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A key point of immunity against protozoan Leishmania parasites is the development of an
optimal T cell response, which includes a low apoptotic rate, high proliferative activity and
polyfunctionality. During acute infection, antigen-specific T cells recognize the pathogen
resulting in pathogen control but not elimination, promoting the development and the
maintenance of a population of circulating effector cells that mount rapid response quickly
after re-exposure to the parasite. However, in the case of visceral disease, the functionality
of specific T cells is lost during chronic infection, resulting in inferior effector functions, poor
response to specific restimulation, and suboptimal homeostatic proliferation, a term
referred to as T cell exhaustion. Multiple factors, including parasite load, infection
duration and host immunity, affect T lymphocyte exhaustion. These factors contribute
to antigen persistence by promoting inhibitory receptor expression and sustained
production of soluble mediators, influencing suppressive cell function and the release of
endogenous molecules into chronically inflamed tissue. Together, these signals
encourage several changes, reprogramming cells into a quiescent state, which reflects
disease progression to more severe forms, and development of acquired resistance to
conventional drugs to treat the disease. These points are discussed in this review.
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INTRODUCTION

Leishmaniasis is a set of anthropozoonotic diseases caused by several species of trypanosomatids of
the Leishmania genus, comprising species responsible for different pathologies (1). Clinically,
leishmaniasis can manifest in tegumentary (localized, disseminated or diffuse), mucocutaneous and
visceral forms. The taxonomy of Leishmania correlates a particular species with a particular clinical
manifestation in humans. The parasite species of the Leishmania mexicana and Leishmania
braziliensis complex (in the New World) and Leishmania major and Leishmania tropica (in the
Old World) are related to cutaneous and mucocutaneous forms, while the parasites of the
Leishmania donovani complex, the species Leishmania donovani and Leishmania infantum, are
associated with the visceral form of the disease. Visceral leishmaniasis (VL), or kala azar, is the most
severe form of disease. The disease can be caused by L. donovani in India and sub-Saharan Africa
and L. infantum in southern Europe, North Africa and Brazil (2, 3). The disease is characterized by
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spreading of parasites to the viscera (mainly spleen, liver and
bone marrow). The clinical forms are diverse, and affected
individuals may present symptoms ranging from spontaneous
cure and oligo and asymptomatic forms to severe manifestations,
which may lead to death (4). The symptomatological spectrum of
the disease is characterized by dissemination of parasites to the
organs (5). Symptoms such as prolonged fever, asthenia,
anorexia, weight loss, hepatosplenomegaly, pancytopenia,
hypergammaglobulinemia and severe anemia are present in
individuals with the disease. In the most severe form of VL,
alopecia and edema of the lower limbs can be observed, as well as
hemorrhagic manifestations, such as epistaxis, ecchymosis and
petechiae, as a result of liver alterations and thrombocytopenia
resulting from pathological liver changes (6). Another important
aspect is the development of neutropenia, which promotes host
susceptibility to bacterial infections (7). Together, these signs and
symptoms may intensify the severity of disease and lead to
patient death if not properly treated. Current treatment
options are far from ideal, with diverse outcomes based on
multiple factors, including geographic location, immune status,
disease stage, and patient comorbidities. Current first-line
treatments for VL, such as amphotericin B (liposomal or
deoxycholate formulations), miltefosine, paromomycin, and
antimonials, are far from ideal for use in resource-poor
settings due to issues such as teratogenicity, clinical resistance
and/or relapse, the long-term nature of the treatment regimens
and parenteral administration (4, 8). These findings suggest that
exploring the therapeutic potential of immunomodulatory drugs
for the treatment of VL, mainly in areas of anthroponotic
transmission (transmitted by only humans), is warranted (9).
IMMUNE RESPONSE DURING VL

It has been well established in a murine model that host resistance
is related to CD4+T cells producing IFN-g (T helper 1 (Th1)
subset). Dendritic cells (DCs) capture parasites at the site of
infection and migrate to draining lymphoid organs, where they
stimulate the differentiation of naïve CD4+T cells to differentiate
into the Th1 subset in a manner dependent on IL-12 production
(10). Along with CD4+T lymphocytes, natural killer (NK) cells and
CD8+T cells are also important sources of IFN-g (11). Such
cytokines act on macrophages, activating inducible nitric oxide
synthase (iNOS) with concomitant production of nitric oxide
(NO), leading to the death of phagocytosed parasites (12). TNF
is produced by infected macrophages and acts with IFN-g,
increasing iNOS activation and thus leading to NO-mediated
parasite death (13–15). Furthermore, Th17 response controls
infection by acting in synergism with IFN-g, increasing NO
production by macrophages, and promoting neutrophil influx
into the target organs of the disease (16, 17). Conversely, the
Th2-type response is related to susceptibility and disease
progression (18–20). A microenvironment with a predominance
of IL-4, IL-13 and IL-10 induces the differentiation of naïve CD4+

T cells into the Th2 subtype, promoting parasite survival (21).
Leishmania parasites can use monocytes to induce the infection
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establishment into the host, as mechanisms of subversion of the
immune response and promoting parasites survival. In this sense,
it has been demonstrated that L. donovani induces the expansion
of hematopoietic stem cells (HSCs) and differentiation of GMP
(granulocyte-monocyte progenitors) cells into Ly6Chi (an
inflammatory monocytes) with a more permissive profile to
infection, characterized by the expression of regulatory markers
such as Sca1, Galactin-3, MHC-II and IL-10 (22). In addition to
Kupffer cells and macrophages from the marginal zone of the
spleen, L. donovani also infects these Ly6Chi recruited to the spleen
and liver during infection and compromises the ability of these
cells to control parasites, which contributes to susceptibility to
disease (23, 24).

