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Simple Summary: The prevalence of GJB2-related (MIM: 121011) congenital non-syndromic hear-
ing impairment (NSHI) accounts for close to 50% in populations of Asian and European ancestry.
However, in sub-Saharan Africa, except for Ghana, previous data showed that the prevalence of
GJB2-associated NSHI is close to zero. To investigate the contribution of GJB2 mutations in autosomal
recessive NSHI in Senegal, we screened 129 affected and 143 unaffected individuals from 44 multiplex
families, 9 sporadic cases, and 148 hearing controls with no personal or family history of hearing
impairment, by targeted gene sequencing. We identified three pathogenic GJB2 variants in 34%
(n = 15/44) of multiplex families, of which 80% (n = 12/15) were consanguineous. The most common
variant, GJB2: c.94C>T: p.(Arg32Cys), accounted for 27.3% (n = 12/44) of familial cases. We also
identified the previously reported “Ghanaian” founder variant, GJB2: c.427C>T: p.(Arg143Trp), in
four multiplex Senegalese families. Relatively high allele frequencies of c.94C>T. and c.427C>T vari-
ants were observed among the screened hearing controls: 1% (n = 2/148 ∗ 2), and 2% (n = 4/148 ∗ 2),
respectively. No GJB6-D13S18 deletion was identified in any of the hearing-impaired participants.
The data suggest that GJB2: c.94C>T: p.(Arg32Cys) should be routinely tested in NSHI in Senegal.

Abstract: This study aimed to investigate GJB2 (MIM: 121011) and GJB6 (MIM: 604418) variants
associated with familial non-syndromic hearing impairment (HI) in Senegal. We investigated a
total of 129 affected and 143 unaffected individuals from 44 multiplex families by segregating
autosomal recessive non-syndromic HI, 9 sporadic HI cases of putative genetic origin, and 148 control
individuals without personal or family history of HI. The DNA samples were screened for GJB2
coding-region variants and GJB6-D3S1830 deletions. The mean age at the medical diagnosis of the
affected individuals was 2.93 ± 2.53 years [range: 1–15 years]. Consanguinity was present in 40 out
of 53 families (75.47%). Variants in GJB2 explained HI in 34.1% (n = 15/44) of multiplex families. A
bi-allelic pathogenic variant, GJB2: c.94C>T: p.(Arg32Cys) accounted for 25% (n = 11/44 families) of
familial cases, of which 80% (n = 12/15) were consanguineous. Interestingly, the previously reported
“Ghanaian” founder variant, GJB2: c.427C>T: p.(Arg143Trp), accounted for 4.5% (n = 2/44 families)
of the families investigated. Among the normal controls, the allele frequency of GJB2: c.94C>T and
GJB2: c.427C>T was estimated at 1% (2/148 ∗ 2) and 2% (4/148 ∗ 2), respectively. No GJB6-D3S1830
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deletion was identified in any of the HI patients. This is the first report of a genetic investigation of
HI in Senegal, and suggests that GJB2: c.94C>T: p.(Arg32Cys) and GJB2: c.427C>T: p.(Arg143Trp)
should be tested in clinical practice for congenital HI in Senegal.

Keywords: hearing impairment; GJB2; GJB2: c.94C>T: p.(Arg32Cys); Senegal; Africa

1. Introduction

Congenital hearing impairment (HI) remains the most disabling condition with the
highest rate of age-standardized disability life years [1,2]. Late diagnosis (after 2 years)
results in significant sequelae with consequences for language acquisition and cognitive
development [3]. The incidence of congenital HI has been estimated at 1 in 1000 live births
in developed countries, but a six times higher incidence was observed in sub-Saharan
African (SSA) countries [4]. Genetic factors account for 50% of congenital HI cases [5],
of which 70% are non-syndromic [6]. Non-syndromic hearing impairment (NSHI) is
genetically highly heterogeneous. To date, approximately 170 loci have been mapped
and 124 genes have been identified [7]. The DFNB1 locus for autosomal recessive non-
syndromic hearing impairment (ARNSHI) was mapped to the 13q11-q12 region [8]. This
locus contains the GJB2 and GJB6 genes, which encode connexin 26 (Cx26) and connexin
30 (Cx30), respectively. Pathogenic GJB2 variants are the most common genetic etiology
of ARNSHI [9]. The contribution of the GJB2 variants to ARNSHI varies from 0 to 50% in
diverse populations [9]. In European and Asian populations, GJB2 variants are the major
contributors to ARNSHI [10,11]. However, except for Ghana where the GJB2: c.427C>T:
p.(Arg143Trp) founder variant is highly prevalent [12], the prevalence of GJB2-related
ARNSHI is close to zero in several SSA populations (Cameroon, South Africa, Nigeria,
Sudan and Kenya) [13–16].

