has been tackled in [11]. Pre-training tasks have also been
modified for better regularization. Xu et al. [12] modify the pre-training task to additionally
predict previous sentences so that it can capture more correlation. Our method has definite
advantages since it can be used along with any of the aforementioned methods.

PLOS ONE | https://doi.org/10.1371/journal.pone.0253241 June 28, 2021 3/16


https://github.com/snudatalab/AUBER
https://doi.org/10.1371/journal.pone.0253241.g002
https://doi.org/10.1371/journal.pone.0253241

PLOS ONE

AUBER: Automated BERT regularization

BERT pruning

A number of studies have analyzed the effectiveness of pruning parameters in BERT. [13]
experimentally demonstrates overparameterization of BERT by showing that pruning 30-40%
of parameters hardly affects model performance. [14] finds out the best parameter pruning
strategy from the viewpoint of the lottery ticket hypothesis while [15] deploys reweighted L1
regularization with a proximal algorithm. However, these methods primarily aim to compress
the BERT model not to regularize it, and, therefore, no specific method to enhance the model
performance has been proposed.

Thanks to the unique structure of BERT that consists of multi-headed attention, studies on
the attention heads [16] and the structured attention head pruning [4, 5, 17, 18] have been con-
ducted as well. In [16], Kovaleva et al. reveal the information that each attention head contains
through qualitative and quantitative analysis. [4, 18] evaluate the importance of each attention
head by measuring heuristics such as the average of its maximum attention weight where the
average is taken over tokens in a set of sentences used for evaluation, or the expected sensitivity
of the model to attention head pruning. Their results show that a large percentage of attention
heads with low importance scores can be pruned without significantly impacting performance.
The approach to set L0 regularization term to minimize both the training loss and the number
of attention heads being used has also been presented [5, 17]. However, they usually yield sub-
optimal results since they predetermine the order in which the attention heads are pruned by
using heuristics.

Automation of neural network pruning

To automate the process of Convolutional Neural Network pruning, [19, 20] leverage rein-
forcement learning to determine the best pruning strategy for each layer. Important features
that characterize a layer are provided to a reinforcement learning agent to determine how
much of the current layer should be pruned. To the best of our knowledge, AUBER is the first
attempt to use reinforcement learning to prune attention heads from Transformer-based mod-
els such as BERT.

Preliminaries
Multi-headed self-attention

An attention function [21] maps a query vector and a set of key-value vector pairs to an output.
We compute the query, key, and value vectors by multiplying the input embeddings

EQ EX EV € RV with the parameterized matrices W? € R>" WK € R*", and WV € R*™
respectively, where N is the number of tokens in the sentence, and 1, m, and d are query, value,
and embedding dimension respectively. In other words, Q = ESW?, K = EXWX, v = YW,
where Q, K, and V are the matrices of the query, key, and value vectors respectively. In this
paper, we name the matrices W<, WX, and W" as query matrix, key matrix, and value matrix,
respectively, so as to distinguish them with Q, K, and V, which vary with the input data. Then,
the output of the attention function is formulated as

NG

where the softmax function is taken in a row-wise manner to compute the weighted sum of the

Att(EQ EX EY) = softmax(

)V, (1)

value vectors.
In multi-headed attention, H independently parameterized attention heads are applied in
parallel to project the input embeddings into multiple representation subspaces. Each attention
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head contains parameter matrices W< € R, Wk e R*>" and w) e R*™ wherei=1,2,
..., H. Output matrices of H independent self-attention heads are concatenated and projected

by a matrix W° € R"*? to obtain the final result. This process can be represented as:

MultiHeadAtt(E?, EX | EV) = Concat(Att, ,(E? EX EV))W©, (2)

where Att(EQ EX, EV) is the output of the attention function with W<, W¥, and W as the
parameterized matrices.

A self-attention function follows the same mapping methods as a general attention function
except that all the query, key, and value embeddings come from the same sequence. Likewise,
multi-headed self-attention is a multi-headed attention function that takes the input embed-
dings from a common sequence.

