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Abstract: Perfluorosulfonated ionomers are the most successful ion-exchange membranes at an
industrial scale. One recent, cutting-edge application of perfluorosulfonated ionomers is in polymer
electrolyte fuel cells (PEFCs). In PEFCs, the ionomers are used as a component of the catalyst layer
(CL) in addition to functioning as a proton-exchange membrane. In this study, the microstructures in
the CLs of PEFCs were characterized by combined synchrotron X-ray scattering and transmission
electron microscopy (TEM) analyses. The CL comprised a catalyst, a support, and an ionomer. Fractal
dimensional analysis of the combined ultrasmall- and small-angle X-ray scattering profiles indicated
that the carbon-black-supported Pt catalyst (Pt/CB) surface was covered with the ionomer in the CL.
Anomalous X-ray scattering revealed that the Pt catalyst nanoparticles on the carbon surfaces were
aggregated in the CLs. These findings are consistent with the ionomer/catalyst microstructures and
ionomer coverage on the Pt/CB surface obtained from TEM observations.

Keywords: polymer electrolyte fuel cell; ionomer; catalyst layer; transmission electron microscopy;
synchrotron X-ray scattering

1. Introduction

Perfluorosulfonated ionomers are the most successful ion-exchange membranes at an
industrial scale [1]. The ionomers are commonly used as the proton-exchange membrane in
polymer electrolyte fuel cells (PEFCs) [2]. Recently, PEFCs have become the most attractive
type of electrochemical power converter thanks to their wide variety of applications, such
as in automotive power, stationary power, and microelectronics [3,4]. PEFCs convert the
chemical energy of hydrogen and oxygen fuels directly into electricity, affording devices
with high power density, zero CO2 emissions, and low operating temperatures. In PEFCs,
the ionomers are used as components of the catalyst layers (CL) in addition to being used
as the proton-exchange membrane. The CL in PEFCs is fabricated by catalyst ink coating
(Figure 1) and plays a vital role in determining the PEFC’s performance [5]. Ionomers in the
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CL that function as dispersion agents and binders cover the carbon-supported Pt catalysts
and provide the proton transport pathways necessary for electrochemical reactions (i.e.,
oxygen reduction and hydrogen oxidation) [6]. Ionomers also significantly influence the
permeation of reactant gases to catalyst sites, Pt activity, the transport of water to and
from reaction sites, and the formation of an interconnected carbon and pore structure in
CLs [4–7]. Therefore, an in-depth understanding of CL microstructures is required for their
rational design in order to fabricate PEFCs with improved performance.

Figure 1. Fabrication of the catalyst layer from catalyst ink.

The microstructures of the catalyst inks and CLs have been extensively studied both
theoretically [8,9] and experimentally [10–21] using techniques such as conventional and
cryogenic scanning and transmission electron microscopy (SEM and TEM) [10–16], focused
ion beam SEM (FIB-SEM) [17,18], atomic force microscopy [10,19], X-ray computed tomog-
raphy [20], and X-ray [13,16] and neutron scattering [21]. Among the scattering techniques,
anomalous small-angle X-ray scattering (ASAXS) is a powerful technique that can provide
element-specific data from a multicomponent system [22–25] and has been used to observe
the size distribution of Pt nanoparticles (NPs) in carbon-supported Pt catalysts [22–24].
However, studies carrying out systematic structural analysis of the CLs with hierarchical
and inhomogeneous structure are limited.

In this study, we investigated the microstructures of ionomers and carbon-black-
supported Pt catalysts (Pt/CB) in CLs by combining synchrotron X-ray scattering tech-
niques and TEM observations. We focused on the adsorption of the ionomer on Pt/CB
and the formation of Pt aggregates in CLs. Combined USAXS and SAXS as well as ASAXS
analyses were conducted to obtain information on the multiscale CL structures and the Pt
catalyst’s structure over a large sample area, respectively. Additionally, the combination of
X-ray scattering and TEM enabled the accurate analysis of the complex scattering profiles
of the CLs.