In European populations, up to 50% of individuals with ARNSHI have a pathogenic
variant in the GJB2-coding region (exon2) at a heterozygous state [17]. It was suggested
that there could be other pathogenic variants in the DFNB1 locus but outside the GJB2 gene.
This hypothesis was supported by the finding of a large genomic deletion in the DFNB1
locus outside GJB2, which removes the neighboring GJB6 gene [18], which encodes Cx30,
another subunit of the gap-junction channels of the auditory hair cells of the cochlea [19].
Several deletions have been reported [17,20,21]. The largest genomic deletion (342 kb),
named del(GJB6-D13S1830), was found in up to 9.7% of affected individuals, either in a
homozygous state or a heterozygous state with a GJB2 variant in trans, and constitutes
the second most common genetic etiology of ARNSHI. This deletion disrupts GJB2 expres-
sion at the transcriptional level by removing putative cis-regulatory elements upstream
of GJB6 [22].

The genetic etiology of ARNSHI in Senegal has not been investigated to date. In the
present study, we examined the contribution of GJB2 variants and del(GJB6-D13S1830) to
ARNSHI in Senegal.

2. Materials and Methods
2.1. Ethical Approvals

The study was performed in accordance with the Declaration of Helsinki regarding
medical research on humans. Ethical approval was obtained from the Research Ethics
Committee of Cheikh Anta Diop University (CER/UCAD/AD/MSN/034/2020), Dakar,
Senegal, and the University of Cape Town, Faculty of Health Sciences’ Human Research
Ethics Committee (HREC 104/2018). Written informed consent was obtained from all the
adult participants and from the parents or guardians of the minors.
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2.2. Study Population

Hearing-impaired patients were recruited from eleven out of the fourteen admin-
istrative regions of Senegal, from children’s hospitals, schools for the deaf, as well as
from the community by following the procedures previously described in Cameroon and
Mali [16,23]. A total of 129 affected and 143 unaffected individuals from 44 multiplex
families, segregating ARNSHI, and 9 simplex families with suspected genetic origin of HI
were recruited for GJB2 and GJB6 genetic analyses. Pedigrees were drawn for each family
through at least three generations.

We performed an otoscopic examination for all the study participants and the cerumen
plug was removed before audiological evaluation. The hearing assessments were based on
the international standard ISO 8253-1 [24]. The pure tone audiometry (PTA) was performed
to evaluate air conduction (250 Hz to 8000 Hz) and bone conduction (250 Hz to 4000 Hz)
with a mobile audiometer (KUDUWAVE TM N◦0901-04011, Cape Town, South Africa). The
hearing threshold was calculated as the average hearing level at 0.5, 1.0, 2.0, and 4.0 kHz.
The WHO Global Burden Disease Hearing Loss Expert Group guidelines [25] were used to
categorize patients according to the degree of HI. Normal hearing was defined as hearing
thresholds up to 25 dB. For children who were too young for a PTA testing, auditory
brainstem response (ABR) was performed when applicable.

We also recruited 148 unrelated apparently healthy individuals, who were ethno-
linguistically matched, during a blood donation, from four blood banks in four adminis-
trative regions of Senegal. A questionnaire was administered to each participant for the
exclusion of any personal or familial history of HI.

2.3. Mutation Screening of GJB2 and GJB6

Genomic DNA was extracted from peripheral blood samples, following the manufac-
turer’s instructions (Puregene Blood Kit®, (Qiagen, Alameda, CA, USA)), at the Division of
Human Genetics, Faculty of Medicine, Pharmacy and Odontology of Cheikh Anta Diop
University, Dakar, Senegal.