As mentioned above, hepatosplenomegaly is a hallmark of VL.
This symptom results from an imbalance between the immune
response that controls parasite replication and those that allow the
pathogen to persist. In experimental models, the infection resolves
within 3 months. This resolution is related to the development of
well-formed granulomas by Th1 cells (25). Neutrophils and
macrophages surround infected cells (macrophages and Kupfer
cells) and are activated by IFN-g, leading to NO release from
phagocytes and promoting parasite restriction (26, 27).

Both Th1 and Th17 immune responses are driven by innate
molecules, receptors such as TLRs (TLR2, TLR7, TLR8, and TLR9)
and NLRs (NOD2 and NLRP3), and cytokines (IL-1b, IL-6, IL-12,
IL-23 and IL-18) expressed by DCs, which influence parasite
restriction (28–30). Other innate receptors, such as TLR4, are
exploited by parasites to both subvert the Th1 immune response
and successfully establish themselves in the vertebrate host (31).
Moreover, the signaling triggered through NOD2-RIP2 induces a
Th1 response but inhibits genes related to the Th17 subtype in a
murine model and in leukocytes recovered from VL patients (32).
An interesting issue is that, in general, VL-causing species are less
inflammatory than cutaneous leishmaniasis-causing species (33).
Thus, in the early stages of the disease, the liver is less affected and
suffers damage with chronicity. This promotes disease progression
without promoting parasite elimination.
CHRONICITY DURING VL: EXHAUSTION
OF T LYMPHOCYTES

During the acute phase of Leishmania infection, specific T cell
populations undergo a dramatic numerical increase and
differentiate to cells with appropriate effector functions for
declining parasite number. This process is usually followed by a
substantial loss of effector cells but maintains an elevated number
of memory T cells, which can be efficiently deployed when an
individual is reinfected by the parasite (Figure 1A). However,
several patients become immunosuppressed and may succumb to
secondary infections. This inability to control visceral infection has
been attributed to a defect in generating a cellular immune
response, which enables parasite survival (34, 35). Persistent
exposure to antigens and/or chronic exuberant inflammation
alters several T cell functions, mainly those of memory cells, and
is one of the causes of immunopathology development that occurs
May 2022 | Volume 13 | Article 835711
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during the active form of the disease. This process is known as cell
exhaustion, and it precludes an effector immune response for long
periods. The cell exhaustion process is followed by an increase in
parasite load. In such scenarios, the impairment of T cell effector
functions is supported by the increase and coexpression of several
inhibitory receptors, cytokines and endogenous molecules that
promote several alterations, reprogramming cells to a quiescent
state (Figure 1B).

Although the exhaustion term was first described during viral
infections, we recognize that parasites evoke a robust immune
response in the host that often fails to eliminate the pathogen
(33). In this sense, the participation of exhausted T cells in the
immunopathogenesis of leishmaniasis has been investigated.
The presence of T cells with exhaustion phenotypes has been
described in infections caused by species that cause visceral
disease and those that cause the cutaneous manifestations.
Interestingly, the exhausted T cells seem to affect the outcome
of the disease differently depending on the species of Leishmania
involved. During L. mexicana infection, dendritic cells produce high
amounts of TNF, contributing to the T cells exhaustion,
compromising the proliferation and functionality of these cells,
which favors the progression of the disease (36). Patients infected by
L. braziliensis show increased expression of exhaustion markers on
CD4+ T cells and CD8+ T cells in the skin and in the bloodstream as
well. However, the extent of the lesion is not related to the
expression of inhibitory molecules such as PD-1, suggesting that
exhausted T cells do not interfere in the pathogenesis of the disease
(37). In L. major infection, characterized by lesions that heal
spontaneously in most affected individuals, the infection
is controlled within 3-8 weeks. However, no sterile cure is
Frontiers in Immunology | www.frontiersin.org 3
observed and the persistence of remaining parasites, controlled in
part by CD4+CD25+ regulatory T cells, appears to be crucial for the
maintenance of short-lived CD4+ effector T cells, protecting
the individual from reinfection. This protection is lost when the
parasites are controlled, suggesting that antigenic persistence
is necessary for long-lasting immunity, although it can induce
exhaustion phenotype in antigen-specific cells (38–40).
Conversely, the persistence of the parasites in visceral
leishmaniasis promotes a dysfunctional response of CD8+T
lymphocytes, which encourages parasite survival and replication.
Even though CD8+T cells are increased in the blood and lesions of
chronically infected patients, individuals with severe VL show
impaired cellular proliferation and cytokine production (i.e., IL-2
and IFN-g by these cells. In a VL experimental model induced by
L. donovani, CD8+T lymphocytes do not undergo significant
proliferation or activation, maintaining antigen persistence
(41, 42). The presence of the parasite for a long period promotes
the exhaustion of CD8+T lymphocytes, generating cells with
limited capacity to produce IFN-g, which leads to cell death
(43). CD8+T cells from transgenic L. donovani expressing
ovoalbumin cells exhibited a biphasic wave of activation, with
the first wave being involved in a limited expansion and the second
wave resulting in the death and exhaustion of CD8+T
lymphocytes. Peripheral blood-derived mononuclear cells
(PBMCs) recovered from L. infantum-infected patients with the
severe disease neither proliferate nor produce IFN-g after in vitro
soluble Leishmania antigen (SLA) stimulation. PBMCs isolated
from healed VL patients respond to specific antigens and produce
IFN-g, suggesting that reversal of the profile of exhausted cells can
lead to a favorable clinical outcome (44–46). It is important to
A B