2. Materials and Methods
2.1. Materials

A 20 wt% Nafion® dispersion (DE2020 CS type: 34 wt% water, 44 wt% 1-propanol
(NPA), and 2 wt% other volatile organic compounds) was purchased from Chemours
(Wilmington, USA). Ethanol (EtOH, 99.5%) and N, N-dimethylformamide (DMF, 99.0%)
were purchased from Fujifilm Wako Pure Chemical Corporation (Osaka, Japan). The Pt/CB
(TEC10V30E, Pt loading: 30 wt%) was purchased from Tanaka Kikinzoku Kogyo (Tokyo,
Japan). Reagents were used without further purification. Ultra-pure water produced using
a Milli-Q water purification system (Direct-Q 3UV, Millipore, Bedford, MA, USA) was used
for all measurements.

2.2. Catalyst Ink Preparation

The catalyst ink was prepared from catalyst powder (Pt/CB), ionomer (Nafion) dis-
persion, and solvents (EtOH and H2O) as per the composition listed in Table 1. The
samples were prepared by dispersing a Pt/CB in H2O using a planetary centrifugal mixer
(Awatori-rentaro, ARE-301, THINKY, Ltd., Tokyo, Japan). After 1 min of mixing the Pt/CB
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dispersion, the required volume of the ionomer dispersion was added. After mixing the
resulting dispersion for 1 min, EtOH was added. The catalyst ink contained 9.5 wt% solids,
of which the ionomer comprised 3.3 wt%. The ionomer to carbon support weight ratio (I/C)
was 0.75. After 1 min of mixing, the final dispersion was mixed using a high-speed rotary-
type mixer (Filmix 30-L, PRIMIX Corporation, Awaji, Japan) at 22,000 rpm for 10 min, after
which the catalyst ink was obtained. For comparison, a 0.2 wt% Pt/CB dispersion in DMF
without the ionomer was prepared by ultrasonication.

Table 1. Composition of catalyst ink.

Component Pt CB Nafion H2O NPA EtOH

Content (wt%) 1.8 4.4 3.3 50.6 5.6 34.4

The catalyst ink was coated on a polyimide film fixed on a silicon (Si) substrate using
an automatic film applicator (No. 605S, Mys-Tester Company, Ltd., Ikeda, Japan) equipped
with a 40-mm-wide stainless-steel (SUS316L) blade at a gap of 100 µm at 20 mm s−1 at
25 ± 0.5 ◦C.

2.3. TEM Observations

Pt/CB powder was dispersed in water at a concentration of 10-4 wt% and deposited
on the lacey carbon films on copper mesh TEM grids. The CLs were held between the
epoxy resin blocks and sectioned to a thickness of ~200 nm using an ultramicrotome (Leica
UC6/FC6, Leica Microsystems GmbH, Wetzlar, Germany) at−80 ◦C. The ultrathin sections
were transferred to lacey carbon films on copper mesh TEM grids. TEM observations were
carried out on a JEM-ARM300F (JEOL Ltd., Akishima, Japan) instrument operating at
300 kV and equipped with a CMOS camera (OneView, Gatan Inc., Pleasanton, CA, USA).

2.4. X-Ray Scattering

USAXS, SAXS, and ASAXS measurements were performed at SPring-8, Hyogo, Japan.
SAXS measurements were conducted at the BL40B2 beamline: the CL coated on a poly-
imide film was irradiated with X-rays of wavelength (λ) = 0.1 nm. The scattering patterns
were recorded on a PILATUS3 S 2M detector (Dectris, Baden-Daettwil, Switzerland) located
4 m from the sample. USAXS measurements were performed at the BL03XU and BL20XU
beamlines. The CLs were irradiated with X-rays of λ = 0.2 and 0.0539 nm. Scattering
patterns were recorded on PILATUS3 S 1M and PILATUS 300 K detectors (Dectris) located
8 m and 160 m from the samples, respectively. The SAXS intensity profiles were prepared
by circularly averaging the intensity on 2D images and plotting the intensity against the
magnitude of scattering vector q = 4π sin θ/λ, where 2θ is the scattering angle. Although
CLs display SAXS patterns originating from structures formed by Pt and CB, the scattering
coming from Pt can be extracted using the ASAXS method. The SAXS intensity depends on
the atomic form factors, f (q, E), of each element, where E is the incident X-ray energy. With
decreasing E (i.e., increasing λ), the magnitude of f (q, E) drops on crossing the absorption
edge. Pt has a Pt-L3 absorption edge at E = 11.564 keV. Thus, the intensity of SAXS ascribed
to structures of Pt, IPt (q), is calculated from three SAXS data measured using X-rays with
different wavelengths near 0.1 nm, namely, I (q, Ek) with E1 = 11.550 keV (λ1 = 0.10736 nm),
E2 = 11.560 keV (λ2 = 0.10727 nm), and E3 = 11.562 keV (λ3 = 0.10725 nm). The measure-
ments were conducted at the BL40B2 beamline. The scattering patterns were recorded on a
PILATUS3 S 2M detector located 2 m from the sample. IPt (q, E) was calculated using the
following equation [24]:

IPt(q, E) ∼ I(q, E1)− I(q, E2)

f ′(q, E1)− f ′(q, E2)
− I(q, E1)− I(q, E3)

f ′(q, E1)− f ′(q, E3)
(1)

where f ′ is the real part of the complex atomic form factor of Pt, and the values used were
f ′ (E1) = 54.03, f ′ (E2) = 52.71, and f ′ (E3) = 52.45 electrons.
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3. Results and Discussion

The CL TEM micrographs (Figure 2a–c) show that the ionomers cover the Pt/CB
surface. The adsorbed ionomers form a layered structure with a thickness of several
nanometers on the surface of the CB and Pt NPs (Figure 2c); the Pt NPs aggregates are
circled. Figure 2 d–f show the Pt/CB powder TEM micrographs for comparison. The
bright region corresponds to a vacuum; the light gray and dark gray/black particles
correspond to the CB aggregates and Pt NPs on the CB, respectively (Figure 2d). The
CB aggregates appear to be larger than 100 nm and are composed of CB particles of size
20–40 nm, while the Pt NPs are ~3 nm in size (Figure 2e). The CB nanostructure originates
from the concentric stacking of graphite-like carbon layers, with an interlayer distance
of ~0.35 nm and a lateral extension of several nanometers (Figure 2f). This carbon layer
stacking locally generates crystal defects, resulting in the formation of an uneven structure
on the CB surface. Upon comparing the Pt/CB surface with (Figure 2a–c) and without
(Figure 2d–f) ionomer, the Pt/CB surface TEM micrograph appears smoother due to the
ionomers present on the Pt/CB agglomerates (supporting TEM images are shown in
Figure S1, Supplementary Material).

Figure 2. Typical TEM images of the CL (a–c) and Pt/CB (d–f). (b) and (e) are magnified images of the square in (a) and
(d), respectively; and (c) and (f) are the magnified images of the square in (b) and (e), respectively. The circle shows the
aggregates of Pt nanoparticles.

Figure 3a shows the combined CL USAXS and SAXS intensity profiles. The deflections
appear at q ≈ 0.02 nm−1 and 0.3 nm−1. These deflections indicate that the CL has at least
two structures with different sizes (i.e., radii of gyration of Rg1 and Rg2). For the combined
profile analysis, the Beaucage unified equation, commonly used to investigate the hier-
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archical structure of inhomogeneous polymer/CB nanocomposites, was adopted [26–29].
The optimized unified equation for the CL is:

I(q) = Aexp
(
−q2Rg1

2/3
)−Dm1 + Bexp

(
−q2Rg1

2/3
)
+ Cexp

(
−q2Rg2

2/3
)

×
[(
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qRg1√

6

)3
/q

](6−Ds1)

+ Dexp
(
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2/3
)

+E
[(
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6

)3
/q

](6−Ds2)
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where Rg1 and Rg2 are the radii of gyration of the two structures, respectively, Dm1 is the
mass fractal dimension, Ds1 and Ds2 are the surface fractal dimensions of the two structures,
and A, B, C, D, and E are proportional constants.
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Figure 3. (a) The combined USAXS and SAXS intensity profiles of the CL and Pt/CB. The red solid lines in (a) are the fitting
curve obtained using Equation (2). (b) Plausible model of Pt/CB surface structure. (c) ASAXS intensity profile of the CL
calculated using Equation (1). The red solid lines in (c) are the fitting curve obtained using Equation (3).