Previously reported primers for GJB2 exon 2 [26] were evaluated with BLAST® soft-
ware to assess primer specificity. The coding exon of the GJB2 gene (exon 2) was amplified,
followed by Sanger sequencing in an ABI 3130XL Genetic Analyzer® (Applied Biosys-
tems, Waltham, MA, USA), at the Division of Human Genetics, University of Cape Town,
South Africa. The housekeeping strategy was to sequence the coding region of GJB2 using
previously described primers for all recruited probands and affected kindreds. When a
pathogenic variant was identified, we sequenced all the other family members to make
sure that the identified pathogenic variant was segregated with the HI phenotype.

Subsequently, the detection of del (GJB6-D13S1830) was examined using the previously
reported primers GJB6-1R (forward) and BKR-1 (reverse) [18] to amplify a 460 bp fragment
corresponding to the sum of 244 bp and 216 bp, flanking the deletion, as well as a second
reverse primer, GJB6-2R (5′-TCATCGGGGGTGTCAACAAACA-3′) that is located in the
deleted segment, in order to positively detect a 681 bp fragment corresponding to the
wild-type product [17].

2.4. Bioinformatic and Statistical Analyses

The AB1 files retrieved from the ABI 3130XL Genetic Analyzer® were manually
reviewed using FinchTV v1.4.0, and aligned in UGENE v34.0 [27], to a GJB2 reference
sequence [28] (NM_004004.6.; retrieved from NCBI browser). Detected variations were de-
scribed using Human Genome Variation Society (HGVS) nomenclature [29], and classified
using American Society of Medical Genetics’ (ACMG) guidelines [30,31]. The association
between allele frequency in affected individuals and controls was assessed using the Chi-
square test when applicable, or Fisher’s exact test. A p-value less than 0.05 was considered
as significant. Statistical analyses were performed using R software v 4.0.5 (R Core Team,
2020. Vienna, Austria).
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3. Results
3.1. Socio-Demographic Data

A total of 129 HI participants belonging to 44 unrelated multiplex families, segregating
ARNSHI, and 9 simplex families with a suspected genetic origin of HI were recruited. The
average number of participants from whom whole-blood samples were obtained per family
was 6 and 3 for multiplex and simplex families, respectively. Consanguinity was present in
40 out of 53 families (75.47%).

The mean age of hearing-impaired participants was 14.80 ± 9.80 years [1–16 years],
with a sex ratio of 0.98 (64 males and 65 females). The mean age at medical diagnosis was
2.93 ± 2.53 years [1–15 years].

3.2. Audiological Patterns

Grouping the 124 patients according to the degree of HI showed that the majority
(102/124) had a profound HI. Two patients were too young for PTA testing (<2 years),
and three patients were not available during the audiological assessment. The age at
medical diagnosis was inversely correlated to the degree of HI. Profound HI was associated
with an early diagnosis compared to severe and moderate HI (Table 1). The audiometric
curve-pattern analysis showed a flat curve in 93 out of 124 patients (75%) and sloping in
31 patients (25%).

Table 1. Repartition of patients according to the degree of HI and the mean age at medical diagnosis.

Degree of HI Number of Patients(n) Mean Age at
Medical Diagnosis

Moderate (41–60 dB) 8 (6.42%) 8.37 ± 3.81 [5–14 years]
Severe (61–80 dB) 14 (11.29%) 4.25 ± 3.77 [1.5–13 years]

Profound (≥81 dB) 107 (82.26%) 2.33 ± 1.14 [1–6 years]

3.3. Molecular Analysis of GJB2 and GJB6

We screened 129 participants from 44 multiplex families and 9 individuals from
simplex families, living with congenital sensorineural HI for variants in the coding region
of the GJB2 gene and GJB6-D3S1830 deletion. We did not observe any GJB6-D3S1830
deletion in any HI patients (Supplementary Materials Figure S1).

Three variants in GJB2 were identified and classified as pathogenic based on the
American College of Medical Genetics (ACMG) guidelines (Supplementary Materials,
Table S1). Thirty-four percent (34%, n = 15/44) of multiplex families were positive for a
GJB2 pathogenic variant either in a homozygous state or in a compound heterozygous state.
The consanguinity rate among GJB2-positive families was estimated at 80% (n = 12/15).
The most common variant, GJB2: c.94C>T: p.(Arg32Cys), was in a homozygous state in
patients from 11 multiplex families (Table 2).