FIGURE 1 | T cell response after viscerotropic leishmania parasites recognition. When L. donovani or L. infantum antigens are recognized, specific naïve CD4+ T
cells (blue cells) are activated and differentiate into distinct subtypes of T helper lymphocytes (Th1, Th17 – green cells), restricting the parasites replication. After
parasite declining, the most of Th cells die and the remaining cells differentiate into memory T cells (yellow cells). In the case of secondary exposure to the
microorganism, memory T cells may be reactivated and promoting parasite control (A). Situations where the specific immune response generated in the host
cannot control the parasite, a chronic infection process is established. The parasite’s persistence induces Thelper cells to enter a non-functional state, a term
referred as exhaustion (represented by orange cells), rather than developing a classical memory cells. Exhausted T cells present a compromised effector
functions and maintain the persistence of the parasites in the host for long periods, which reflects disease progression to more severe forms, but it was not
found it in asymptomatic individual or patients with mild form of disease (B). Created with BioRender.com (Agreement number: IK23QKCBAC).
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consider that the field of CD4+T lymphocyte exhaustion is less
explored, as from an evolutionary point of view, CD8+T
lymphocytes are more vulnerable than CD4+T cells to
tolerogenic stimuli, including prolonged persistence of specific
antigen stimulation during chronic infection. This scenario
protects the infected cells from cytotoxic responses and
significantly reduces the inflammatory stimuli that could cause
immunopathology in the host (47), and these mechanisms are
promising topics to explore to increase the understanding of the
physiopathogenesis of VL. Interestingly, different from cutaneous
disease, where C57BL/6 or BALB/c strain may be employ as
resistance and susceptible model of infection, respectively, the
murine VLmodel is a clear example of organ-restricted immunity,
where the parasites are naturally declined in long-term, without
the development of clinical manifestations in mice strain-
independent (26, 48). Although the most susceptible mouse
strain, including BALB/c, developed a specific immunity, they
may control parasites growth at longer term of infection. Thus, it
may be plausible to consider the process of exhausted T cells could
occur in mice strain independently in murine model of disease.

We do not discard the possibility that the failure to detect
cellular-mediated immunity (CMI) in some sample of patients with
the classical VL disease could be also an interference of the assay
systems employed versus a lack of a CMI response. Although it has
been demonstrated that the development of a Th1 response is
necessary for the control of the parasite, recently it was described
that patients with active VL present high levels of IFN-g in the
bloodstream, bone marrow, in addition to increased expression of
such cytokine in organs such as the spleen and liver, suggesting that
there is no defect in cell-mediated immunity in these patients (41,
49, 50). Furthermore, studies using whole blood assays show that,
unlike from PBMC assays, CD4+ T cells from patients with active
VL produce IFN-g when re-stimulated in vitro with parasite
antigens, in example, the absence of a response cell-mediated
immune response observed in patients with active VL appears to
be more due to the detection method employed than an actual
failure of cellular immunity in VL generated (51, 52). In this sense,
in humans, the disease progression appears to be unrelated to the
production of IFN-g and other mechanisms may be involved in the
immunopathogenesis of the VL disease, such as cytokines,
inhibitory molecules, endogenous mediators and suppressive cells.
All these issues will be covered in this Review.
SUPPRESSIVE CELLS

Given their ability to produce anti-inflammatory cytokines, to
express high levels of inhibitory receptors, Tregs block the
activation and function of innate and adaptive immune cells,
promoting immune response control and maintenance of self-
tolerance (53, 54). Despite the beneficial roles of Tregs
in the host, including preventing the development of
immunopathologies, their suppressive function can be exploited
by some types of microorganisms to promote escape of the host
immune response (55). This scenario is commonly seen during
infections caused by Leishmania parasites (56).
Frontiers in Immunology | www.frontiersin.org 4
The presence of both IL-10 and TGF-b cytokines in the infected
tissue promotes the suppression of the protective immune response
(i.e., Th1 cells), causing persistence of the parasite and chronicity of
the disease, strongly suggesting the involvement of Tregs in the
disease establishment (57–59). CD4+T cells often coproduce IL-10
and IFN-g, designated type 1 regulatory T cells (Tr1s), and promote
the onset of infection by suppressing Th1 cell-mediated immunity
(50, 59, 60). The role of IL-10 and TGF-b in immunosuppression
and disease progression is well documented in both experimental
and human VL (9, 61). Regarding L. donovani infection, studies
report that the increase in parasite number is related to the presence
of Tregs and heightened levels of systemic IL-10 and TGF-b in
patients with active disease. Corroborating the role of Tregs in
disease progression, a reduced hepatic parasite load was observed in
animals depleted of Tregs using both anti-CD25 and anti-FR4
neutralizing antibodies (62, 63). It was identified that such cells
produce only TGF-b in a sustained manner, while the production of
IL-10 was attributed to CD4+CD25- T cells and DCs. TGF-b
produced by Tregs was also observed in an experimental model
of VL caused by L. infantum.

