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Sleep is essential for life, but its measurement has a brief his-
tory in evolutionary terms. The most widely accepted way of 
measuring sleep is via sleep stages derived from analysis of 
the electroencephalogram (EEG) which was first introduced by 
Loomis et  al. [1] in 1937. Loomis et  al. observed the continual 
changes of stages during sleep and identified five stages with the 
letters A-E with A containing trains of alpha waves, B sections of 
low voltage, C containing spindles, D containing spindles plus 
random potentials, and E containing random potentials only. 
Rapid eye movement (REM) sleep was first recognized in 1953 by 
Aserinsky and Kleitman [2]. In 1957 Dement and Kleitman rec-
ognized the cyclic nature of sleep stages [3] and simplified the 
sleep stages into four stages of non-REM sleep (S1–S4), a REM 
sleep stage, and a wake stage.

To standardize recording and scoring techniques and in-
crease the equivalence of results between laboratories, the 
manual of Rechtschaffen and Kales (R&K) was introduced in 
1968 [4]. In the R&K manual, a polysomnography (PSG) measure-
ment is divided into 30-s epochs and a human scorer visually 
classifies each epoch into the five sleep stages and one wake 
stage of Dement et al. [3]. An extra stage was added to accom-
modate periods of movement. The intent of the R&K rules was 
to provide the minimum requirements for laboratories, but the 

manual became the gold standard for sleep studies for nearly 
40 years. Over time criticisms were raised. The sleep stages were 
based on young healthy adult subjects, the epoch length of 30 s 
had no real physiological basis, two or more stages could be pre-
sent in one epoch, transitioning rules between stages were un-
defined and there was no clinical difference between S3 and S4.

To address some of these criticisms and improve the 
interscorer agreement, the American Academy of Sleep 
Medicine (AASM) manual was released in 2007 [5]. The AASM 
manual uses 5 sleep stages: Wake (W), REM, and non-REM sleep 
(N1, N2, and N3). S3 and S4 from the R&K rules were merged into 
N3, and “movement time” was disregarded. Transition between 
sleep stages was more clearly defined, and in recognition of the 
development of digital recorders since the R&K rules, recom-
mendations for sampling rates and filter settings for the PSG 
were given. The AASM also provides interscorer reliability (ISR) 
training as part of its scoring accreditation process. Technical 
staff members who score sleep studies for a sleep facility must 
participate in the ISR program with competency checked quar-
terly. Similar quality assurance programs exist across the world.

Partially due to the historical development of sleep analysis 
and because there is no true gold standard for sleep analysis, 
epoch-based manual sleep scoring is the current standard. 
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Manual scoring can be performed by an individual scorer or a 
panel of scorers with the assumption that a panel of scorers is 
more consistent than a single scorer. Many studies have looked 
at the overall agreement between scorers. A very recent meta-
analysis of 11 eligible studies [6] selected from 101 candidate 
studies concluded that the overall Cohen’s kappa for manual 
sleep scoring by individual scorers was 0.76, indicating substan-
tial agreement. Analysis of the kappa values for individual sleep 
stages showed that agreement for wake and REM were substan-
tial, agreements for stages N2 and N3 sleep were moderate, and 
for stage N1 sleep was fair. Studies comparing individual scorers 
to a panel of scorers are less common. An analysis of the agree-
ment of individual scorers against a panel of six scorers from 
three centers in the United States scoring 70 PSGs showed that 
overall kappa was 0.57 indicating moderate agreement [7].

Considerable progress has been made with machine-based 
sleep stage scoring and current evidence suggests that the per-
formance of machine-based scoring is comparable to human 
scoring. A review of the state-of-the-art machine-based scorers 
in 2019 revealed that the overall agreement of machine-based 
sleeping staging against individual scorers was a kappa value in 
the range 0.73–0.86 [8]. An analysis of performance on individual 
sleep stages revealed worst performance on N1 and best on N3, 
W, or REM reflecting the same trends as human scorers. One of 
these studies compared performance against a panel of scorers 
obtaining a kappa of 0.76 [7].

The development of machine-based scoring sleep systems 
requires a training stage whereby sleep stages from human 
scorers along with PSG signals are provided to machine learning 
algorithms and the system uses these manually labeled sleep 
stages to learn associations between the signals and the sleep 
stages. Given that human and machine scoring achieve com-
parable agreement the obvious question arises as to whether 
machines can provide better performance than they currently 
do. In this issue of Sleep, van Gorp et al. [9] provide a theoret-
ical framework from the statistics and the machine learning 
community to facilitate discussion on the uncertainty in sleep 
staging. They introduce two variants: aleatoric and epistemic 
uncertainty. Aleatoric uncertainty arises from the random na-
ture of data and their measurements. Epistemic uncertainty 
arises from a lack of knowledge about the data or the optimal 
model. Aleatoric uncertainty is inherent to a specific meas-
urement setup and cannot be reduced, whereas epistemic 
uncertainty may be reduced through additional training and/
or further data collection. This raises the question of whether 
the limit in performance that machine-based scorers have 
reached is an artifact of the determination of ground truth. 
The uncertainty on ground truth and its impact on machine-
based scoring systems is not limited to sleep stages. It equally 
applies to other measurements in our field, such as the 
apnea–hypopnea index.

One path forward may be through the wider use of panel-
based scoring but, given the high workload for panel-based 
scoring, our field must test the assumption that panel-based 
scoring is actually more consistent than individual scoring. 
Another approach is to consider observing sleep as a con-
tinuous, non-discrete dynamic phenomenon. These definitions 
of “continuous sleep” have been recently proposed using both 
machine learning, with the description of hypnodensity [7] as 
well as using expert knowledge about EEG dynamics during 
sleep to calculate the odds ratio product (ORP) as a continuous 

measure of sleep depth [10–12]. The hypnodensity expresses 
sleep in terms of a probability distribution in 5-second epochs, 
providing more granularity. Epochs associated with higher inter-
rater variability (such as N1) typically result in higher model 
variance. The ORP, as well as its distribution across the night, 
have been recently demonstrated to capture clinically relevant 
information, including associations with sleep disorders such 
as insomnia, OSA, sleepiness, and perceived poor sleep quality 
[11–13]. However, the utility of ORP to characterize REM sleep 
dynamics is still underexplored. An exciting future direction is 
the use of semi-supervised and unsupervised learning to fully 
harness the potential of the electrophysiological data available 
in describing sleep. Could the lower inter-rater variability in N1 
and higher model variance in machine learning methods be 
explained by the existence of well-defined sub-stages or sleep 
transition states? If these states truly exist and prove to be clin-
ically significant, it is possible that our current ideas on ground 
truth may change. From our perspective, this will fully leverage 
the synergistic contributions of humans and machines towards 
the understanding the mysteries of sleep.
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