Table 2. GJB2 pathogenic variants among 15/44 multiplex families with congenital ARNSHI.

Genotypes
Multiplex Families

n * % (n/N)

[c.94C>T]; [c.94C>T] 11 25
[c.427C>T]; [c.427C>T] 2 4.54
[c.427C>T]; [c.94C>T] 1 2.27

[c.427C>T]; [c.132G>A] 1 2.27
Total 15 34.09

* Number of multiplex families.

GJB2: c.427C>T: p.(Arg143Trp) and GJB2: c.9C>T: p.(Arg32Cys) segregated with
HI either in a homozygous state or a compound heterozygous state. Figure 1 shows
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the segregation of GJB2: c.427C>T: p.(Arg143Trp) and GJB2: c.9C>T: p.(Arg32Cys) in a
homozygous state in two HI multiplex families.
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Figure 1. Pedigree of two multiplex families segregating HI and bi-allelic GJB2: c.94C>T: p.(Arg32Cys)
and GJB2: c.427C>T: p.(Arg143Trp), respectively; black arrow indicates the proband (A,C). Electro-
pherograms showing the reference and the pathogenic allele (B,D). The red arrows indicate the
nucleotides affected by the variant. Het, heterozygous for the variant allele; Wt, wild type (homozy-
gous for the reference allele) (B,D).
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In a particularly large multiplex consanguineous family, some patients were com-
pound heterozygous for GJB2 variants ([c.427C>T: p.(Arg143Trp)]; [c.94C>T: p.(Arg32Cys)],
e.g., proband V.6 and her sister V.7 (Figure 2A), while in other branches of the family,
different biallelic homozygous variants were found, e.g., cousin (V.1) from the father side
and V.11 from the mother side (Figure 2A). The proband as well as her sister presented
profound HI (Figure 2B). The proband’s affected uncle (IV.7), aunt (IV.8) and cousin (V.12)
were heterozygous for the GJB2 variant (C/T), and his cousin (V.11) was homozygous for
the reference allele (Figure 2A), suggesting the implication of another gene in this particular
family that can benefit from Whole-Exome-Sequencing (WES) analysis.
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Figure 2. Pedigree of a multiplex family segregating HI with observed genotypes. V.6 is the proband
(A); audiological phenotypes of the proband V.6, and her sister V.7, and the cousin from the father’s
side, V.1 (B); electropherograms of pathogenic variants in GJB2 (C); Het, heterozygous; Wt, wild type.
Black arrow indicates the proband. The red arrows indicate the nucleotides affected by the variant;
black arrow indicates the proband.

No pathogenic variant of GJB2 was identified in nine individuals from simplex families
with HI.
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The three GJB2 pathogenic variants identified in HI patients were also observed in a
heterozygote state in the control population. The GJB2: c.427C>T: p.(Arg143Trp) variant is
the most frequent (2%; n = 4/148 ∗ 2), followed by the c.94C>T: p.(Arg32Cys) variant (1%;
n = 2/148 ∗ 2) (Table 3).

Table 3. Comparison of GJB2 variants identified in Senegal and other populations from Ensembl database.

Allele Frequency (n/N) Allele Frequency from Ensembl

Variants rs Number Allele Cases Controls p-Value (Cases
vs. Controls) Global Africa America East Asia Europe

c.94C>T rs371024165
C 0.78 (86/106) 0.99 (294/296)

<0.0001
1.0000 1.0000 1.0000 1.0000 1.0000

T 0.22 (23/106) 0.01 (2/296) 0.0000 0.0000 0.0000 0.0000 0.0000

c.427C>T rs80338948
C 0.94 (100/106) 0.98 (292/296)

0.024
0.9998 1.0000 1.0000 0.9990 1.0000

T 0.06 (6/106) 0.02 (4/296) 0.0002 0.0000 0.0000 0.0010 0.0000

c.132G>A rs104894407
G 0.99 (105/106) 0.996 (295/296)

0.458
0.9998 1.0000 1.0000 1.0000 1.0000

A 0.01 (1/106) 0.004 (1/296) 0.0002 0.0000 0.0000 0.0000 0.0000

3.4. Phenotype-Genotype Correlation

It appears that GJB2: c.427C>T: p.(Arg143Trp) in the homozygous or compound
heterozygous state was associated with profound HI. Only patients with GJB2: c.94C>T:
p.(Arg32Cys) in a homozygous state showed different degrees of HI (Table 4).