BERT

BERT [1] is a language representation model that has achieved state-of-the-art performance

on a variety of downstream language processing tasks. Its superior performance is attributed
to the well-designed pre-training techniques, the capability of considering bidirectional con-
text, and usage of the Transformer encoder [21], which is based on multi-headed self-atten-

tion. The model consists of an embedding layer, multi-layer encoders of Transformer, and a
task-dependent final fully connected layer. It is first pre-trained on masked language model

and next sentence prediction tasks. It is then fine-tuned on specific tasks including language
inference and question answering.

BERT-base has 12 layers of Transformer encoder blocks and each layer has 12 self-attention
heads; there is a total of 144 self-attention heads in BERT-base. Despite its success in various
NLP tasks, BERT sometimes overfits when the training dataset is small due to overparameteri-
zation. Thus, there has been a growing interest in BERT regularization through various meth-
ods such as dropout [6] and pruning [4, 5].

Deep Q-learning

Deep Q Network (DQN) [22] is one of the most widely used reinforcement learning strategies
to find out the optimal policy when the action space is discrete. It consists of a multi-layer neu-
ral network that takes a state s as an input and outputs a vector of action-value pairs for every
possible action; it is a function that maps a d,-dimensional state space to a d,-dimensional
action space. Here, value is the expectation of the total rewards under the consideration of a
decaying factor.

Two important features of the DQN algorithm are target network and experience replay.
The target network has the same architecture as that of the policy network, and its parameters
are copied every 7 steps from the policy network. It makes the training more stable by prevent-
ing the target network from being updated every step.

Experience replay introduces first-in-first-out memory buffer, replay memory, in order to
resolve the existing limitations. Without the memory buffer, the training samples are obtained
based only on the current state; therefore the samples have a strong correlation with each
other and are dominated by the optimal action. Experience replay stores transition tuples (i.e.
(state, action, reward, next state)) in the replay memory continuously, and a mini-batch ran-
domly sampled from the memory updates the parameters of the policy network. This elimi-
nates the detrimental correlation among the training samples and increases data efficiency by
allowing each training sample to contribute to multiple parameter updates.
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Methods

We propose AUBER, our method for automatically regularizing BERT by learning the best
strategy to prune attention heads from BERT. After presenting the overview of the proposed
method, we describe how we frame the problem of pruning attention heads into a reinforce-
ment learning problem. Then, we explain how states are represented in AUBER and provide a
justification for the process. The next section describes how AUBER reduces the extremely
large search space.

Overview

We observe that BERT is prone to overfitting for tasks with a few training data. However, the
existing head pruning methods rely on hand-crafted heuristics and hyperparameters, which
give sub-optimal results. The goal of AUBER is to automate the pruning process for successful
regularization. Designing such regularization method entails the following challenges:

1. Automation. How can we automate the head pruning process for regularization without
resorting to sub-optimal heuristics and manually selected hyperparameters?

2. Efficient and effective state representation. When formulating the automated regulariza-
tion process as a reinforcement learning problem, how can we represent the state of BERT
in a way useful for pruning and tractable for training?

3. Action search space scalability. BERT has many parameters and attention heads. How can
we handle prohibitively large action search space for pruning?

We propose the following main ideas to address the challenges:

1. Automated regularization with reinforcement learning. We exploit reinforcement learn-
ing, specifically DQN, with performance enhancement as a reward. DQN has shown supe-
rior performance for many tasks and is a natural choice for model-free and off-policy
learning [23], which is exactly our setting. Experience replay also allows efficient usage of
previous experiences and gives stable convergence [22].

2. Low-dimensional state representation with L1 norm of the value matrix. We represent
the state of a layer with a low-dimensional vector with L1 norm of the value matrix of each
attention head. We give a theoretical justification for the representation.

3. Dually-greedy pruning. To reduce the search space, we use two greedy methods: 1) we
prune layer-by-layer, and an action is performed only within a layer, and 2) in each layer,
we prune one attention head at a time and never retrieve the pruned heads to reduce the
search space.

