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Highlights
COVID-19mRNA and viral vector-based
vaccines can safely generate humoral
and cellular immune responses in pa-
tients with cancer, albeit at diminished
levels compared to those in the general
population.

Patients at higher risk of no response
to vaccines include patients with haema-
tological malignancies treated with anti-
CD20, anti-BCMA/CD38, active chemo-
Transmission of the SARS-CoV-2 virus and its corresponding disease (COVID-19)
has been shown to impose a higher burden on cancer patients than on the
general population. Approved vaccines for use include new technology
mRNA vaccines such as BNT162b2 (Pfizer–BioNTech) and mRNA-1273 (Moderna),
and nonreplicating viral vector vaccines such as Ad26.COV2.S (Johnson &
Johnson) and AZD1222 (AstraZeneca). Impaired or delayed humoral and
diminished T-cell responses are evident in patients with cancer, especially in
patients with haematological cancers or those under active chemotherapy.
Herein we review the current data on vaccine immunogenicity in cancer patients,
including recommendations for current practice and future research.
therapy, and high-dose steroids. Patients
on immunotherapy and endocrine/
targeted therapies are less affected.

Some seronegative patients can
generate robust T-cell responses,
showing disparate responses to
vaccines in patients with cancer,
and potentiating roles for T-cell re-
sponses as a possible correlate of
protection.

Third booster doses have shown benefit
in a few patients, but seronegative
patients who are also negative for T-cell
responses remain unprotected.
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COVID-19 vaccines in patients with cancer
Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has led
to the ongoing global coronavirus disease 2019 (COVID-19) pandemic. Patients with cancer
are at higher risk of significant COVID-19-associated morbidity and mortality than the
general population [1,2]. Prolonged viral shedding, delayed seroconversion (see Glossary),
and an exhausted T-cell phenotype have been demonstrated in SARS-CoV-2-infected cancer
patients [3]. Patients with lung cancer and haematological malignancies are at highest risk, as
are recipients of stem-cell transplants and adoptive cellular therapies [4–7]. Effective measures
taken to protect patients with cancer from contracting COVID-19 have included prioritisation of
vaccination against SARS-CoV-2 and public health measures. Approved vaccines for use include
new technology mRNA vaccines such as BNT162b2 (Pfizer–BioNTech) and mRNA-1273
(Moderna), and nonreplicating viral vector vaccines such as Janssen’s Ad26.COV2.S (Johnson
& Johnson) and AZD1222 (AstraZeneca) (Figure 1, Key figure) [8–11]. The exclusion of patients
with cancer and other immunocompromised groups from registration in COVID-19 vaccine trials
has meant that vaccine efficacy in this patient population has had to be elucidated from small
prospective observational studies focused on immunological or antibody responses [12–14],
as opposed to data on protection against breakthrough or symptomatic coronavirus
infections, coronavirus hospitalisation, or death. Herein we review the available evidence evaluating
the safety and the antibody and cellular responses in cancer patients to COVID-19 vaccinations,
and the longevity of those responses.

Impaired serological responses in patients with cancer following COVID-19
vaccination
Assessment of vaccine-induced immune responses in patients with cancer has largely focused
on evaluating the presence of antibodies binding the SARS-CoV-2 spike protein to establish
rates of seroconversion and mean antibody titres (Table 1, Figure 2). First data reporting on the
immunogenicity of the BNT162b2 mRNA vaccine in patients with cancer confirmed that only
38% of patients with solid tumours and <20% of patients with haematological malignancies
developed SARS-CoV-2 S-specific IgG following the primary vaccine inoculum, contrasting
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Key figure

Immune protection generated from severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection or vaccination
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Figure 1. Upon SARS-CoV-2 infection, viral antigens such as the spike (S) protein are recognised by antigen-presenting cells
in the periphery. Whilst mRNA and adenoviral vector vaccines work differently, they are both able to mimic this response by
encoding the spike protein. Having recognised the spike protein, antigen-presenting cells travel from the periphery to the
lymph nodes, where the processed peptides are presented to effector cells. This results in activation of effector cells,
including T helper CD4+ (Th cell) and CD8+ T-cell responses, mediating cellular immunity, as well as activation of B-cell
responses responsible for providing humoral immunity. Memory T and B cells also persist in the periphery and can expand
in response to secondary exposure. This figure was created with BioRender.
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Glossary
Immunogenicity: the ability of a
substance to generate an immune
response.
Neutralisation: the process of
reducing viral activity through the binding
of antibodies to the virion, preventing
viral entry into host cells and subsequent
replication.
Seroconversion: the development of
detectable levels of antibodies in the
blood from the point of infection or
vaccination.
Vaccine: a substance prepared to
stimulate the immune system with
alternative forms of the causative agent,
without inducing active disease, and
conferring immunity against re-exposure.
Variants of concern (VOCs): mutated
strains of a virus displaying changes in
characteristics such as virulence,
transmissibility, and susceptibility to
diagnostic measures or to vaccine/
infection-induced protection.
Waning humoral immunity: the
progressive loss of antibodies specific to
a disease over time.
with 94% in the control cohort of predominantly healthcare workers without cancer [12]. The poor
immune efficacy of the priming dose of COVID-19 vaccines in patients with solid cancer has been
shown to be rescued by a subsequent second dose of the vaccine administered with seroposi-
tivity reported as ranging between 75% and 95% across the studies [15–30]. Patients on active
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Table 1. Summary table of studies defining seroconversion rates

Cancer type Control Country Median age (years)
(IQR/range)

Vaccine Seroconversion (cancer) Seroconversion
(control)

Refs

Haematological
MDS (n = 36)

Control (n = 26) UK Patient: 67.5 (59–73)
Control: 35 (27–49)

BNT162b2
AZD1222

1st dose: NA
AZD1222 2nd dose: 76.2%
BNT162b2 2nd dose: 100%

1st dose: NA
2nd dose: 100%

[39]

Solid cancer (n = 106)
Haematological (n = 25)

NA USA

Switzerland

Patient: 63 (55–69) BNT162b2
mRNA-1273

Solid cancer
1st dose: 83%
2nd dose: 98%

Haematological
1st dose: 72%
2nd dose: 77%

NA [23]

Haematological
MM (n = 171)

Control (n = 64) Israel Patient: 70 (38–94) BNT162b2 1st dose: NA
2nd dose: 78%

1st dose: NA
2nd dose: 98%

[104]

Solid cancer (n = 122) Control (n = 29) France Patient: 69.5 (44–90)
Control: 53 (21–81)

BNT162b2 1st dose: 47.5%
2nd dose: 95.2%

1st dose: 100%
2nd dose: 100%

[16]

Solid cancer (n = 136)
Haematological (n = 123)

NA Austria Patient: 65.1 (12.2) BNT162b2 1st dose (solid cancer): 60%
1st dose (haematological):
43.4%

2nd dose (solid cancer):
94.5%
2nd dose (haematological):
71·4%

NA [105]

CLL (n = 373) NA Israel Patient: 70 (40–89) BNT162b2 2nd dose: 43% NA [106]

Multiple myeloma (n =93) Control (n = 177) UK Patient: 67 (47–84) BNT162b2
AZD1222