Table 4. Comparison of GJB2 genotypes and the degree of HI.

Genotypes
Degree of HI

Moderate
(41–60 dB)

Severe
(61–80 dB)

Profound
(≥81 dB)

[c.94C>T]; [c.94C>T] 4 3 9
[c.427C>T]; [c.427C>T] 0 0 7
[c.427C>T]; [c.94C>T] 0 0 2

[c.427C>T]; [c.132G>A] 0 0 3

4. Discussion

To the best of our knowledge, this is the first genetic study of ARNSHI in Senegal,
which revealed a surprisingly high proportion (34%, n = 15/44) of pathogenic variants in
GJB2 associated with non-syndromic congenital HI. Until recently, Ghana was the exception
in SSA, where GJB2 was a major cause of HI. In light of our findings, Senegal is the second
SSA country where GJB2 variants significantly contribute to ARNSHI.

The high implication of the GJB2 variants in ARNSHI in Senegal could be supported by
the relatively high allele frequency of c.427C>T: p.(Arg143Trp) and c.94C>T: p.(Arg32Cys)
in the hearing controls. The carrier frequency of c.427C>T: p.(Arg143Trp) in a control
population from Ghana was estimated at 1.4% [12], which is almost half of what we have
reported in Senegal (2.7%). This might be due to the control participants being recruited
from geographic regions where only 1/3 of affected participants were recruited, therefore
not representative of the general population of Senegal. Indeed, the recruitment of cases
was based on families segregating HI in at least two affected individuals, and families were
recruited nationwide from schools for the deaf, and within the communities, following
similar successful methods we previously implemented in both Cameroon and Mali [16,23].
Therefore, we do not expect any significant bias in the sampling of cases. Nevertheless, the
recruitment of apparently healthy controls from blood donors did not match the geographi-
cal area where families were recruited. Therefore, the ethno-linguistic and geographical
origin of controls were likely not representative of the general Senegalese population,
and probably biased the carrier-frequency estimates for GJB2-427C>T: p.(Arg143Trp), and
c.94C>T: p.(Arg32Cys). This limitation should be alleviated in future studies.

The mean age at medical diagnosis of HI participants was estimated at 2.80 ± 2.53 years.
A similar result has been reported in Cameroon by Wonkam et al., with a mean age at
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medical diagnosis of 3.2 years [16], while a higher mean age of 6 years was reported in
Ghana [12]. In Mali, the median age at diagnosis was 12 years [23]. In contrast to SSA, a
mean age at diagnosis of less than 6 months has been reported in the United States [32],
and between 12 and 36 months in France depending on the degree of HI [33]. This disparity
could be explained by limited universal newborn hearing screening (UNHS) in most SSA
countries, and none in others, e.g., in Senegal [34]. We also observed an inverse correlation
between age at diagnosis and the degree of HI, as previously reported elsewhere [33].

In this study we identified a common variant, GJB2: c.94C>T: p.(Arg32Cys), in 12/44
of multiplex families. Families positive for this variant were recruited across the country,
from the western, northern and central geographic regions of Senegal. Ely CMM et al.
reported this variant in two consanguineous families in Mauritania, a northern neighboring
country of Senegal [35]. GJB2: c.94C>T: p.(Arg32Cys) has also been reported in hearing-
impaired individuals in China [36], Japan [37], and South Korea [38]. Owing to the high
positivity rate, it might be worth developing an affordable diagnostic method that can
be broadly implemented in Senegal, for example, based on RFLP-PCR and following
a process that was successfully developed and implemented for the Ghanaian founder
variant, GJB2: c.427C>T: p.(Arg143Trp), and included in the public-health-policy decisions
in Ghana [39,40].