Automated regularization with reinforcement learning

AUBER leverages reinforcement learning for efficient search of regularization strategy without
relying on heuristics. We exploit DQN among various reinforcement learning frameworks
that have shown superior performance in model-free and off-policy environments. The overall
flow is described in Fig 3. In this section, we explain the detailed settings of our reinforcement
learning framework.

State vector. There are numerous methods to summarize the input states for DQN by
deploying query, key, or value matrices, which are independent of the input data. For example,
a naive approach to directly use the whole query, key, and value matrices in the current layer
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Fig 3. Overall flow of training AUBER on a layer. AUBER trains DQN to find out the attention heads that should be pruned for a better
regularization following the illustrated steps.

https://doi.org/10.1371/journal.pone.0253241.9003

can represent the state of the layer. However, it gives complicated and high-dimensional state
representations which result in prohibitively large DQN. Thus, we aim to obtain a concise but
effective state representation and reduce the number of parameters in DQN.

Initial state. Each layer of BERT has multiple attention heads, each of which has its own
query, key, and value matrices. For layer [ of BERT, we derive the initial state s; using L1 norm
of the value matrix of each attention head. Further details for this computation is elaborated in
the next section.

Action. The action space of AUBER is discrete. For a BERT model with H attention heads
per layer, the number of possible actions is H + 1 (i.e. {1, 2, ..., H— 1, H, END}). When the
actiona € {1,2, ..., H—- 1, H} is chosen, the corresponding a™ attention head is pruned. The
action a = END signals the DQN agent to quit pruning. To facilitate exploration via off-policy
learning, actions are chosen in a decaying-epsilon-greedy manner: the agent chooses a random
action with the probability € that decays over time or otherwise selects an action based on the
current policy, where

€. .. — €.
initial “final
€E=¢€ T —— 3
final + e"ucﬁun/fdmy ( )

Here, 1,410, is the total number of actions taken by the agent up to the current episode,
€initia 1 the starting value of e (i.e. when #14¢j0n = 0), €/inar is the value that € converges to as 7,,.
tion — 00, aNd €gecqy is @ hyperparameter that adjusts the rate of decay of e.

Next state. After the i head is pruned, the value of i’ index of s, the H-dimensional state
vector of the layer , is set to 0. This modified state is provided as the next state to the agent.
This mechanism allows the agent to recognize which attention heads have been pruned and
decide the next best pruning policy based on past decisions. When the action a = END, the
next state is set to the terminating state which ends an episode.
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Reward. The reward of AUBER is the change in performance,

Aperf = current performance — previous performance, (4)

where current_performance is the performance of the current BERT model, and previous_per-
formance is the performance obtained from the previous state or the performance of the origi-
nal BERT model when no attention heads are pruned. The performance is evaluated with the
most suitable metric for each dataset.

To evaluate the reward, the training data are split into two sets: mini-training set and mini-
dev set. We use the mini-dev set for the reward evaluation and the mini-training set for the
fine-tuning, which will be described in the next paragraph.

If we set the reward simply as current_performance, DQN cannot capture the differences
among reward values if the changes in performance are relatively small. Setting the reward as
the change in performance has the normalization effect, thus stabilizing the training process of
the DQN agent. The reward for action a = END is a hyperparameter that can be adjusted to
encourage or discourage active pruning. In AUBER, it is set to 0 to encourage the DQN agent
to prune only when the expected change in performance is positive.

Fine-tuning. After the best pruning policy for layer / of BERT is found, the BERT model
pruned according to the best pruning policy is fine-tuned with a smaller learning rate. This
fine-tuning step is crucial since it adjusts the weights of the remaining attention heads to com-
pensate for the information lost due to pruning. We use the mini-training dataset for fine-tun-
ing. When all layers are pruned by AUBER, the final model is fine-tuned with the entire
training dataset with early stopping.