Despite not directly influencing parasite replication, Tregs play
other roles, mainly in tissue protection and controlling leukocyte
activation in both the initial and chronic phases of infection. These
roles are independent of IL-10. In contrast, infection caused by L.
infantum and TGF-b production by Tregs are related to the growth
and persistence of the parasite, in addition to acting in the control of
immunopathologies developed during infection (50, 59, 60, 62, 64).
In experimental models of VL with L. infantum or L. donovani,
treatment with CXCL10 promotes the protection of infected mice
by stimulating the Th1 response, which decreases the population of
Tregs and CD4+CD25- T cells producing TGF-b and IL-10, leading
to a reduction in the number of parasites in the spleen of treated
animals and a consequent reduction in organ size (65, 66). Thus,
Tregs contribute to T cell exhaustion by suppressing the effector
functions of T lymphocytes and contributing to the persistence of
the parasite.
INHIBITORY RECEPTORS
Inhibitory receptors are negative regulators that control
autoreactivity and prevent the development of immunopathology.
Although some of these receptors are transiently expressed on
functional effector T cells during activation, the high and
sustained expression of inhibitory receptors is a hallmark of
exhausted T cells. In experimental VL, it has been shown that
chronic infection promotes the upregulation of several inhibitory
receptor genes and some of their ligands. Programmed cell death
protein 1 (PD1)-mediated inhibitory signaling in response to PDL1
and PDL2 provides a classic example by which this pathway
manages T lymphocyte exhaustion. PD-1 is an inhibitory receptor
and a member of the B-7 costimulatory receptor family expressed
by all activated T cells, although it can also be expressed by other cell
types (67). PD-1 regulates lymphocyte activation by binding to PD-
L1 (B7-H1) and PD-L2 (B7-H2) ligands on lymphocytes and is
essential for the maintenance of tolerance and homeostasis and the
prevention (67, 68). Although the PD-1/PD-L1 or PD-L2 pathway
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plays an role in regulating the immune response magnitude, it may
limit protective immunity against persistent antigens, a response
observed in both cancer and chronic infection (69). It has been
shown that experimental VL induced by L. donovani results in
increased PD-1 expression by CD8+T cells with a phenotype of cell
exhaustion, characterized by low expression of IL-12, IFN-g and
TNF, and blockade of PD-L1 partially recovers cell function (70).
Spleen cell cultures from hamsters infected with L. donovani do not
respond to parasite antigens. This unresponsiveness of CD4+T
lymphocytes correlates with an increased production of regulatory
cytokines, such as IL-10, TGF-b, IL-27, IFN-I, and inhibitory
receptors, such as PD1 (71). In vivo blockade of PD1 using
specific antibodies decreases arginase-1 expression in
macrophages, resulting in a reduction in the parasite load of the
organ (72). In addition to restoring the function of both CD4+ T and
CD8+ T lymphocytes and decreasing parasite numbers, blocking the
PD1/PDL1 pathway with anti-PDL1 antibodies reverses inhibition
of caused by L. donovani, a mechanism used by the parasite to
subvert the host’s autophagic machinery to encourage survival and
induce the establishment of infection (73). In canine VL caused by
L. infantum, PD1 blockade restores the effector functions of both
CD4+ T and CD8+ T lymphocytes and the production of reactive
oxygen species (ROS) by monocytes recovered from dogs with
active VL, thus controlling the parasites replication (72). The
interaction between PD1 and PDL1 increases the expression of
FOXP3 and enhances the immunosuppressive activity of Tregs (74,
75). Furthermore, PDL1 converts naïve CD4+T cells into Tregs by
downregulating AKT, mTOR and ERK2 and simultaneously
upregulating PTEN (74). Thus, blocking the PD-1/PD-L1 axis
reverses cellular exhaustion, exerts effects on peripheral tolerance
by interfering with Treg induction and function, and may be a
potential strategy for the treatment of patients with VL, mainly
those unresponsive to conventional treatments.

There is currently a debate regarding the effect of
immunotherapy that blocks the PD1/PDL1 or PDL2 axis in
clinical oncology. Although highly effective for different types of
cancer, rapid tumor progression was observed in approximately
10% of patients with advanced gastric cancer using an anti-PD1
monoclonal antibody (76–78). These patients had FOXP3+ Tregs
with a high proliferation rate and increased suppressive function.
Likewise, PD1-deficient murine Tregs are more proliferative and
suppressive than wild-type Tregs isolated from the tumor (79).
Evidence on the PD1/PDL1 interaction during Treg induction and
function in VL is still scarce, but it is a topic that warrants
investigation considering that blocking this pathway may generate
a subversive response, maintain the persistence of the parasite, or
increase the effector response and promote immunopathologies.

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is another
inhibitory receptor related to T lymphocyte expansion. It is a
transmembrane glycoprotein homologous to the CD28
costimulatory receptor and essential for the regulation of the
immune system. Both CD28 and CTLA-4 receptors share the
same ligands, B7-1 (CD80) and B7-2 (CD86), expressed by
antigen-presenting cells (APCs) during antigen presentation to T
cells (80, 81). Competition between receptors for ligands reduces the
number of specific T cells, which constitutes an important strategy
Frontiers in Immunology | www.frontiersin.org 5
for controlling the magnitude of responses in peripheral tissues to
prevent the tissue damage (80, 82). The increased expression of such
molecules has been demonstrated during acute infections and
chronic infections, in which the antigen persists. Although this
regulatory mechanism minimizes tissue damage, it can also
compromise the elimination of pathogens, favoring their
persistence in the host (83). During chronic VL infections, CTLA-
4 is one of the markers of T cell exhaustion (84), and its role in
susceptibility to infection in murine models, humans and dogs has
been reported. CTLA-4 blockade during L. donovani infection
increases parasite resistance in BALB/c mice, characterized by
increased IFN-g- and IL-4-producing cells and the rapid
development of hepatic granulomas, which contain the spread of
the parasite (85). Mice infected with L. donovani anti-CTLA-4
antibodies showed induction of increased leishmanicidal activity,
IFN-g production and increased hepatic granulomas compared to
the untreated group (86, 87). Likewise, CD4+T cells recovered from
the spleen of L. infantum-infected BALB/c mice show a poor
proliferative rate in response to anti-CD3 stimuli and do not
respond to Leishmania Lcr1 antigen, but in vitro, the blockade of
CTLA-4 partially recovers the response (88). One suppressive
mechanism mediated by CTLA-4 is the induction of TGF-b
production by T cells, which inhibits the production of IFN-g (89,
90), it has been shown that the stimulation of CD4+T cells derived
from the spleen of animals infected with L. infantum results in
prominent production of TGF-b. Such a response is not seen when
CTLA-4 is blocked, suggesting in vitro growth of L. infantum
depends on the expression of both CTLA-4 and TGF-b,
suggesting that the induction of the CTLA-4/TGF-b pathway is
important for the replication of the parasite (91). Regarding human
disease, the timing of lymphocyte exhaustion is controversial. While
Clarencio et al. (92) demonstrated a lower frequency of CTLA-4+ T
cells in patients with VL, Gautam et al. (43) observed greater
expression of CTLA-4 and PD-1 mRNA, important markers of T
cell exhaustion, in CD8+ T cells. Similar results were observed by
Viana et al. (93) and Clarêncio et al. (92). However, CTLA-4
blockade did not alter IFN-g levels or parasite survival in culture,
suggesting that CTLA-4 is not the only molecule responsible for T
cell dysfunction during human VL (43). Analysis of the
transcriptional profile in CD8+T cells recovered from peripheral
blood from patients also revealed increased expression of CTLA-4
(94). Polymorphisms in the gene encoding CTLA-4 (CTLA-4+49-
A/G) may be a risk factor for VL development, it was also
demonstrated that VL patients who had the polymorphism
presented higher anti-Leishmania antibody titers (95). Together,
these data indicate that CTLA-4 plays an important role in the T cell
exhaustion process observed in VL.