Contrary to data from Ghana, this study reported a high proportion of consanguinity
(75.47%) that favored the enrichment of pathogenic variants, particularly GJB2: c.94C>T:
p.(Arg32Cys), which accounted for 25% (n = 11/44 families). Like many west African
countries, Senegal has several ethnic groups with a long tradition of consanguineous
marriages. In two neighboring countries of Senegal, Mali and Mauritania, consanguinity
accounted for 55.5% and 61.33% of familial cases of HI, respectively [23,35]. Consanguinity
favors gene identification for numerous recessive conditions [41]. Given the high frequency
of the variant among Senegalese consanguineous multiplex families, we postulate that
c.94C>T: p.(Arg32Cys) may be a founder variant in Senegal. Future studies should explore
this possibility. Indeed, recent data reported that GJB2: c.427C>T: p.(Arg143Trp) evolved in
a single individual in Ghana about 10,000 years ago [42].

An unexpected finding was that the “Ghanaian” founder variant, i.e., GJB2: c.427C>T:
p.(Arg143Trp), was present in 4.5% (n = 2/44 families) of multiplex families in Senegal.
Interestingly, Ghana and Senegal do not share a border, and that variant in GJB2 is absent
in populations with HI from Nigeria [13], which is closer to Ghana. It is thus highly
speculated that this finding is not due to regional migration, but rather to forced movement
of people during the transatlantic slave trade. Indeed, slaves were brought to Gorée [43],
an Atlantic island near the Senegalese coastal city of Dakar, before being transported
to the Americas. Interestingly, the four families that segregated that variant were all
based in Dakar. Future haplotype studies should comparatively investigate haplotypes in
GJB2: c.427C>T: p.(Arg143Trp) in families from both Ghana and Senegal to explore this
hypothesis. Moreover, the Mayan founder variant, GJB2: c.132G>A: p.(Trp44Ter), reported
by Adadey SM et al. [12] in a Ghanaian family was also identified in a Senegalese family, in
the compound heterozygous state.

There has been growing evidence of the association between the type of variant and
the severity of HI. The degree of GJB2-associated HI depends on the degree of damage to
the coding protein Cx26 [44]. Truncating variants, which create a premature stop codon
and may result in the absence of any functional Cx26 protein, have been reported to induce
a profound HI [45]. In our cohort, patients carrying GJB2: c.132G>A: p.(Trp44Ter), which is
a non-sense variant, in a compound heterozygous state, exhibited a profound HI, which
is in line with previous reporting in Guatemala [46]. However, the most common variant,
GJB2: c.94C>T: p.(Arg32Cys) was associated with variable degrees of HI, ranging from
moderate to profound. This variability may reflect a possible effect of modifier genes
and/or environmental factors that lead to variable expression [47].

GJB6 is located 50kb upstream of GJB2, and the del(GJB6-D13S1830) variant is the most
common deletion of GJB6 and is the second most prevalent ARNSHI variant in western
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European populations [17]. The deletion occurs in trans in either the homozygous or
heterozygous state with pathogenic GJB2 variants, and appears to have an ethnic-specific
origin. The del(GJB6-D13S1830) variant was not found in our cohort of HI participants.
This is in line with data reported from other African populations [12,16]. However, in a
multicentric study, it has been shown that the GJB6-D13S1830 deletion is most frequent in
Spain, France, the United Kingdom, Israel, and Brazil (5.9–9.7% of all DFNB1 alleles), is
less frequent in the USA, Belgium, and Australia (1.3–4.5% of all DFNB1 alleles), and is
very rare in southern Italy [10].

The study also indicates almost 2/3 of multiplex families with HI and all sporadic cases
are eligible for next-generation sequencing, due to the highly heterogeneous genetic nature
of NSHI. Future research should use high-throughput sequencing platforms that will allow
the identification of pathogenic variants in either known genes or novel causative genes.

5. Conclusions

This is the first report of a genetic investigation of HI in Senegal. The study reveals
a high consanguinity rate (75.47%) in affected families, and highlights that Senegal is
the second country in SSA where GJB2 pathogenic variants significantly contribute to
ARNSHI, accounting for 15/44 (34.1%) in multiplex families. The data suggests that GJB2:
c.94C>T: p.(Arg32Cys) and GJB2: c.427C>T: p.(Arg143Trp) should be tested in clinical
practice for congenital HI in Senegal. Further studies using whole exome or whole genome
sequencing approaches are needed to identify the other genes involved in families that are
GJB2 negative in Senegal.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11050795/s1, Table S1: Variant’s interpretation according to
ACMG guidelines, Figure S1: PCR-Multiplex products visualized on 2% agarose gel.
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