
AliSim: A Fast and Versatile Phylogenetic Sequence
Simulator for the Genomic Era
Nhan Ly-Trong ,1 Suha Naser-Khdour,2 Robert Lanfear,2 and Bui Quang Minh *,1

1School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2600,
Australia
2Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600,
Australia

*Corresponding author: E-mail: m.bui@anu.edu.au.

Associate editor: Keith Crandall

Abstract
Sequence simulators play an important role in phylogenetics. Simulated data has many applications, such as evalu-
ating the performance of different methods, hypothesis testing with parametric bootstraps, and, more recently, gen-
erating data for training machine-learning applications. Many sequence simulation programmes exist, but the most
feature-rich programmes tend to be rather slow, and the fastest programmes tend to be feature-poor. Here, we intro-
duce AliSim, a new tool that can efficiently simulate biologically realistic alignments under a large range of complex
evolutionary models. To achieve high performance across a wide range of simulation conditions, AliSim implements
an adaptive approach that combines the commonly used rate matrix and probability matrix approaches. AliSim
takes 1.4 h and 1.3 GB RAM to simulate alignments with one million sequences or sites, whereas popular software
Seq-Gen, Dawg, and INDELible require 2–5 h and 50–500 GB of RAM. We provide AliSim as an extension of the IQ-
TREE software version 2.2, freely available at www.iqtree.org, and a comprehensive user tutorial at http://www.
iqtree.org/doc/AliSim.

Key words: sequence simulation, phylogenetics, molecular evolution.

Introduction
Simulating multiple sequence alignments (MSAs) plays a
vital role in phylogenetics. Sequence simulation has
many applications, such as evaluating the performance
of phylogenetic methods (Garland et al. 1993; Kuhner
and Felsenstein 1994; Tateno et al. 1994; Huelsenbeck
1995), conducting parametric bootstraps, testing hypoth-
esis (Goldman 1993a, 1993b; Adell and Dopazo 1994;
Schoeniger and von Haeseler 1999), facilitating approxi-
mate Bayesian computation (Beaumont et al. 2002), and
generating data for training machine-learning applications
(Abadi et al. 2020; Leuchtenberger et al. 2020; Ling et al.
2020; Suvorov et al. 2020). Typical sequence
simulation programmes (such as Seq-Gen (Rambaut and
Grassly 1997), Dawg (Cartwright 2005), and INDELible
(Fletcher and Yang 2009)) require the user to specify as
input a tree and a model of sequence evolution to gener-
ate an alignment of sequences at the tips of the tree
(fig. 1A).

Existing simulators often require long runtimes and a lot
of memory to generate MSAs with millions of sequences or
sites. The only exception to this is the recently-introduced
phastSim (De Maio et al. 2022), designed to simulate align-
ments of hundreds of thousands of genomes from viruses
such as SARS-CoV-2.

New Approaches
Here, we develop a fast, efficient, versatile, and realistic se-
quence alignment simulator called AliSim. Our simulator
integrates a wide range of evolutionary models, available
in the IQ-TREE software (Nguyen et al. 2015; Minh et al.
2020), including standard, mixture, partition, and inser-
tion–deletion models (indels). In addition, AliSim can
simulate MSAs that mimic the evolutionary processes
underlying empirical alignments, a feature not available
in other tools. AliSim allows the user to provide an input
MSA, then infers the evolutionary process from that
MSA, and subsequently simulates new MSAs from the in-
ferred tree and model (fig. 1B). To further simplify this pro-
cess, we also include the ability to simulate alignments
based on the empirically-derived stationary distribution
of nucleotides extracted from a large database
(Naser-Khdour et al. 2021). To reduce the runtime across
a wide range of simulation conditions, we implement a
new adaptive approach that allows AliSim to dynamically
switch between the rate matrix approach (also known as
the Gillespie algorithm; Schoeniger and von Haeseler
1995; Fletcher and Yang 2009) and the probability matrix
approach (also known as the matrix exponentiation meth-
od; Schoeniger and von Haeseler 1995) during the simula-
tion. AliSim can simulate large alignments with millions

A
rticle

© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
This is anOpenAccess article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in anymedium, provided the original work is properly
cited. Open Access
Mol. Biol. Evol. 39(5):msac092 https://doi.org/10.1093/molbev/msac092 Advance Access publication May 3, 2022 1

mailto:m.bui@anu.edu.au
http://www.iqtree.org
http://www.iqtree.org/doc/AliSim
http://www.iqtree.org/doc/AliSim
https://orcid.org/0000-0001-5668-5027
https://orcid.org/0000-0002-5535-6560
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/molbev/msac092

of sequences and sites using much lower computing times
and memory than existing tools. For example, AliSim con-
sumes 1.3 GB RAM and 1.4 h to produce an MSA contain-
ing 1 million sequences with 30,000 sites per sequence,
whereas INDELible, Seq-Gen, and Dawg require 2–5 h and
50–500 GB of RAM.

Results
AliSim Supports a Wide Range of Evolutionary
Models
Table 1 compares the features of AliSim to other software.
Notably, AliSim supports many evolutionary models not
available in other software (table 1). AliSim allows users
to simulate different data types, including DNA, amino
acid, codon, binary, and multi-state morphological data
using more than 200 time-reversible substitution models
and 100 non-reversible models (Minh et al. 2020). AliSim
also supports insertion–deletion models, as well as com-
plex partition and mixture models. Moreover, users can
specify model parameters or define newmodels via a short
command-line option or a NEXUS file.