State representation

In order to make DQN scalable, we summarize the state of each layer into an H-dimensional
vector, where H is the number of attention heads in the layer. The initial state s; of layer [ of
BERT is computed through the following procedure. We first calculate the L1 norm of the
value matrix of each attention head in the layer I. Then, we standardize the norm values to
have a mean ¢ = 0 and a standard deviation ¢ = 1. Finally, the softmax function is applied to
the norm values to yield s;. The justification of using the L1 norm of the value matrix is given
by Theorem 1 which states that the L1 norm of the value matrix of a head upper bounds the L1
norm of its output matrix, which implies the importance of the head in the layer.

Theorem 1. For a layer with H heads, let N be the number of tokens in the sentence and m, n,
and d be the value, query, and embedding dimension respectively. Let E2, EX, EV € R™*“ be the
input query, key, and value embedding matrices, and W2 € R™", WX € R™", and W) € R*"
be the query, key, and value matrices of the i"head. Let O; be the output of the i head. Then,
| O, |I, < C|| WY ||,, where the constant C = N||E" ||, and the norm of the matrices is entrywise
norm: ||All; = Z; Tk |Ap-

Proof. For i" head in the layer, let

(EQW?)(EKWf)T>

softmax, = sojimax
fimas, = sofimas ()

and

v,=E'W/. (6)
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The output of the i head, O,, is evaluated as O, = softmax; v;. Then,

10,0, =3[0,

=1 k=1

= Z \((softmaxi)j_)T(Vi)-k|

(10)

Since the L1 norm of a vector is always greater than or equal to the L2 norm of the vector,

N m
101l < Z l (Soﬁma‘xi)j» I Z | (Vi) Il (11)
j=1 k=1
=N .l (12)
k=1
N m
=NY > Il (13)
j=1 k=1
N m
.
=NY > I(E) (W), (14)
j=1 k=1
N m
SNY Y IE Ll (W) e (15)
j=1 k=1
N m
= NY I E 1)1 (W), (16)
j=1 k=1
N m
SNYIE LD I (W), (17)
j=1 k=1
= N[ E" (L[ Wy I, (18)
All heads in the same layer take the same E" as input and N is constant. Thus,
10 1l < Cll Wi Iy (19)
for the constant C = N||E"||,.
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Theorem 1 implies that the importance of the i™ attention head in its layer is bounded by
the L1 norm of the head’s value matrix W/ Therefore, the L1 norm of the value matrix in each
head can be exploited to represent the state of the layer.

Dually-greedy search space pruning

The total number of attention heads in BERT-base is 144 as it consists of 12 layers each of
which has 12 attention heads. Naively designing actions would lead to 2'** possible actions
which are prohibitively large. Our idea to reduce the search space is dually-greedy pruning: we
prune layer-by-layer in a greedy manner (from lower to upper layers), and in each layer, we
greedily prune one single attention head at a time.

For each layer [ with H attention heads, the DQN agent receives an initial layer embedding
s; which encodes useful characteristics (L1 norm of the value matrix in each attention head) of
this layer. Then, the agent outputs the index of an attention head that is expected to increase
the training performance when removed. After an attention head i is pruned, the value of the
i™ index of 5, is set to 0, and it is provided as the next state to the agent. This process is repeated
until the action a becomes END, which means pruning more heads would deteriorate the
model performance. The model pruned up to layer / is fine-tuned on the mini-training dataset,
and a new initial layer embedding s, is calculated from the fine-tuned model.

Algorithm 1 illustrates the process of AUBER. AUBER receives a BERT model B;, which is
fine-tuned on a specific task ¢, the parameters L and H for BERT, and the number E of rein-
forcement learning episodes. AUBER aims to output the regularized B,. Lines 2-30 are con-
ducted in a layer-wise manner. In line 2, we initialize a policy network P and a replay memory
M for layer I. Lines 3-28 train the policy network P for E episodes. For each episode, lines 8-25
choose an action based on the current state vector s;, prune an attention head based on the
action, compute the resulting reward and the next state s;, and store the transition tuple into
the memory M. This process is repeated until action = END, which indicates the termination
of pruning,. In line 27, we optimize P with transition tuples sampled from M. After the training
of the policy network is finished, in lines 29-30, we use the trained policy network to find the
optimal pruning policy for layer [, prune B, according to the policy, and finally fine-tune B,.
After pruning a layer I, we proceed to prune the next layer I + 1 up to the final layer L.