1st dose: 56% (70% when
measuring total antibody)
2nd dose: NA

1st dose: 99%
2nd dose: NA

[100]

Solid cancer (n = 169) NA France Patient: 66 (27–89) BNT162b2 1st dose: 15%
2nd dose: 65%
3rd dose: 75% (27/36)
suboptimal responders only

NA [81]

Solid cancer (n = 257) Control Italy Patient: 65 (28–86)
Control: NA

BNT162b2
mRNA-1273

1st dose: NA
2nd dose: 75.88%

1st dose: NA
2nd dose: 100%

[19]

Haematological (n = 241) NA Spain Patient: 63 (53–71) mRNA-1273 1st dose: NA
2nd dose: 76.3%

NA [60]

Haematological
Myeloid cancer (n = 59)

Control (n = 232) UK Patient: 62 (52–73)
Control: 62 (60–76)

BNT162b2
AZD1222

1st dose: 58% BNT162b2
1st dose: 98%
AZD1222
1st dose: 92

[107]

Solid cancer
Haematological (n = 141)

NA Belgium Patient: 62.0 (26.0–86.0) BNT162b2 Targeted/hormonal
2nd dose: 97%
3rd dose: 100%
Chemotherapy
2nd dose: 75%
3rd dose: 83%
Chemoimmunotherapy
2nd dose: 100% (n = 3)
3rd dose: 100% (n = 3)
Immunotherapy
2nd dose: 88%
3rd dose: 88%
Rituximab
2nd dose: 21%
3rd dose: 41%

NA [80]

Solid cancer (n = 816) Control (n = 274) Italy Patient: 62 (21–97)
Control: 47 (21–69)

BNT162b2 1st dose: 14.2%
2nd dose: 86%

1st dose: 33.6%
2nd dose: 99.2%

[24]

(continued on next page)
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Table 1. (continued)

Cancer type Control Country Median age (years)
(IQR/range)

Vaccine Seroconversion (cancer) Seroconversion
(control)

Refs

Solid cancer (n = 201)
Haematological (n = 323)

NA Denmark Patient: 70 (63–75) BNT162b2
mRNA-1273

Solid cancer
1st dose: 77%
2nd dose: 93%
Haematological
1st dose:
2nd dose: 66%

NA [21]

Haematological
MM (n = 77)

Control (n = 24) Germany Patient: 67 (60–72)
Control: 66 (50.25–77.50)

BNT162b2 1st dose: NA
2nd dose: 53%

1st dose:
2nd dose: 100%

[69]

Solid cancer (n = 271)
Haematological (n = 82)

NA UK Patient: 59 (18–87) BNT162b2
AZD1222

Solid cancer 2nd dose: 96%
Blood cancer 2nd dose:
70%

NA [85]

Solid cancer (n = 115)
Haematological (n = 84)

NA UK Patient: 63 (55–70) BNT162b2
AZD1222

Omicron
Solid cancer 2nd dose: 37%
Solid cancer 3rd dose: 90%
Blood cancer 2nd dose: 19%
Blood cancer 3rd: 56%
Delta
Solid cancer 2nd dose: 56%
Solid cancer 3rd dose:97%
Blood cancer 2nd dose: 39%
Blood cancer 3rd dose:
71%
WT
Solid cancer 2nd dose: 97%
Solid cancer 3rd dose: 99%
Blood cancer 2nd dose: 89%
Blood cancer 3rd dose: 86%

NA [86]

Solid cancer (n = 447)
Haematological (n = 138)

NA UK Patient: 60 (52–68) BNT162b2
AZD1222

Solid cancer
1st dose: 44%
2nd dose: 85%
Haematological
1st dose: 27%
2nd dose: 59%

NA [13]

Solid cancer (n = 171)
Haematological (n = 195)

Control
(n = 1245)

USA Patient: 65 (56–63)
Control: 38 (32–49)

BNT162b2
mRNA-1273

Solid cancer
1st dose: NA
2nd dose: 96.9%
Haematological
1st dose: NA
2nd dose: 81.9%

NA [25]

Solid cancer (n = 94)
Haematological (n = 56)

NA Italy Patient: 68 (31–85) BNT162b2 1st dose: 61%
2nd dose: 85.7%

NA [108]

Haematological (n = 58)
WM, CLL, NHL

Control (n = 213) Greece Patient: 75 (40–88)
Control: 75 (61–95)

BNT162b2
AZD1222

1st dose: 14% 1st dose: 54% [88]

B-cell lymphoma (n = 86) Control (n = 201) USA Patient (BCL): 72 (47–91) BNT162b2
mRNA-1273
Ad26.COV2.S

1st dose:
2nd dose: 41.9%

1st dose:
2nd dose: 100%

[109]

Solid cancer (n = 232) Control (n = 261) Israel Patient: 66 (SD = 12.09) BNT162b2 1st dose: 29%
2nd dose: 86%

1st dose: 84%
2nd dose: NA

[30]

Thoracic cancer
(n = 306)

Control (n = 18) France Patient: 67 (58–74) BNT162b2
mRNA-1273
AZD1222

1st dose: NA
2nd dose: 93.7%

1st dose: NA
2nd dose: 100%

[29]

Haematological
(n = 1445)

NA USA Patient: 66 (16–110) BNT162b2
mRNA-1273

1st dose: NA
2nd dose: 75%

NA [34]

Haematological
MPN (n = 21)

NA UK Patient: 55 (36–72) BNT162b2 1st dose: 85.7%
2nd dose: NA

NA [66]
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Table 1. (continued)

Cancer type Control Country Median age (years)
(IQR/range)

Vaccine Seroconversion (cancer) Seroconversion
(control)

Refs

Haematological
CML (n = 16)

NA UK Patient: 45.6 BNT162b2 1st dose: 87.5%
2nd dose: NA

NA [65]

Haematological
CLL (n = 167)

Control (n = 52) Israel Patient: 71 (63–76)
Control: 68 (64–74)

BNT162b2 1st dose: NA
2nd dose: 39.5%

1st dose: NA
2nd dose: 100%

[35]

Haematological (n = 315) Control (n = 108) Israel Patient: 71 (61–78)
Control: 69 (58–74)

BNT162b2 1st dose: NA
2nd dose: 75%

1st dose: NA
2nd dose: 99%

[32]

Solid cancer (n = 503)
Cohort B (n = 132)
Cohort C (n = 229)
Cohort D (n = 143)

Control (n = 240) The
Netherlands

Patient: B- 66 (59–73)
C- 60 (50–67)
D- 64 (57–70)
Control: A- 62 (55–69)

mRNA-1273 Cohort B (immunotherapy)
6 months post D2: 32%
3rd dose: 75% (6/8)
Cohort C (chemotherapy)
6 months post D2: 42%
3rd dose: 96% (29/30)
Cohort D
(chemoimmunotherapy)
6 months post D2: 25%
3rd dose: 100% (9/9)

Cohort A
(no cancer)
6 months post
D2: 51%
3rd dose: 100%
(1/1)

[101]

Haematological (n = 66) Control (n = 66) Austria Patient: 62 (50–69) BNT162b2
AZD1222