The curve (solid red line) calculated using Equation (2) agrees well with the experimen-
tal results (black dots). The best-fitting values are Rg1 = 100 nm, Rg2 = 1.7 nm, Dm1 = 1.7,
Ds1 = 2.7, and Ds2 = 2.0. The estimated radii of the sphere (R = (3/5) − 1/2Rg) for the two
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structures are 129 nm and 2.2 nm, which correspond to the size of the CB aggregates and Pt
NPs, respectively (Figure 2d–f). Note that the USAXS data are limited in the low q region,
but the profile at q < 0.005 nm−1 suggests the formation of the mass fractal objects formed
by CB aggregates with Dm1 of 1.7 (denoted CB agglomerates) [27,28].

The SAXS intensity profile of the Pt/CB dispersion in DMF is shown in Figure 3a for
comparison. At 0.05 < q < 0.15 nm−1, the power-scattering profile is given by I (q)~q−2.9 and
the Ds for Pt/CB without ionomer is estimated to be 3.1. The difference in Ds between the
CL (2.7) and Pt/CB (3.1) clearly indicates the formation of a smoother Pt/CB surface due
to the adsorption of ionomer, consistent with the ionomer coverage of the Pt/CB surface in
the CLs, observed in the TEM images (Figure 2b,c,e,f). The plausible surface structure of
Pt/CB is shown in Figure 3b.

The CL was also analyzed using ASAXS to investigate the contribution of Pt to
the scattering intensity profiles. Figure 3c shows the CL IPt (q) profiles calculated using
Equation (1). A deflection appears at q ≈ 0.3 nm−1, indicating a single structure with Rg2.
Therefore, the following Beaucage unified equation was adopted [27]:

I(q) = Cexp
(
−q2Rg2

2/3
)−Dm2 + Dexp

(
−q2Rg2

2/3
)

+E
[(

er f
qRg2√

6

)3
/q

](6−Ds2) (3)

The curve (solid red line) calculated using Equation (3) using radius Rg2 agreed well
with the experimental results (black dots). The best-fitting values were Rg2 = 1.3, Dm2 = 2.7,
and Ds2 = 2.0. The estimated radius of sphere R is 1.7 nm, which compares more favorably
with the radius of Pt NPs (1.5 nm) determined by TEM observations (Figure 2b,c) than that
obtained by SAXS analysis using Equation (2) (2.2 nm) containing the contribution of the
coated Nafion. Note that the q-range in the ASAXS data is smaller compared with that in
the combined SAXS and USAXS data; however, the profile at q < 0.1 nm−1 clearly indicates
the formation of the mass fractal aggregates of Pt NPs with a Dm2 of 2.7, consistent with
the Pt NPs aggregates in the CL (originally from the Pt/CB powder), observed in the TEM
images (the circles in Figure 2).

4. Conclusions

We investigated the ionomer/catalyst microstructures in the CLs of PEFCs using
synchrotron X-ray scattering techniques and TEM. The ionomer adsorption on the Pt/CB
surface in the CLs was analyzed based on the combined USAXS and SAXS profiles. The
fractal dimensional analysis of the scattering profiles clearly indicated that the Pt/CB
surface was covered with ionomer in the CL. ASAXS analyses demonstrated that the
Pt nanoparticle aggregates formed in the CLs. These findings are consistent with the
ionomer/catalyst microstructures and ionomer coverage of the Pt/CB surface in the CLs
characterized by TEM observations. The combination of scattering techniques and micro-
scopic structural analysis enabled a systematical exploration of the structural information
of multicomponent and multiscale systems. The insights provided by this approach will
be useful for the rational microstructural design of CLs and for monitoring the stability
of CLs (e.g., detected by microstructural change). Our future work would include the
relationship between the CL microstructure and the MEA performance and/or durability
of the CLs. In addition, this approach can be applied to polyelectrolyte nanocomposites [30]
and porous electrodes [31] comprising an active material and a polymer, used in various
energy conversion and storage devices, including FCs and other batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11070466/s1, Figure S1: Additional TEM images of the CL.
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