Algorithm 1: AUBER: Automated BERT regularization
Input: A BERT model B, fine-tuned on task t, # L of layers in BERT
model, # H of attention heads per layer of BERT model, and # E of
episodes.
Output: Regularized B;.
1 for 1 «— 1 to L do
2 Initialize policy network P and replay memory M
3 for e« 1 to E do
4 B —copy(B)
5 s, < Br.state_vector(l)
6 previous performance «— eval(BY)
7 while action # END do
8 if B;.oneheadleft then

9 action « END

10 else

11 action < P.choose action(s;)
12 end

13 if action = END then

14 sy « Terminal State

15 reward «— 0

16 else

PLOS ONE | https://doi.org/10.1371/journal.pone.0253241 June 28, 2021 10/16


https://doi.org/10.1371/journal.pone.0253241

PLOS ONE

AUBER: Automated BERT regularization

17 B: .prune head(action)

18 5 — copy(s)

19 s;laction] 0

20 currentperformance < eval(B;)

21 reward < current performance-previous performance
22 previous performance < current performance
23 end

24 M.push(s,, action, s, reward)

25 s 8

26 end

27 P.optimize (M)

28 end

29 B..prune(P.final policy (1))
30 B:.finetune()
31 end

Experiments

We conduct experiments to answer the following questions of AUBER.

Q1 Performance. Given a BERT model fine-tuned on a specific NLP task, how well does
AUBER improve the performance of the model?

Q2 State Representation. How useful is the LI norm of the value matrices of attention heads
in representing the state of BERT?

Q3 Order of Processing Layers. How does the order in which the layers are processed by
AUBER affect regularization?

Q4 Performance during Pruning. How does the performance change after the regularization
of each layer is done?

Experimental setup

Datasets. We test AUBER on four GLUE datasets [24] —MRPC [25], CoLA [26], RTE,
and WNLI, each of which contains less than 10,000 training instances; it has been observed
that datasets with 10,000 or less training examples often fail in fine-tuning BERT [1, 2].
Detailed information on the datasets is described in Table 1.

BERT model. We use the pre-trained bert-base-cased model with 12 layers and 12 atten-
tion heads per layer provided by huggingface (https://github.com/huggingface/transformers).

Table 1. Summary of the four GLUE datasets used in the experiments.

Dataset # of classes # of train # of dev Metrics
MRPC 2 3668 408 Accuracy
CoLA 2 8551 1043 Matthews
RTE 2 2490 277 Accuracy
WNLI 2 635 71 Accuracy

The URLs for the datasets are as follows: MRPC (https://www.microsoft.com/en-us/download/details.aspx?id=

52398), CoLA (https://nyu-mll.github.io/CoLA/), RTE (https://aclweb.org/aclwiki/Recognizing_Textual

Entailment), and WNLI (https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html). We evaluate the

performance by using accuracy for MRPC, RTE, and WNLI, and Matthews correlation coefficient for CoLA.

https://doi.org/10.1371/journal.pone.0253241.t001
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Table 2. Performance of AUBER and its competitors. AUBER gives the best performance for the same number of
pruned heads. Bold font indicates the best performance among competing pruning methods.