2nd dose: 52%
3rd dose: 51.5%

2nd dose: 100% [76]

Solid cancer (n = 47) NA Turkey Patient: 73 (64–80) CoronaVac 1st dose: NA
2nd dose: 63.8%

NA [110]

Haematological (n = 49) NA USA Patient: 66 (31–80) BNT162b2
mRNA-1273
Ad26.COV2.S

3rd dose: 65% NA [84]

Solid cancer (n = 72) Control (n = 144) Israel Patient: 62 (48–71) BNT162b2 2nd dose: 71.8%
3rd dose: 95.8%

2nd dose: 98.6%
3rd dose: 100%

[82]

Haematological
Lymphoma (n = 119)

Control (n = 150) UK Patient: 69 (57–74)
Control: 45 (35–47)

BNT162b2
AZD1222

1st dose: 28%
2nd dose: 39%

100% [14]

Haematological (n = 427) NA UK HL: 40 (29–54)
Aggressive B NHL:
67 (58–73)
Indolent B NHL: 67 (58–73)
PTCL: 63 (54–68)

BNT162b2
AZD1222

2nd dose
On treatment:
HL: 11.1%
Aggressive B-NHL: 56.8%
Indolent B-NHL: 62.7%
Off treatment:
HL: 100%
Aggressive B-NHL: 97.7%
Indolent B-NHL: 90.6%

NA [51]

Solid cancer (n = 266)
Haematological (n = 173)

Control (n = 41) Austria Patient:
Vienna cohort 63 (28–85)
Meran cohort 70 (24–90)
Control: 39 (22–59)

BNT162b2
mRNA-1273
AZD1222

Vienna
1st dose: 73%
(all vaccine, n = 15)
2nd dose: 91.8%
3rd dose: 100%
Meran
1st dose: 72%
2nd dose: 50%
(of non-responders to D1)
3rd dose: 90.6%

1st dose: NA
2nd dose: 100%
3rd dose: 100%

[111]

Solid cancer (n = 295)
Haematological (n = 213)

Control (n = 58) Austria

Italy

Patient: 64 (19–87) Vienna
Patient: 69 (24–96) Meran

BNT162b2
mRNA-1273
AZD1222

Vienna
1st dose: 73%
(all vaccine, n = 15)
2nd dose: NA
Meran
1st dose: 74%
2nd dose: NA

1st dose: NA
2nd dose: 100%

[40]

Solid cancer (n = 39)
Haematological (n = 48)

Control (n = 44) Austria Patient (BNT162b2):
69 (20–83)

BNT162b2
mRNA-1273

Solid cancer
1st dose: NA

1st dose: NA
2nd dose: 100%

[22]

(continued on next page)
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Table 1. (continued)

Cancer type Control Country Median age (years)
(IQR/range)

Vaccine Seroconversion (cancer) Seroconversion
(control)

Refs

Patient (mRNA-1273): 63
(34–85)
Control: 54 (26–94)

2nd dose: 89.5%
Haematological
1st dose: NA
2nd dose: 57.8%

Haematological (n = 195) Control (n = 30) France Patient: 68.9 (21.5–91.7) BNT162b2 1st dose: 1.5%
2nd dose: 46.7%

87% [112]

Haematological (n = 263) Control (n = 167) Italy Patient: 56 (46–62)
Control 56 (46–62)

BNT162b2
mRNA-1273

1st dose: 49.8%
2nd dose: 64.6%

1st dose: NA
2nd dose: 99.4%

[59]

Solid cancer (n = 102) Control (n = 78) Israel Patient: 66 (56–72)
Control: 62 (49–70)

BNT162b2 1st dose: NA
2nd dose: 90%

1st dose: NA
2nd dose: 100%

[18]

Solid cancer (n = 64)
Haematological (n = 51)

Control (n = 26) UK Patient (solid cancer):
69.5 (52.25–85)
Patient (haem.):
66 (52.75–73)
Control: 35 (27–48)

BNT162b2 Solid cancer
1st dose: 38%
2nd dose: 84%
Haematological
1st dose: <20%
2nd dose: 43%

1st dose: 94%
2nd dose: 100%

[49]

Solid cancer (n = 95)
Haematological (n = 56)

Control (n = 54) UK Patient: 73 (64·5–79·5)
Control: 40·5 (31·3–50·0)

BNT162b2 Solid cancer
1st dose: 38%
2nd dose: 95% (21 day)
2nd dose: 30%
Haematological
1st dose: 18%
2nd dose: 60% (21 day)
2nd dose: 11%

1st dose: 94%
2nd dose:
100% (21 day)
2nd dose: 86%

[12]

Solid cancer (n = 366) NA Italy Patient: 66 (33–83) BNT162b2 ExC
1st dose: 52%
2nd dose: 91.2%
CC
1st dose: 65%
2nd dose: 89%

NA [28]

Solid cancer (n = 503)
Cohort B (n = 132)
Cohort C (n = 229)
Cohort D (n = 143)

Control (n = 240) The
Netherlands

Patient: B- 66 (59–73)
C- 60 (50–67)
D- 64 (57–70)
Control: A- 62 (55–69)

mRNA-1273 Cohort B (immunotherapy)
1st dose: 37%
2nd dose: 93%
Cohort C (chemotherapy)
1st dose: 32%
2nd dose: 84%
Cohort D
(chemoimmunotherapy)
1st dose: 33%
2nd dose: 89%

Cohort A
(no cancer)
1st dose: 66%
2nd dose: 99%

[50]

Solid cancer (n = 110) Control (n = 25) France Patient: 66 (54–74)
Control: 55 (38–62)

BNT162b2 1st dose: 55%
2nd dose: NA

1st dose: 100%
2nd dose: NA

[102]

Solid cancer (n = 223) Control (n = 49) France Patient: 67 (60–75)
Control: 53 (46–60)

BNT162b2 1st dose: NA
2nd dose: 94%

1st dose: NA
2nd dose: 100%

[27]

CLL (n = 299) Control (n = 93) UK Patient: 69 (63–74) BNT162b2
AZD1222

1st dose: 34%
2nd dose: 75%

1st dose: 94%
2nd dose: 100%

[113]

Solid cancer (n = 159)
Haematological (n = 41)

Control (n = 40) Belgium Patient: 62 (25–88)
Control: 48 (23–64)

BNT162b2 Solid cancer
1st dose NA
2nd dose: 95%
(targeted/hormonal)
2nd dose: 80%
(immunotherapy)
2nd dose: 55%
(chemotherapy)
Haematological
1st dose: NA
2nd dose: 29%

1st dose: NA
2nd dose: 100%

29]
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Table 1. (continued)

Cancer type Control Country Median age (years)
(IQR/range)

Vaccine Seroconversion (cancer) Seroconversion
(control)

Refs

Haematological
MM (n = 42)
MPM (n = 50)
Myeloproliferative
malignancies

Control (n = 37) Italy Patients (MM): 73 (47–78)
Patients (MPM): 70 (28–80)
Control: 81 (79–87)

BNT162b2 MM
1st dose: 21.4%
2nd dose: 78.6%
MPM
1st dose: 52%
2nd dose: 88%

1st dose: 52.8%
2nd dose: 100%

[36]