In addition to PD1 and CTLA-4, increased mRNA expression of
T cell immunoglobulin and mucin-domain containing-3 (TIM-3)
and lymphocyte activation gene-3 (LAG3) is also observed in
peripheral blood samples from patients with active VL compared
to asymptomatic individuals and endemic controls, which suggests
a relationship between the expression of exhaustion markers and
disease severity (96). Such receptors are expressed on the
lymphocyte membrane after their activation, and when
interacting with costimulatory receptors, they interrupt the TCR-
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dependent cell signaling pathway (97–99), thus maintaining the
suppression of the effector response against the parasite and parasite
persistence. Studies also demonstrate that LAG-3 and TIM3 are
differentially expressed in both natural and induced regulatory T
cells (iTregs) and are necessary for their suppressive function (98,
100, 101). In this sense, evaluation of these inhibitory markers on
the cell surface is important, as their presence represents the exact
moment that T cell exhaustion appears and interferes with the
development of protective immunity against the parasite; therefore,
they could be biomarkers of disease progression.
ENDOGENOUS MEDIATORS:
HIF-1a AND ADENOSINE

The chronic inflammation developed during VL is associated
with characteristics that commonly result in a hypoxic
microenvironment, such as compromised blood microcirculation
and energy demand (102). In this context, there is a reduction in the
tissue oxygen supply, leading to the activation of the transcription
factor hypoxia inducible factor 1-a (HIF-1a) (103, 104). The role of
HIF-1a has been demonstrated during L. donovani infection.
Parasite infection promotes the increased expression and
activation of HIF-1a (105, 106), and macrophages in which HIF-
1a is silenced using siRNA control intracellular parasite replication,
suggesting that protozoa can use this pathway to survive and
proliferate inside the cell (106). The transcription factor IRF-5
compromises the expansion of CD8+T cells during L. donovani
infection, and this effect is dependent on HIF1-a in DCs (107). The
absence of HIF-1a in DCs results in increased CD8+T cell
proliferation, enhanced CD4+T cell recruitment to the spleen and
a pronounced Th1 response, ideal for parasite control, suggesting
that HIF-1a may be involved in T cell exhaustion (107, 108).
Corroborating these findings, Hammami et al. (109) demonstrated
that myeloid cells from L. donovani-infected spleens present a
phenotype of myeloid-derived suppressor cells (MDSCs) mediated
by HIF-1a. Furthermore, HIF-1a appears to be important in the
polarization of macrophages into the M2 phenotype, with M2
macrophages being less efficient in controlling the parasite.
Conversely, the data suggest that HIF-1a is involved in the
persistence of the parasite in the host. Mesquita et al. (110)
showed that the absence of HIF-1a increases the susceptibility to
infection by L. donovani, demonstrating a protective role of HIF-1a
during VL. The levels of HIF-1a were higher in both infected
C57BL/6 and 129/Sv mice, strains that are naturally resistant to the
parasite, than in BALB/c animals, which are susceptible to the
disease. Likewise, the absence of HIF1-a results in metabolic
dysregulation and increased lipogenesis, which seem to favor
parasite growth (110). Although there are contradictory data in
the literature, most evidence indicates that HIF1-a favors the
persistence of the parasite in the host, acting as a molecule that
suppresses protective immunity against pathogens. HIF1-a could
also contribute to the persistence of the parasite by acting on the
Frontiers in Immunology | www.frontiersin.org 6
differentiation and functions of Tregs. The role of HIF1-a in
regulatory T cells has already been explored by others (111).
HIF1-a-/- Tregs lack suppressor function and produce IFN-g in
an excessive manner. The FOXP3 gene promoter in HIF1-a-/- Tregs
fails to protect the animal from colitis caused by effector T cells,
further demonstrating the role of HIF1-a in the suppressive
functions of Tregs (109, 112). To date, the role of HIF1-a in Treg
differentiation and functions during VL is not known.