MRPC CoLA RTE WNLI
Original 84.07 57.01 63.54 46.48
AUBER 85.62+0.51 60.59+0.73 65.34+1.30 56.06+0.63
Random 84.02+1.12 57.89+0.90 63.47+1.29 54.08+2.14
Confidence 83.70+0.47 57.69+2.19 64.26+1.64 55.77+0.77
Michel et al. [4] 84.22+0.33 58.86+0.64 63.90+0.00 55.21+1.84
Voita et al. [5] 83.92+0.71 55.34+0.81 64.12+1.65 52.96+5.51

https://doi.org/10.1371/journal.pone.0253241.t1002

We fine-tune this model on each dataset mentioned in Table 1 to obtain the initial model. Ini-
tial models for MRPC, CoLA, and WNLI are fine-tuned on the corresponding dataset for 3
epochs, and that for RTE is fine-tuned for 4 epochs. The maximum sequence length is set to
128, and the mini-batch size per GPU is set to 32. The learning rate for fine-tuning initial mod-
els for MRPC, CoLA, and WNLI is set to 0.00002, and that for RTE is set to 0.00001. We
denote the initial models as Original and report the accuracies in Table 2.

Reinforcement learning. We use a 4-layer feedforward neural network for the DQN
agent. The input dimension is 12 and the output dimension is 13. The dimension of all hidden
layers is set to 512. LeakyReLU is applied after all layers except for the last one. We train the
DQN agent for 150 episodes. For the epsilon greedy strategy to choose actions, the initial epsi-
lon value €;,;:i,; and final epsilon value €, are set to 1 and 0.05 respectively, and the epsilon
decreases exponentially with the decay rate €4, of 256. The replay memory size is set to 5000,
and the batch size for training the DQN agent is set to 128. The discount value y for the DQN
agent is set to 1. The learning rate is set to 0.000002 when fine-tuning BERT after processing a
layer. Before processing each layer, the training dataset is randomly split into 1: 2 to yield a
mini-training dataset and a mini-dev dataset. When fine-tuning the final model, the patience
value of early stopping is set to 20.

Competitors. We compare AUBER with other methods that prune BERT’s attention
heads. If AUBER prunes P number of attention heads from BERT, we prune P heads in all the
competitors. To be fair, we conduct attention head pruning and fine-tuning in a layer-wise
manner also for the competitors.

« Random. Prune attention heads randomly.

« Confidence. Prune P heads with the smallest confidence score, which is the average of the
maximum attention weight after a series of forward passes. A high confidence score indicates
that the weight is concentrated on a single token.

o Michel et al. [4]. Perform a forward and backward pass to calculate gradients and use them
to assign an importance score to each attention head.

« Voita et al. [5]. Construct a new loss function that minimizes both the classification error
and the number of used heads so that unproductive heads are pruned while maintaining the
model performance.

Implementation. We construct all models using the PyTorch framework. All the models
are trained and tested on a GeForce GTX 1080 Ti GPU.
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Table 3. Performance of AUBER and its variants. Comparison of AUBER with four variants: AUBER-Query, AUBER-Key, AUBER-L2, and AUBER-Reverse on four
GLUE datasets to demonstrate the effectiveness of various ways to calculate the initial state. AUBER-Query and AUBER-Key use the query and key matrices respectively,
and AUBER-L2 uses the L2 norm of the value matrix to obtain the initial state. AUBER-Reverse processes BERT starting from the final layer (e.g. 12 layer for BERT-
base). Bold font indicates the best performance among pruning methods.

MRPC CoLA RTE WNLI
AUBER 85.62+0.51 60.59+0.73 65.34+1.30 56.06+0.63
AUBER-Query 83.87+0.84 55.81+0.84 65.05£1.06 47.61+5.12
AUBER-Key 83.68+0.75 56.90+1.46 63.83+0.39 50.14+7.56
AUBER-L2 82.90+1.39 57.46+1.97 64.55+1.74 40.28+12.7
AUBER-Reverse 84.56+1.39 58.07+1.27 62.24+1.43 43.67+8.15
https://doi.org/10.1371/journal.pone.0253241.t003
Performance

We evaluate the performance of AUBER against competitors. We repeat the experiments five
times and report the average and the standard deviation of the performance. Table 2 shows the
results on four GLUE datasets listed in Table 1. Note that AUBER outperforms all of its com-
petitors on regularizing BERT, providing the best performance for all the datasets. While most
of the competitors fail to improve the performance of BERT on the dev dataset of MRPC and
CoLA, AUBER improves the performance of BERT by up to 9.58% on those datasets. The con-
sistent enhancement in all of the four representative tasks demonstrates the superiority of
AUBER. AUBER’s superiority is attributable to its training method: AUBER is trained to
enhance the performance, while the others aim to give the minimal influence to the perfor-
mance and thus not to degrade the performance.