Myelofibrosis (n = 10)
Essential
thrombocythemia (ET)
(n = 17)
Polycythaemia vera (PV)
(n = 15)

NA Italy Patient: 72 (52–82) BNT162b2 Myelofibrosis
1st dose: 10%
2nd dose: 60%
ET and PV
1st dose: 68.8%
2nd dose: 93.8%

NA [114]

Haematological (n = 102) NA France Patient: 75.5 (33–93) BNT162b2
mRNA-1273

1st dose: NA
2nd dose: 61.8%

NA [92]

CLL (n=13)
B cell non-Hodgkin
lymphoma (n=14)
Multiple myeloma (n=16)

Control (n = 10) France Patient: 77 (37–92) BNT162b2 3rd dose: 58% (25/43) NA [78]

Haematological
HSCT (n = 42)

NA France Patient: 59 (50–64) BNT162b2 3rd dose: 48% NA [79]

Haematological (n = 29)
Serological
non-responders to two
doses of BNT162b2

NA Austria Patient: 72 (60–78) BNT162b2
Booster:
AD26.COV2.S

Nine patients with
serological response (31%)

NA [83]

Solid cancer (n = 23) NA France Patient: 17 BNT162b2 1st dose: 70%
2nd dose: 90%

NA [115]

Haematological
CLL (n = 44)

NA Italy Patient: 71(37–89) BNT162b2
mRNA-1273

1st dose: NA
2nd dose: 52%

NA [91]

Solid cancer (n = 37) NA Israel Patient: 67 (43––88) BNT162b2 36/37 patients NA [77]

Solid cancer (n = 129) Control (n = 609) Israel Patient: 62.4 (32–88)
Control: 47.28 (1st dose)
Control: 55.84 (2nd dose)

BNT162b2 1st dose: 32.4%
2nd dose: 84.1%

1st dose: 59.8%
2nd dose: 98.9%

[26]

Solid cancer (n = 52) Control (n = 50) USA Patient: 63.7
Control: 41.3

BNT162b2 1st dose: 67%
2nd dose: 80%

1st dose: 98%
2nd dose: 100%

[20]

Haematological
MM (n = 103)

Control (n = 31) USA Patient: 68 (35–88)
Control: 61 (26–85)

BNT162b2
mRNA-1273

1st dose: 21%
2nd dose: 67%

1st dose: NA
2nd dose:
100%

[45]

Solid cancer (n = 134)
Haematological (n = 66)

Control (n = 26) USA Patient: 67 (27–90)
Control: 64 (37–82)

BNT162b2
mRNA-1273
AD26.COV2.S

1st dose: NA
2nd dose: 94%
Solid cancer
1st dose: NA
2nd dose: 98%
Haematological
1st dose: NA
2nd dose: 85%

1st dose: NA
2nd dose: 100%

[15]

Multiple myeloma
(n = 260)

Control (n = 67) USA Patient: 68 (38–93)
Control: >50

BNT162b2
mRNA-1273

1st dose: NA
2nd dose: 84.2%

1st dose: NA
2nd dose: 100%

[37]

Solid cancer (n = 50) NA USA Patient: 30–85 BNT162b2
mRNA-1273

2nd dose:
WT 100%
Omicron 47.8%
Delta 87%
3rd dose:
WT 100%
Omicron 88.9%
Delta 100%

NA [55]
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Figure 2. The effect of anticancer therapies on B- and T-cell responses to vaccination. After antigen presentation,
the engagement of B cells with T cells leads to their activation, proliferation, and differentiation into plasma cells or memory B
cells. In parallel, naive T cells are subsequently activated and can differentiate into memory and effector T cells. T helper cells
can secrete cytokines, activating macrophages and B cells, and are also involved in B-cell priming to promote the
differentiation of B cells into long-lived plasma cells. Plasma cells can secrete neutralising antibodies specific to the S
protein, blocking angiotensin-converting enzyme (ACE2) interaction and preventing viral entry. Bound antibodies
recognised by innate effector immune cells partake in antibody-dependent cellular cytotoxicity (ADCC) causing target-cell
death with lytic enzymes. Cytotoxic T cells can mediate cell death of virally infected host cells through secretion of
cytotoxic granules containing perforin or granzyme B and release of inflammatory cytokines such as tumour necrosis
factor α (TNF-α) and interferon-γ (IFN-γ). Immune memory is acquired upon infection or with vaccination through the
generation of memory T and B cells which can proliferate rapidly and differentiate into effector cells upon re-exposure to
SARS-CoV-2 antigens, generating a secondary immune response. Targeted cancer treatments including anti-CD20,
Bruton’s tyrosine kinase inhibitors (BTKis), and anti-CD38 therapies can diminish the B-cell response, but they have also
been shown to have off-target effects, contributing to reduced T-cell activation as well as a decrease in total T-cell
numbers and therefore inhibiting vaccination-mediated responses. Ibrutinib, a BTKi that results in suppressing nuclear
factor of activated T cells (NFAT) and nuclear factor κB (NF-κB) activation in B-cell malignancies, can also have off-target
effects on interleukin-2-inducible T-cell kinase (ITK) in T cells, leading to the suppression of Th2 differentiation and resultant
Th1 skewing. This figure was created with BioRender. Abbreviations: CTX, chemotherapy; MΦ, macrophage.
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cytotoxic chemotherapy and immune-cell-depleting agents (anti-CD20, anti-CD38) show the
poorest seroconversion, unlike those on endocrine therapy and immune checkpoint inhibitors
where reduced antibody responses are less common [31]. Therefore, given the adequate anti-
body protection provided by two vaccine doses in patients with solid cancer, a third vaccine
dose is strongly encouraged particularly for individuals with haematological malignancies, in
whom two doses do not provide sufficient immune protection.
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Reporting vaccine immunogenicity in single-cancer cohorts enables further stratification of high
versus low serological responders. This is especially important in haematological neoplasms
where response variability is common, as seen in one study where seropositivity was lowest in
chronic lymphocytic leukaemia (CLL), non-Hodgkin’s lymphoma (NHL), and multiple myeloma
(MM), and highest in chronic myeloid leukaemia (CML), myeloproliferative neoplasms (MPN),
and myelodysplastic syndromes (MDS) [32]. CLL is characterised by monoclonal proliferation
of dysfunctional B cells and associated disruption of T-cell function, further disrupted by Bruton’s
tyrosine kinase inhibitors (BTKis) such as ibrutinib [33]. Thus, in CLL, impaired immune responses
to vaccines can be influenced by disease- and treatment-related factors. In one study, 72% of
seronegative CLL patients were on treatment for 2 years prior highlighting treatment as a potential
confounder of antibody responses, and the remaining 28% of patients could attribute their poor
responses to their fundamental B- and T-cell dysfunction [34]. Moreover, in another study, 79.2%
of patients in clinical remission after effective treatment at the time of vaccination were serological
responders, suggesting that defective humoral immunity can be rescued upon vaccination with
disease control [35]. MM is a neoplasm of plasma cells with major immune dysfunction, and
after complete vaccination seroconversion was shown to be 76.6% [36]. However, the
responses were not considered robust, as antibody titres in the responders were conspicuously
low, and another study showed that 15.8% of patients do not develop any detectable antibody
titres [37]. The dysfunctional plasma cells in these patients secrete cytokines such transforming
growth factor β (TGFβ), IL-10, and IL-6 which impair B- and T-cell functions such as B-cell differ-
entiation and antibody response and T-cell cytotoxicity that can ultimately culminate in a reduced
vaccine-induced response [38]. By contrast, and reassuringly, a study on MDS patients showed
all patients (n = 15) who received BNT162b2, and 76.5% (16/21) of those who received AZD1222,
were serological responders [39]. The lower rates of seroconversion observed in haematological
patients, particularly those with CLL, NHL, and MM, highlight their increased vulnerability and the
requirement for further studies to evaluate the most effective vaccination schedule in combination
with ongoing treatment regimens.