Another endogenous molecule released under conditions of
cellular hypoxia is adenosine. Derived from ATP degradation by
the action of the ectonucleotidases CD39 and CD73, adenosine is a
critical immunosuppressive metabolite released during chronic
inflammation and involved in T lymphocyte exhaustion (113–
116). In cutaneous leishmaniasis (CL), ADO and AMP act via the
A2AR adenosine receptor to induce tolerogenic dendritic cells
(tDCs) through the sequential production of prostaglandin E2
(PGE2) and IL-10. As a consequence, both mediators inhibit the
proliferative ability of CD4+ T lymphocytes and IFN-g production
to hinder to the induction of a regulatory profile in such leucocytes,
promoting the suppression of the effector immune response against
parasites (117). Furthermore, VL patients present elevated serum
levels of adenosine, linking ectonucleotidase activity to disease
progression (118). Under inflammatory conditions, the A2B
receptor is also expressed on monocytes recovered from patients
with VL (119), suggesting that during disease, Leishmania parasites
may use the adenosinergic signaling pathway to avoid the host’s
immune response and promote to their own silent growth, thus
ensuring their survival inside the cell. In L. infantum infection, the
parasite benefits from the A2AR signaling pathway and promotes
the development of an immunosuppressive response mediated by
Tregs and IL-10; this inhibits specific Th1 responses, thus allowing
the escape of parasites and establishment of infection (58). Increased
expression of CD39 and CD73 is observed in effectors and memory
T cells with pronounced IFN-g production and serves to
downregulate lymphocyte activation, preventing the host from
developing immunopathologies. Soluble factors such as TGF-b
and IL-10 can increase the frequency of ectonucleotidases
expressed in T cells (117, 120). However, this phenomenon
remains to be investigated during VL. The increased and
maintained expression of endogenous molecules related to tissue
hypoxia, such as HIF-1a and/or the CD39/CD73 ectonucleotidases,
may contribute to patient unresponsiveness to conventional drugs
applied in the treatment of VL. Such gold-standard drugs not only
kill the parasite but also alter host immunity. Antimonial drugs
stimulate the production of ROS and NO, while miltefosine and
AmBisome induce the secretion of IFN-у, TNF, IL-12, IL-6 and
IL1b from leukocytes and reduced anti-inflammatory cytokines
(121–124). Thus, both HIF-1a and increased adenosine in the
chronic inflammatory microenvironment maintain the constant
production of anti-inflammatory cytokines such as IL-10 and
TGF-b, promoting the induction of T lymphocyte apoptosis and
generation of Tregs; these effects inhibit host immunity and favors
the persistence of the parasite, factors that contribute to
ineffectiveness of antiparasitic drugs.
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CYTOKINES

TGF-b is an anti-inflammatory cytokine produced by antigen-
specific T cells and by phagocytic mononuclear cells (125). It
presents several immunosuppressive effects during infectious
diseases, including inhibition of T lymphocyte proliferation,
proinflammatory cytokine release and macrophage activation
(126). TGF-b inhibits both TNF and IFN-g function and controls
iNOS expression and the development of naïve CD4+ T
lymphocytes into Th1, Th2, and Th17 cells. TGF-b acts as a
facilitator of parasitic growth by modulating both innate and
adaptive responses (127) and increasing arginase expression in
macrophages (128, 129). In a murine model, TGF-b secreted by
lymphocytes in response to Leishmania antigens shifts the arginine
pool from iNOS to arginase as a source of polyamines, which
support parasite growth (130). TGF-b is able to induce apoptosis in
lymphocytes isolated from lymph nodes of hamsters infected with
L. donovani (131). During L. infantum infection, IL-12-deficient
C57BL/6 mice show an increased parasite load due to the sustained
production of TGF-b in those mice (132).

Another cytokine that plays an important suppressive role in VL
is IL-10, and its role in the progression of visceral disease is already
well established in both murine and human models. High levels of
IL-10 are associated with a higher parasite load and are related to the
development of the most severe form of disease (61, 133, 134). Both
BALB/c and C57BL/6mice lacking IL-10 due to either gene deletion
or blockade using specific antibodies are resistant to Leishmania and
do not develop the clinical manifestations of the disease (135–137).
In line with these findings, it has been observed that splenic cells
aspirated from patients with active VL present higher levels of TNF
and IFN-g under conditions of in vitro IL-10 neutralization.
Furthermore, such cells present a greater ability to kill parasites
(138). Such effects occur because IL-10 is one of the main factors
responsible for attenuating the proliferation and activation of T
cells, compromising the microbicidal function of macrophages
during infection. Impaired immunity is mainly characterized by
reduced iNOS expression and NO release (57, 139). Furthermore,
the production of IL-10 is associated with T cell differentiation into
Th2 cells. Several leucocytes can be sources of IL-10, such as
conventional Tregs, Tr1s, CD8+ T cells, B cells, NK cells, DCs,
macrophages, and neutrophils (60, 61). Among these cells,
conventional Tregs, characterized as CD4+CD25+FOXP3+ T cells,
and conventional effector T cells, characterized as CD4+CD25-

FOXP3- T cells, are the main sources of IL-10 and are involved in
susceptibility to disease. It has been shown that the expansion of IL-
10-producing CD4+CD25+FOXP3+ T cells in the plasma of patients
with active VL is related to a higher parasite load (64), and there is
significant enrichment of this population in bone marrow aspirates
from patients with a high parasite load (63). Conditional knockout
mice, in which only conventional Tregs do not produce IL-10,
present better control of the parasite, although they also display
greater disorganization of the splenic microarchitecture (60).
Therefore, IL-10 plays a critical role in limiting the antiparasitic
immune response by inhibiting the function of important cells
involved in parasite restriction.
Frontiers in Immunology | www.frontiersin.org 7
Several immunoregulatory molecules and pathways, most
notably those associated with IL-10 production, are activated
following infection by L. infantum and L. donovani and suppress
CD4+ T cell functions. One such mechanism includes the induction
of IL-10 by BLIMP-1 expressed on Tr1s during clinical and
experimental VL. B lymphocyte-induced maturation protein 1
(Blimp-1) is a transcription factor that plays crucial roles in
regulating B and T lymphocyte function (140, 141). In different
models of inflammatory disease (i.e., asthma, colitis, and infection),
mice with specific Blimp-1 gene deletion in T lymphocytes show
pronounced production of cytokines, which contributes to
worsening inflammation (142–145). IL-10 produced by Tr1s
through the BLIMP-1 pathway suppresses specific immunity to
the parasite but plays a critical role in protecting the tissue against
inflammatory insults induced during the chronic process caused by
the parasite (146).