Effect of state representation

We empirically demonstrate the effectiveness of our design choices for AUBER. More specifi-
cally, we validate that the LI norm of value matrix of each attention head effectively guides
AUBER to predict the best action. Table 3 shows the performances of the variants of AUBER.

AUBER with the key/query matrices as the state vector. Among the query, key, and
value matrices of each attention head, we show that the value matrix best represents the cur-
rent state of BERT. We evaluate the performance of AUBER against AUBER-Query and
AUBER-Key. AUBER-Query and AUBER-Key use the query and key matrices respectively to
obtain the initial state. Table 3 shows the performances of AUBER, AUBER-Query, and
AUBER-Key on the four GLUE datasets listed in Table 1. Note that AUBER, which uses the
value matrix to obtain state vectors, outperforms AUBER-Query and AUBER-Key on all four
tasks.

AUBER with L2 norm of the value matrices as the state vector. AUBER uses the L1
norm of the value matrices to compute the state vector based on the theoretical derivation. In
this ablation study, we experimentally show that the L1 norm of the value matrices is appropri-
ate for the state vector. We set a new variant AUBER-L2, which leverages the L2 norm of the
value matrices to compute the initial state vector instead of the L1 norm. The performance of
AUBER is far more superior than AUBER-L2 in most cases bolstering that the L1 norm of the
value matrices effectively represents the state of BERT.

Effect of order of processing layers

We empirically demonstrate how the order in which the layers are processed affects the final
performance. We evaluate the performance of AUBER against AUBER-Reverse which pro-
cesses BERT layers in the opposite direction (i.e. starting from the 12™ layer) to what AUBER
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Fig 4. Performance after pruning the attention heads from each layer. AUBER consistently improves the model performance and achieves
outstanding final performance, while all the other methods fail to enhance the model performance.

https://doi.org/10.1371/journal.pone.0253241.9004

does. As shown in Table 3, AUBER provides better performance than AUBER-Reverse in
every case. This shows that pruning lower layers first and then moving to upper layers by
AUBER is effective. A possible explanation is that it is easier to train task-specific parameters

(those in upper layers) after learning general parameters (those in lower layers), rather than
that in the reverse order.

Performance change during the pruning process

We visualize how the model performance changes as each layer is processed by AUBER and
four competitors in Fig 4. We conduct the experiments with the MRPC dataset and pruning is
conducted successively from Layer 1 to Layer 12; for every method, 20 attention heads are
pruned. We measure the model performance after pruning the selected heads of each layer
and fine-tuning the model. It shows that AUBER mostly enhances the model performance
after pruning the heads in each layer, whereas all the competitors prune inappropriate atten-
tion heads and result in performance degradation. It is notable that the performance in
AUBER never goes below the original performance, even in the 8 and the 10" layer in which
performance degradation has occurred. This proves that AUBER does not prune the very
important heads that can bring significant performance drop when pruned.

Conclusion

We propose AUBER, an effective method to regularize BERT by automatically pruning atten-
tion heads. Instead of depending on heuristics or rule-based policies, AUBER leverages rein-
forcement learning to learn a pruning policy that determines which attention heads should be
pruned for better regularization. Experimental results demonstrate that AUBER effectively
regularizes BERT, increasing the performance of the original model on the dev dataset by up

to 9.58%. In addition, we experimentally demonstrate the effectiveness of our design choices
for AUBER.
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