Quantification of spike-binding antibody titres (anti-S) in numerous studies also shows reduced
median IgG titres in patients with solid cancer compared to healthy volunteers [16,18,19,27]. In
one study with the BNT162b2 vaccine, median IgG titres against the S1 and S2 subunits of the
SARS-CoV-2 spike protein were significantly reduced at 118 (interquartile range, IQR 16.9–401)
AU/ml in solid cancer patients compared with 380.5 (IQR 234–401) AU/ml in controls [19].
Comparisons of antibody titres in patients with haematological versus solid malignancies who
received mRNA vaccines showed that haematological patients’ median anti-S titres were lower
at 832 (IQR 24–2500) versus 2500 (IQR 514–2500) U/ml [23]. Patients with haematological cancer
on B-cell-targeting therapies who received mRNA or AZD1222 vaccines were shown to have a
significant reduction in median anti-S titres compared with those on other treatment modalities
and patients with solid cancer, at 1.6, 191.6, and 246.4 AU/ml, respectively [40]. Another study
in which mRNA and viral vector Ad26.COV.S vaccines were administered observed median anti-
S titre values of 7858 AU/ml in solid and 2528 AU/ml in haematological patients; however, the
reduction in antibody titres in comparison with control cohorts was significant only in the
haematological patients [15].

Most of these studies focused on antibody responses against the spike protein, and often used
different assays for quantification of anti-S titres; however, a standardised approach would allow
for more accurate comparisons to be made. Nevertheless, determining the levels of antibodies
directed specifically against the receptor-binding domain (RBD) on the spike protein – which
engages the angiotensin-converting enzyme (ACE2) receptor, allowing viral entry into host cells –
may be more clinically relevant as an indicator of protection against COVID-19 disease as such
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antibodies have shown higher neutralisation capacity [41,42]. One study analysing anti-S2
and anti-RBD antibodies showed a decrease in these antibodies in patients with solid tumours,
with an 11-fold decrease against the RBD alone in comparison with healthy controls [20]. Interest-
ingly, geometric mean titres (GMT) of RBD-IgG in haematological patients (17.61 IU/ml) and
patients with solid cancers on chemotherapy (234.05 IU/ml) were significantly lower than in healthy
controls (2955.04 IU/ml), whilst patients with solid cancer on hormonal or targeted therapies
had comparable levels (1844.93 IU/ml) [17]. The effect of treatment on the generation of antibody
titres was also emphasised in a study where patients with lymphoma not on anti-CD20 therapies
for >6months had titres comparable with those in healthy controls [14]. These studies highlight
the variability of humoral responses with different treatment modalities within cancer
subgroups. One suggestion is to stratify patients into optimised vaccination pathways to
ensure that maximum protection is generated within each subgroup, warranting the most
effective utilisation of resources.

The use of vaccine adjuvants is an important part of improving the quality andmagnitude of adap-
tive immune responses following vaccination. The abovementioned nucleoside-modified mRNA
vaccines, encapsulated with lipid nanoparticles (LNP), are thought to utilise these LNPs to protect
the mRNA from degradation and facilitate delivery into the cytoplasm of host cells for subsequent
expression and presentation to the immune system. For example, Alameh et al. recently de-
scribed an ionisable LNP formulation that elicits robust Tfh cell responses and durable protective
antibody titres when combined with a variety of vaccine antigens, suggesting additional mecha-
nisms by which currently approved vaccines may be improved for specific patient populations
(such as those with cancers) [43].

Viral vector vaccines such as AZD1222 and Ad26.COV.S have been shown to have reduced
antibody titres in comparison with the BNT162b2 and mRNA-1273 mRNA vaccines [14,44].
Specific comparisons of the two mRNA vaccines have shown the superiority of the mRNA-
1273 vaccine, including in a cohort with multiple myeloma patients [15,25,34,45]. Although the
vaccines encode almost identical products, the mRNA-1273 primary two-dose vaccine series
consists of two 100 μg/0.5 ml dose (i.e., total 200 μg) as compared with 60 μg in BNT162b2
two-dose primary series (30 μg/0.3 ml per dose). It is possible the higher dosing within the
primary vaccination series could offer greater protection to patients with cancer, although this
warrants further investigation as Phase 3 trials in healthy individuals showed similar vaccine
efficacies [45]. The overall reduced levels of antibody titres in vaccinated patients with cancer
indicate incomplete protection in this vulnerable population, with increased risks of earlier
seroconversion in patients who are serological responders after two doses [37].

Good concordance of SARS-CoV-2-binding antibody responses with functional
neutralisation antibodies
Serological detection of spike-binding antibodies in patients with cancer has been widely
reported as amajor immunological endpoint, but this may not necessarily correlate with functional
virus-neutralising activity, especially against variants of concern (VOCs). The presence of both
binding and neutralising antibodies (nAbs) has been shown to be strongly predictive of protection
against symptomatic SARS-CoV-2 infection; however, a clinically relevant threshold correlating
with protection has yet to be established [46,47]. The SOAP-02 study showed that after one
dose of the BNT162b2 vaccine, all serological responders except for one haematological patient
could neutralise the wild-type (WT) SARS-CoV-2 strain, and anti-S titres correlated strongly in
patients with solid tumours and the controls [12]. However, in a study with MM patients, one
dose only generated nAbs in 4/48 patients compared to 21/104 controls to a titre clinically relevant
for viral inhibition [48].
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After two doses, all serological responders were shown to be able to neutralise theWT and Alpha
and Delta VOCs, except for one CLL patient on a BTKi with a trend for greater neutralisation of
the WT strains compared with the VOCs. Increased anti-S titres after the second dose correlated
well with neutralisation in healthy controls, but were variable in patients with solid cancer [49].
Concordance of SARS-CoV-2-binding titres and neutralisation of the WT strain was seen in
patients with solid cancers who received the mRNA-1273 vaccine as part of the VOICE study,
and in lymphoma patients receiving BTN162b2 and AZD1222 through the UK PROSECO
study [50,51]. Live neutralisation of SARS-CoV-2 WA1 isolates after the second dose of
BNT162b2 showed that neutralising titres (NTs) were detected in 80% of patients with cancer,
although at reduced levels in comparison with the controls: median 90% plaque reduction
neutralization tests (PRNT90) titre of 60 versus 540 [20]. Interestingly, another study showed
that 69% of patients who received a single dose of the Ad26.COV.2.S vaccine had undetectable
neutralisation titres, and superior responses were seen with the mRNA-1273 vaccine followed by
the BNT162b2 [44].