Type I IFNs, including IFN-a and IFN-b, bind to the IFNAR
receptor and display regulatory functions preventing pathogen
control. IFNa/b remains elevated during chronic infectious
processes and induces the expression of IL-10, indoleamine 2,3-
dioxygenase 1 (IDO-1), PDL1 and other negative regulators of T cell
responses, such as TIM3, in CD4+ T lymphocytes, in addition to
their role in promoting apoptosis of T cells via Fas/FasL (147, 148).
In experimental infection caused by L. infantum, type I IFNs (IFN-
a and IFN-b) produced during parasite recognition via sequential
signaling mediated by TLR4/TRIF/IRF-1 suppress the development
of Th1 responses via mechanisms depending on IL-10, which
contributes to antigen persistence. Patients with classical
symptoms of VL present reduced expression of genes associated
with TLR4 and IFN-I compared to asymptomatic individuals and
endemic controls, suggesting that failure of the regulatory
mechanisms of the immune response favors the exacerbation of
inflammation and, consequently, leads to the most severe form of
disease (31). Likewise, during L. donovani infection, IFN-I
contributes to parasite persistence in the target organs of visceral
disease by suppressing the development of the Th1 response and
promoting Tr1 expansion. Interestingly, temporary blockade of the
type I IFN-mediated signaling pathway ameliorated the therapeutic
efficacy of antiparasitic drugs by increasing tolerance of the parasite
(149). In both mentioned studies, the improvement of parasite
replication control in the absence of the type-I IFN signaling
pathway was dependent on a pronounced Th1 response
generated in the infected tissues. However, this control was
accompanied by an enormous cost to the host, since the aberrant
inflammation generated promoted liver damage while the infection
progressed (31, 149).

IFN-g also displays an immunosuppressive effect. Persistent
presence of the parasite maintains high levels of IFN-g,
contributing to cell exhaustion by inducing IDO. This enzyme
catalyzes the breakdown of tryptophan into kynurenine, inducing
apoptosis of T lymphocytes by activating the caspase-8 pathway and
releasing mitochondrial cytochrome c (150). Conventional Tregs
expressing IDO, PDL1 and CTLA4 are present in the peripheral
blood of cancer patients and are strongly related to the severe forms
of the disease (151, 152). Interestingly, IDO enzymatic activity in
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human VL is associated with immunosuppression and can be used
as a biomarker of human disease caused by L. infantum (153). In the
model of CL caused by L. major, IDO is a key factor attenuating the
inflammatory response and increasing parasite replication.
Administering IDO inhibitors to mice with well-established
infection reduces the parasite load associated with inflammation
(154), suggesting that IDO inhibitors may offer a new therapeutic
tool for patients with chronic leishmaniasis. IDO inhibitors are
already being used in clinical oncology as adjuncts to broaden the
therapeutic window and limit the autoimmune side effects that
immunobiological therapy can cause in cancer patients (155, 156).

Other cytokines have been implicated in inducing the expression
of inhibitory receptors on leukocytes. In this context, the role of IL-
27 in increasing TIM3 expression in CD4+ T cells has been
illustrated (148). In vivo, the maintained expression of IL-27
promotes the enhancement of inhibitory receptors on T cells,
such as PDL1, LAG3, TIGIT and TIM3 (97, 157, 158). IL-27 is
composed of the EBI-3 and p28 subunits, belongs to the IL-6/12
cytokine family and was originally described as a cofactor for Th1
lymphocyte differentiation, together with IL-12 (159, 160). The
mechanism by which IL-27 induces inhibitory receptors remains to
be determined, but it is proposed that stimulation of TCRs by
persistent antigens increases chromatin accessibility, allowing IL-27-
induced STAT1 to bind directly upstream of the PD-L1, LAG-3,
CTLA-4, TIGIT and TIM3 gene promoters (161). Furthermore, IL-
27-mediated signaling through IL-27Ra (an IL-27 receptor) is
responsible for the upregulation of TIGIT and PD1 in memory T
cells during infectious processes, such as toxoplasmosis and malaria,
and cancer (97, 158). In a sepsis model, IL-27Ra expression was
associated with TIGIT but not with PD1 expression in memory
CD4+ T cells and the loss of IFN-g production (162). During VL
caused by L. infantum, the absence of IL-27 promotes prominent
Th1 inflammation that causes immunopathology (163). Quirino
et al. (163) demonstrated that IL-27 is able to induce IL-10-
producing Tr1s and plays an important regulatory role in
mediating susceptibility to infection. IL-27 inhibits the production
of IL-17A in infected tissue and controls neutrophil influx to target
organs, preventing the development of liver injury but favoring
parasite growth (163). Similarly, IL-27R-deficient mice infected with
L. donovani develop immunopathology due to an increased Th1
response in VL organs (164). Patients with active VL show an
increase in systemic IL-27 (163, 165), and IL-27 in the presence of
IL-21 promotes the expansion of specific IL-10-producing T cells
(45, 166). However, it remains unclear whether IL-27 suppresses the
specific immune response of T cells in VL by promoting the
expression of multiple inhibitory receptors on CD4+ T and
CD8+ T lymphocytes.

IL-27, composed of p28 and EBI3, shares common subunits with
IL-35 (p35 and EBI3) and IL-39 (p19 and EBI3) (167, 168). IL-35
has been reported to have immunosuppressive activity in
autoimmune diseases, cancer and infectious diseases (169–172).
In VL caused by L. donovani, the chronic inflammatory response is
accompanied by enhanced Tregs, TGF-b and IL-35, factors that
suppress all T cell effector functions. TGF-b and EBI-3 act
synergistically to inhibit the Th1 response and maintain parasite
persistence. Double neutralization using specific antibodies against
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EBI3 and TGF-b limits progression of the infection by promoting
remarkable effector immunity against the parasite (172). In the
chronic phase of VL caused by L. donovani, Tregs suppress the
proliferation and functions of Th17 cells via mechanisms that
depend on TGF-b and IL-35, preventing disease progression but
maintaining parasite persistence. Restoration of the IL-17 response
during in vivo neutralization of TGF-b and IL-35 is accompanied by
hepatic and splenic resistance consistent with the low parasite load
in such organs (173). IL-35 production by Tregs has been shown to
play a central role in T cell exhaustion, as indicated by its ability to
induce the expression of LAG3, TIM3, and PD1 on the cell surface
of tumor-infiltrating CD4+ T and CD8+ T cells (174), and it is a
topic that warrants exploration in experimental and human VL.