Regardless of the vaccine given, reduced responses to Alpha, Beta, Gamma, and Delta
VOCs relative to the WT strain were seen in a cohort of patients with cancer [13]. The
capacity to neutralise multiple variants, which is denoted as neutralisation breadth, was
linked to a stronger neutralisation response against the WT [52]. The CAPTURE study inves-
tigated functional live-virus neutralisation against VOCs following BNT162b2 and AZD1222
vaccination in patients with cancer; after the first dose, 49% had titres against the WT,
with low responses to Alpha (15%), Beta (9%) and Delta (9%). After two doses, 83%,
61%, 53%, and 54% of all patients and 100%, 96%, 86%, and 85% of the healthy cohort
had detectable nAbs against the WT, Alpha, Beta, and Delta variants respectively [13].
Mutations in Beta are associated with increased transmissibility, and antibody escape with
the Delta variant also possessing immune evasion mutations [53]. The proportion of patients
vaccinated with BNT162b2 that developed nAbs against the VOCs was increased along with
significantly higher median nAb titres in comparison with the AZD1222 cohort. Additionally,
although titres of anti-S1 binding antibodies could predict neutralisation against the WT
strain, discordance was observed with VOCs [13]. Overall, mRNA-based vaccines have
shown greater neutralisation ability than adenoviral vaccines against both WT and VOC.
Therefore, mRNA vaccines should be prioritised for use in cancer patients wherever possible.
Although responses to VOCs are improved after the second dose, booster doses will ensure
greater protection against emerging variants and should therefore be recommended for cancer
patients where available.

Patients with haematological malignancies displayed heterogeneous responses in comparison
with solid cancers, and had decreased neutralisation activity to both the WT and VOCs. Consis-
tent with reduced seroconversion rates in patients with CLL, nAbs were also reduced in this
cohort (WT 20%, Alpha 0%, Beta 10%, Delta 20%) [13]. The most recent VOC, Omicron
(B.1.1.529) – first isolated in November 2021 – possesses more than 60 mutations, more than
half of which are located in the spike protein, and of these 15 are within the RBD, raising concerns
regarding potentially high immune evasion [54]. In a study of 50 patients with solid cancer, nAb
titres (50% NT) after two mRNA vaccine doses displayed a 4.2- and 21.3-fold reduction against
the Delta and Omicron VOCs, respectively, relative to the ancestral strain; 52.2% of the patients
had no detectable titres against Omicron, highlighting yet another aspect of vulnerability in this
patient cohort [55]. Despite good correlations of the anti-spike IgG levels with the ancestral
SARS-CoV-2 strain neutralisation activity, if the discordance with VOCs is not factored in any
analysis/modelling, serological testing may misrepresent the likelihood of breakthrough infection
and associated symptomology.
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COVID-19 vaccination elicits T-cell responses at modestly lower levels than
controls in patients with cancer, irrespective of serological status
T cells are an important component in generating adaptive immune responses against COVID-19,
and may correlate better with long-lasting immune memory and protection from severe disease
than humoral responses (Figure 2) [56]. Recent reports have highlighted discordance of the
humoral response with T-cell responses in patients with cancer in contrast to healthy controls,
where responses are better coordinated. This is demonstrated by studies where seronegative
individuals display robust T-cell responses following stimulation with SARS-CoV-2-derived
peptides [12,13,21,57,58]. In particular, 74% of seronegative haematological patients were
shown to have T-cell responses as evidenced by the generation of Th1-related cytokines
upon spike peptide stimulation 14 days after a second dose of mRNA-based vaccine [59]. A
similar study yielded more modest observations, with only 24% of solid and 26% of haemato-
logical seronegative responders generating T-cell responses, although evaluated 36 days after
the second dose using different assays [21].

In the general cohorts, T-cell responses are elicited after two doses of COVID-19 vaccines in both
solid cancer and haematological patients, with several studies showing comparable responses
between the two groups and similarities in proportions of responders to healthy control cohorts
[13,20–22,49,60]. However, diminished magnitudes of T-cell responses in patients with cancer
relative to controls can be observed with quantification of interferon-γ (IFN-γ) enzyme-linked
immunospot (ELISPOT) assays or flow-cytometry detected cytokine-producing T cells [13,20].
T-cell responses to Alpha and Delta peptide pools were seen in addition to responses to WT
S1/S2 peptides, confirming previous observations that vaccine-induced T cells can target a
diverse repertoire of epitopes [13,61]. Overall, whilst poor humoral responses in patients with
cancer does not necessarily correlate with the presence of a T-cell response, the observed
magnitudes of these T-cell responses are lower in these patients compared with healthy
individuals. This should be considered when evaluating the level of protection generated through
COVID-19 vaccination.

Coordinated efforts of both CD4 and CD8 T cells are needed for viral clearance. CD4 T cells
mediate the Th1 immune response, providing cognate help to CD8 T cells and B cells allowing
for a cytotoxic response to be generated by CD8 T cells and virus-specific antibody production
by B cells [62,63]. Fascinatingly, a report on MM patients showed seropositive individuals had
comparable CD4-T-cell responses to healthy controls and similar distributions of mono- and
polyfunctional T cells which are known to be elevated upon viral infection [57,64]. Of note, 34%
of seronegative individuals had CD4 responses with mainly IL-2-only monofunctional cells [57].
Similarly, median IL-2 levels were shown to be increased in patients with lymphoid malignancies
compared to healthy controls after spike stimulation, but had lower levels of IFN-γ and tumour
necrosis factor α (TNF-α), suggesting a reduced magnitude of protection by T-cell responses in
these individuals as substantiated by their monofunctional phenotype [57,59]. Despite this,
polyfunctional T cells were found in 65% of CML patients [65], and MPN patients had 80% and
60% of patients with polyfunctional CD4 and CD8 T cells, respectively [66]. The proportion of
SARS-CoV-2-specific CD8 T cells in MM patients was shown to be comparable to that in healthy
controls [57]. The protective role of CD8 T cells in improving survival in SARS-CoV-2-infected
haematological patients has recently been shown, suggesting that the presence of SARS-CoV-
2-specific T cells after vaccination could be a strong correlate of protection [67].

Although the data regarding T-cell responses are promising, caution needs to be taken when
inferring the levels of protection present, particularly against VOCs which have not been widely
scrutinised in this patient population. The majority of the studies have focused on stimulating
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T cells with WT S1/S2 peptides which have shown cross-reactivity with the original SARS-CoV
virus and are supported by the observation that 22% of infection-naïve patients at baseline
(prevaccination) displayed T-cell responses toWT S-derived peptide pools [13,68]. Other studies
have evaluated RBD-specific T-cell responses and saw that in haematological patients RBD
responsiveness was lower but robust responses to control peptides remained (CEF/CEFT)
[12,49]. In line with this, RBD responsiveness in MM was shown to be 34.2% compared
to 71.4% in healthy controls [69]. This possibly implies that T-cell responses could be a result
of cross-reactivity in seronegative individuals to pre-existing memory T cells generated against
other coronaviruses. Moreover, the strong response to control peptides indicates that the
absence of vaccine-induced T-cell responses is not related to disease-specific immunosuppres-
sion but rather to a failure to generate a durable immune response to novel antigens. This is
possibly the outcome of uncoordinated vaccine responses of the humoral and cellular arms of
immunity in patients with cancer.