CONCLUSION AND
FUTURE PERSPECTIVES
VL is a serious public health problem, causing high morbidity and
mortality in several countries. Among infected individuals, 85%
remain asymptomatic, while the other 15% present clinical
manifestations, ranging from oligosymptomatic (mild) forms to
more severe symptomatic forms that can lead to death if not
properly treated. In the absence of effective vaccine strategies,
therapy with pentavalent antimonial and amphotericin B is
routinely used for VL treatment. However, these drugs present
adverse reactions and side effects and require several rounds of
treatment, promoting the acquisition of resistance with long-term
use (8, 175, 176). An important question that arises is whether the
refractorinessofcriticallyillpatientsisaconsequenceofcombinedand
redundant actions of factors that promote the exhaustion of T
lymphocytes. The absence of the proliferative response of T
lymphocytes to parasite antigens and the inability to produce IFN-g
indicate that cell exhaustion is occurring, and a more accurate
assessment should be performed when these features manifest
(177). As such, combining immunotherapy, specifically drugs
targeting inhibitory molecules and regulatory cytokines, with drugs
routinely used earlier in the process when T cell exhaustion appears
could reduce the chances of VL patients acquiring resistance to
conventional treatments. Such strategies have been gaining
attention from the scientific and medical communities (124, 178–
180). The optimization of treatments combining typical drugs with
immunotherapymight help to delay the emergence of resistance and
increase the therapeutic lifespan of the respective drugs.
Immunotherapy focused on inhibitory molecules of the immune
system, also known as modulators of immune checkpoints, has
revolutionized the oncology field, and responses far beyond the
remarkable clinical effectiveness in some patients have been
achieved. The prevalence of immunotherapy has generated a
dramatic change in how the efficacy and toxicity of antineoplastic
treatment are evaluated, with amore holistic view of cancer patients.
An example of a drug used successfully in clinical oncology is
ipilimumab, the first immunological checkpoint-blocking antibody
(blocking CTLA4) to be authorized for clinical use. The approval of
ipilimumabwas quickly followed by the development ofmonoclonal
antibodiestargetingPD1(pembrolizumabandnivolumab)andPDL1
(atezolizumab and durvalumab). Currently, anti-PD1/PDL1
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antibodies have becomeoneof themostwidely prescribed anticancer
therapies(181).Thefirststudiesofimmunotherapiesastreatmentsfor
experimentalVLcamefromMurrayetal. (57),whoreportedthatanti-
IL-10receptormonoclonalantibodies(mAbs)promoteparasitedeath
via iNOS-dependentmechanismsandincreaseIFN-gexpression.The
results obtained from studies of experimental disease models and in
human samples suggest that immunotherapy involving different
Frontiers in Immunology | www.frontiersin.org 9
antagonists of the inhibitory molecules involved in the course of
disease progression is a promising treatment option for VL. As
explored throughout this review, blocking the inhibitory targets of
the immune system rescues the host from the subversion of the
immune response imposed by the parasite to successfully establish
the infection in the organism, leading to healing (Figure 2). Thus,
combining inhibitory molecules that block the immune system with
May 2022 | Volume 13 | Article 835711
FIGURE 2 | T cell fate during Visceral Leishmaniasis. During infection with L. donovani or L. infantum, monocyte-derived cell (i.e. dendritic cell or macrophage)
(purple cells) produce pro-inflammatory cytokines (IL-1b, IL-6, IL-12 and IL-23), which act on naive T lymphocytes, targeting the cells to Th1 and Th17 subtypes
(green cells), resulting in the production of IFN-g/IL-17 (A). Secreted IFN-g and IL-17 promote the phagocytes microbicidal function of monocyte-derived cell trough
the release of ROS and NO, reducing the parasite load (B). The persistent presence of parasites induces a sustained and maintained production of regulatory
molecules, such as TGF-b, IL-10, IL-27, PGE2, which promote exhaustion of T lymphocytes (yellow cells), a process characterized by increased expression of
inhibitory molecules, such as CTLA-4, PD-1, TIM3, TIGIT, CD39, CD73, LAG-3, on T cell surface. As a consequence, the proliferative response and production of
pro-inflammatory cytokines are suboptimal, mechanisms by which the parasite uses to survive in the host-vertebrate (C). Such regulatory molecules influence the
inhibitory receptors on the surface of Treg cells (red cells) impacting on their both differentiation and suppressive function (D) and upon DCs functions (F). Such
factors repress the protective immune response mediated by IFN-g/IL-17 and ROS/NO (G). Tregs also respond to regulatory molecules, and contribute to the
exhaustion process of T lymphocytes by sustaining the release of regulatory mediators (TGF-b, IL-10, IL-35, PGE2 and adenosine) in the microenvironment and
maintaining high levels of inhibitory molecules on the surface of exhausted T lymphocytes (E). Together, these signs favor the persistence of the parasite. Legends:
green arrow (induction of effector response), red arrow (induction of suppressor response), red dotted arrow (inhibition of effector response). Created with BioRender.
com (Agreement number: LC23QKDV88).
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conventional drugs used for the treatment of VL could lead to
promising results and increase the identification of therapeutic
targets that restore the host’s initial defense mechanisms, preventing
disease progression. We recognize that the clinical potential in this
field isbroadandthatenormousresearchefforts andrapidrefinement
of the understanding of the role of immune system inhibitory
molecules in experimental and human diseases are needed.
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