As seen with antibody responses, the mRNA-1273 vaccine yielded better T-cell responses
than BNT162b2, but by contrast the viral vector AZD1222 has shown improved responses
compared to BNT162b2, implying that heterologous booster regimens may confer more com-
plete immune protection, as reported in a recent trial [22,51,70]. Adenoviral vaccines and
mRNA-based vaccines vary with how they trigger the innate immune response, as the
pathogen-associated molecular patterns (PAMPs) present in the vaccines are sensed by different
Toll-like receptors (TLRs). Innate sensors for adenoviral vaccines include membrane-located
TLR2, TLR4, and the major DNA sensor TLR9, whilst mRNA vaccines stimulate endosomal
RNA sensors such as TLR3, TLR7, and TLR8 [71]. Heterologous vaccine regimens will be
able to trigger different receptor pathways for downstream signalling, resulting in the secretion
of type I IFNs, proinflammatory cytokines, and chemokines that can aid alongside an adaptive
response, and thus the varied mode of immune activation could provide better protection over-
all in patients with cancer [72].

Durability of B-cell immune memory after COVID-19 vaccination
Very few studies have evaluated the presence of SARS-CoV-2-reactive B cells after vaccination in
patients with cancer [20,57]. In patients with MM, investigators tested the hypothesis that the lack
of antibody response seen in this patient cohort was a direct effect of an incapability to generate
spike-reactive B cells. Using flow cytometry, they found that spike-reactive B cells were seen in all
healthy controls and all but one of the seropositive MM groups. In contrast, only 6/15 seronega-
tive individuals (40%) possessed these spike-reactive B cells [57].

Another study showed that vaccination was able to increase RBD-specific B cells in patients with
solid tumours, but this increase was significant only in healthy controls [20]. More specifically,
isotype-switched pre-plasmablast CD21-, RBD-, and S1-specific B cells were increased in
patients but at median levels tenfold lower than those in controls. Although patients without
detectable nAbs had a paucity of spike-reactive B cells, those with modest but detectable
nAbs generated spike-reactive B cells.

These data can prove to be useful to further characterise the reduced humoral responses
seen particularly in patients with haematological malignancies, so that informed decisions
regarding the management of nonresponders can be made. It has also been shown that
B cells can persist and increase after vaccination even if anti-spike antibodies are seen to
decline, and thus quantification of memory B cells can help to fully depict long-term immu-
nological protection against SARS-CoV-2 infection along with antibody and T-cell responses
[73,74].
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Clinician’s corner
Disease-related and treatment-induced
immunosuppression has been shown
to impede immunogenicity to COVID-
19 vaccines in patients with cancer.
Booster doses have been shown to
rescue responses in some patients
who were seronegative after the first
two doses, suggesting benefits in con-
tinuing to administer vaccine doses.

To improve the efficacy of the
vaccine, administration should not
occur concomitantly with highly
immunosuppressive regimens such as
high-dose steroids, chemotherapy,
and B-cell-targeting agents such as
anti-CD20/functional inhibition with
BTKis. Perhaps a windowwhere immu-
nosuppressive treatments are withheld
to allow for complete vaccination is
necessary for these patients.

Cancer treatment would likely have to
continue following vaccination, which
may still impact the efficacy of the
vaccine. It is therefore also important
to consider the use of additional
prophylactic measures such as
Evusheld (300 mg tixagevimab and
300 mg cilgavimab) in these patients,
rather than relying on vaccination alone.

Improved responses have also been
seen for patients on active anticancer
therapy, suggesting that patients who
have finished treatments such as anti-
CD20 for 6 months should revisit to
obtain further doses. Patients who
have also achieved remission should
be revaccinated to obtain better pro-
tection. A method for serological and
T-cell response monitoring should be
conducted to assess those patients
who are in greater need.

mRNA-based vaccines have shown a
superior response over viral vector vac-
cines regarding immunogenicity, and
mRNA-1273 compared to BNT162b2,
and so where possible these vaccines
should be given priority for patients
with cancer.

More research into heterologous vaccine
boosting is needed to understand the
optimal regimens, but early reports have
shown benefits and potentiate its use
for patients with cancer.

Despite boosting, several patients do
not display seroconversion or T-cell
Waning humoral immunity in patients with cancer and its rescue by additional
vaccine doses
COVID-19 vaccination regimens in patients with cancer have been shown to be effective with
a well-tolerated safety profile, but over time vaccine efficacy decreases for all vaccines due to
waning humoral immunity and the emergence of novel VOCs. Longitudinal studies showed
similar seronegative rates for patients with solid tumours on active cancer treatment of 21%
and 16% compared with controls, and patterns of decline are similar in haematological patients,
implying a similar decline in antibody titres [75,76]. Administration of booster doses has been
rolled out to rescue immunogenicity in immunocompromised cohorts and to combat waning
humoral immunity in the general population. Increased antibody titres in patients with cancer
have been seen in numerous studies, including with RBD-binding titres, and as a result nAbs
have also shown threefold increases compared with prebooster doses [20,40,44,77–81].
Additionally, booster doses have allowed seroconversion of previously seronegative patients,
with one study showing that 56% of individuals were able to rescue humoral responses
[20,44,58,82–84]. Heterologous boosting regimens and boosting with mRNA-1273 was
shown to increase anti-spike titres and where AZD1222 and BNT162b2 vaccines were used,
increases in nAbs were also observed [58,85].

Subsets of participants who had low neutralising titres after two vaccine doses were subject to a
third booster dose which enhanced the neutralisation of numerous VOCs, including Alpha, Beta,
Gamma, and Delta [52]. Neutralising titres were also increased against Omicron in 199 evaluated
patients with cancer, further favouring the administration of a third dose in this patient cohort. In
patients with solid cancer, nAbs were detected in 37%, 56%, and 97% after two doses which
increased to 90%, 97%, and 99% after the third dose against Omicron, Delta, and WT strains
respectively [86]. In haematological patients, the benefits of boosting were also evident as 45%
of patients who had undetectable titres against Omicron after the second dose developed a
response with the booster [55,86].

A small proportion of serological and cellular nonresponder patients remain
despite repeated vaccination doses in cancer patients
Although benefits of boosting are seen with elevated humoral responses in patients with cancer,
evidence of improving the magnitude of T-cell responses has not been elucidated as responses
were comparable to baseline (i.e., after the second dose) [20,78]. Only one study with a small
cohort showed increases in the proportion of T-cell responders and in the magnitude of response
in prior responders after the booster, albeit responses were still markedly reduced in haematological
patients [85]. Factors contributing to seronegative responses even after booster doses included a
diagnosis of haematological malignancy and treatment with anti-CD20 therapy [44,51,58,78,84].
Five patients with no humoral or cellular responses to three doses of vaccines were all haema-
tological patients, specifically three with CLL and two with NHL. These patients may need
further boosting as a study in Israel has shown that a fourth dose administered 4 months
after the third dose in an elderly population was effective in reducing the risk of COVID-19-
related outcomes in the short term [87].

Anticancer therapies associated with reduced immunogenicity after COVID-19
vaccines
Although impaired immune responses to vaccines in patients with cancer can be attributed
to advanced disease and underlying disease-related immunosuppression, in many cases
treatment-induced factors are also at play, particularly regarding the timing of treatment and con-
comitant vaccine administration [45]. In haematological malignancies, B-cell-targeted therapies
such as anti-CD20 monoclonal antibody (mAb) (e.g., rituximab, and BTKis such as ibrutinib)
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responses, and this implicates the use
of novel methods in these patients,
such as prophylactic administration of
anti-SARS-CoV-2 antibodies as well
as encouraging complete vaccination
of family and friends to offer indirect im-
munity for the patients.
have been associated with reduced humoral responses and were strong predictors of impaired
seroconversion [13,15,17,22,25,35,59,84,88–92]. Anti-CD20 mAbs work through several
mechanisms to induce tumour killing and cause depletion of CD20-positive B cells. These include,
for example, complement activation and subsequent complement-dependent cytotoxicity,
antibody-dependent cell-mediated cytotoxicity, and nonclassical apoptosis induced by
crosslinking of CD20 molecules [93]. Anti-CD20 treatment has also been shown to cause a
marked reduction in numbers of T cells, for example through the off-target depletion of
CD20-positive T cells which account for up to 5% of the CD3+ population [94]. Nonetheless,
anti-CD20 therapy was not shown to significantly affect T-cell functionality, and patients main-
tained the ability to mount an effective T-cell response [60,92,95].

BTKis such as ibrutinib work by blocking signalling activity essential for B-cell growth and survival. For
example, treatment results in the inhibition of nuclear factor κB (NF-κB) and nuclear factor of activated
T cells (NFAT), which are key transcription factors involved in regulating the expression of
downstream genes controlling characteristics such as proliferation, survival, and chemokine
production [96]. Ibrutinib can also block interleukin-2-inducible T-cell kinase (ITK), and this
off-target effect can lead to the loss of Th2 cells through the reduction of cytokines that promote
Th2 differentiation [97]. Th1 cells are less compromised due to their expression of resting lymphocyte
kinase (Rlk) which can compensate for ITK inhibition resulting in Th1 skewing [98]. mRNA-based
vaccines have been shown to elicit a favourable Th1-driven response which may account for the
maintenance of the T-cell response seen in patients targeted with these therapies [63,99].

In MM patients on anti-CD38 treatment, reduced seroconversion rates and CD4-T-cell
responses were observed [36,37,57,100]. These treatments inhibit long-term B-cell-mediated
immunity through the reduction of antibody-producing plasma cells, which may explain reduced
seroconversion in response to SARS-CoV-2 vaccination. Similarly to anti-CD20 therapies, anti-
CD38 treatment can also cause off-target T-cell depletion. CD38 is a characteristic marker
for T-cell activation, and therefore treatments such as daratumumab could be responsible for a
depletion in the activated vaccine-induced spike-reactive T cells, possibly contributing to the
observed reduction in the CD4 T-cell response.

In patients with solid cancer, recommendations around the timing of active cytotoxic chemo-
therapy and COVID-19 vaccinations were not established to facilitate faster vaccination of
immunocompromised cohorts. Chemotherapy inhibits cell growth and proliferation, and there-
fore has broad immunosuppressive effects, potentially diminishing spike-reactive T and B cells.
As a result, chemotherapy has been shown to be a negative predictor of lower humoral re-
sponses [5,9,12,13,15,18–23,25,32,37,45,46,76,78,]. Use of immunosuppressive treatment
with steroids has been shown to be associatedwith patients who failed tomount both a serological
and a cellular response [49]. Meanwhile, immunotherapy and the use of immune checkpoint
inhibitors (ICIs) have shown improved seroconversion rates in patients compared with those on
other modalities [15,17,21,50]. Immunotherapies can enhance the immune response by
reinvigorating exhausted T cells, and therefore may potentiate cell-mediated vaccine responses.
Despite the amplified immune response with ICIs, patients rarely display symptoms of immune-
related adverse events (irAEs) or cytokine release syndrome (CRS), thus highlighting a favourable
safety profile in this cohort [103]. Patients on endocrine or targeted therapies are unlikely to have
treatment-driven reduced vaccine-induced immune responses [15–17,23]. Recommendations
for improving responses would be to avoid administration of COVID-19 vaccinations on the
same day as immunosuppressive therapies such as chemotherapy, and providing third doses
as the chances of seroconverting even on active cancer therapy were increased in this setting
[51,58,77]. This, however, remains an issue for the patients on anti-CD20 therapy where no
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Outstanding questions
Do heterologous vaccine boosting
regimens generate improved vaccine-
induced immune responses in patients
with cancer?

How can serological testing of anti-S
antibodies and the presence of anti-
S-specific memory T and B cells corre-
late to protection in vivo against SARS-
CoV-2 infection or COVID-19 disease?

What is the durability of protection
offered by the COVID-19 vaccines in
patients with cancer, and how can
anticancer treatments influence this?

Is vaccine-induced protection sustained
against emerging VOCs, and would
novel vaccines be needed against later
strains for better protection?

What are the best alternative options
for patients who do not display any
immune responses to the current
COVID-19 vaccines?
nAbs against theOmicron VOCwere seen following the third dose [86]. In these patients, a strategy
to vaccinate their immediate circles needs to be promoted, and perhaps the use of prophylactic
neutralising anti-spike antibodies should be investigated [59].

Concluding remarks
Long-term follow-up studies in patients with cancer who have received COVID-19 vaccines have
shown an excellent safety profile in this cohort, with immunogenicity elicited in most of the
population. Patients with solid cancers demonstrate responses at levels almost comparable
with those in the general population, with the exception of those few patients on chemotherapy.
However, impaired humoral responses in patients with haematological malignancies are evident
in the studies to date and show discordant correlations with T-cell responses, particularly in
patients on anti-CD20 therapies and high-dose steroids. Although subsequent boosting doses
may rescue some immune dysfunction in vaccine responses, these patients may additionally
benefit from alternative measures (see Clinician’s corner). Further research into optimal timing
and possible heterologous booster regimens are to be explored to improve vaccine efficacy in
patients with cancer (see Outstanding questions). In this review we summarise immunogenicity
data from mainly viral vector and mRNA-based vaccines, but increased global efforts in reporting
on protein-based or inactivated virus vaccines in this special cohort are needed to provide recom-
mendations where these vaccines are predominant. There is a great deal of heterogeneity in the
studies reporting responses to vaccines, which complicates comparisons being made of similar
patient groups, thusmore standardisation of reporting is needed.We also encourage longitudinal
follow-up studies of these patients to define standardised correlates of protection offered by
serological testing alongside reporting of memory T- and B-cell responses to better inform public
health measures.
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