To model rate heterogeneity across sites, AliSim offers
invariant sites, discrete and continuous Gamma distribu-
tions (Yang 1994; Gu et al. 1995), distribution-free rate
models (Yang 1995; Soubrier et al. 2012), and the
GHOSTmodel (Crotty et al. 2020). AliSim also implements
branch-specific substitution models, which assign different
models of sequence evolution to individual branches of a
tree. To mimic more complex evolutionary patterns,
such as incomplete lineage sorting or recombination,
AliSim extends the partition model by allowing different
tree topologies for each partition.

AliSim Offers More Realistic Simulations
Scenario 1: Simulating MSAs that Mimic a User-Provided
MSA
A common use-case for alignment simulation software is
that users want to simulate an MSA that mimics the evo-
lutionary history of a given MSA, for example, because this
is needed for parametric bootstrap analysis. Until now, this
required at least a two-step process whereby users first in-
ferred the tree and model in one piece of software, then
used these as input to the MSA simulation tool. The result-
ingMSA often failed to capture many characteristics of the
original MSA, such as the position of gaps and the site-
specific evolutionary rates. AliSim improves this process
by first running IQ-TREE to infer an evolutionary model
and a tree from the input MSA and then immediately gen-
erating any number of simulated MSAs from the inferred
tree and model with the same gap patterns of the original
MSA. For simulations under a mixture model, AliSim ran-
domly assigns a model component of the mixture to each
site according to the site posterior probability distribution
of the mixture. For site-frequency mixture models, AliSim
applies the posterior mean site frequencies (Wang et al.
2018). Similarly, AliSim employs the posterior mean site
rates to better reflect the underlying evolutionary rate
variation across sites. All these mechanisms help produce
simulated MSAs that better reflect the relevant features
of the original MSAs (fig. 1B).

Scenario 2: Simulating MSAs from a Random Tree and/or
Random Parameters from Empirical/User-Defined
Distributions
When using Seq-Gen or Dawg, users need to provide as in-
put a tree with branch lengths. To avoid this sometimes
cumbersome step, AliSim allows users to generate a

A

B

FIG. 1. Sequence simulation process with two scenarios: (A) Simulating an MSA from a phylogenetic tree and a Markov substitution model, and
(B) Simulating an MSA that mimics the underlying evolutionary process of a user-provided MSA. Here, the phylogenetic tree and the substi-
tution model parameters are internally inferred from the user-provided MSA, which are used to simulate a new MSA.

Ly-Trong et al. · https://doi.org/10.1093/molbev/msac092 MBE

2

https://doi.org/10.1093/molbev/msac092

random tree under biologically plausible models such as
the Birth-Death model (Kendall 1948) and the
Yule-Harding model (Yule 1925; Harding 1971). For the
Yule-Harding model, users only need to specify the num-
ber of leaves of the tree. For the birth-death model, users
need to additionally provide the speciation and extinction
rate. Branch lengths are randomly generated from an ex-
ponential distribution with a user-adjustable default
mean of 0.1 or from a user-defined distribution specified
by a list of numbers.

Where users wish to simulate alignments that mimic
empirical MSAs in the absence of a set of input alignments,
AliSim can generate a stationary distribution of nucleo-
tides from empirical distributions that were previously es-
timated from a large collection of empirical datasets

(Naser-Khdour et al. 2021). Other parameters, such as sub-
stitution rates, non-synonymous/synonymous rate ratios,
transition, and transversion rates, can be drawn from user-
defined lists of numbers, allowing AliSim to incorporate ar-
bitrary distributions for all simulation parameters.

AliSim Automatically Chooses a Simulation Method
to Minimize the Runtime
Existing simulators typically employ either the rate matrix
approach or the probability matrix approach to evolve se-
quences along a tree (see Methods). However, their per-
formance varies with different sequence lengths (L) and
branch lengths (t). Therefore, AliSim automatically
switches between the rate matrix and probability matrix

Table 1. Feature comparison between AliSim v2.2.0 (March 8, 2022) and existing tools, Seq-Gen v1.3.4 (August 29, 2019), Dawg v2.0.1 (March 8, 2022),
INDELible v1.03, and phastSim v0.0.4 (February 8, 2022).

Features Seq-Gen Dawg INDELible phastSim AliSim

Substitution models
DNA ✓ ✓ ✓ ✓ ✓
Amino acid ✓ ✓ ✓ ✓
Codon ✓ ✓ ✓ ✓
Binary and discrete morphological ✓
RNA (base-pairing) ✓
Non-reversible DNA and amino acid ✓ ✓ ✓
Models of rate heterogeneity across sites
Invariant sites (+I) ✓ ✓ ✓ ✓ ✓
Discrete Gamma distribution (+Gk) ✓ ✓ ✓
Continuous Gamma distribution (+GC) ✓ ✓ ✓ ✓ ✓
Distribution-free (+Rk) (user-defined) ✓ ✓
Codon-position-specific rates ✓
Nonsynonymous/synonymous codon rate
heterogeneity

✓ ✓

Complex models
Insertion–deletion ✓ ✓ ✓ ✓
Indel-rate variation ✓
Partition Same model* ✓ ✓ ✓
Site mixture** Codon only ✓
Tree mixture for non-tree-like evolution Same model

and taxa
✓ ✓ ✓

Branch-specific substitutions*** ✓ ✓ ✓
Hypermutability ✓
Heterotachy (Crotty et al. 2020) ✓
Functional divergence (Gaston et al. 2011) ✓
User-defined models ✓ ✓ ✓ ✓ ✓
Ascertainment bias correction ✓
Biologically realistic simulations
Mimicking a user-provided MSA ✓
Model parameters following empirical or
user-defined distributions

✓

Simulating random trees ✓ ✓
Other features
Multifurcating trees ✓ ✓ ✓ ✓
Branch length scaling ✓ ✓ ✓ ✓ ✓
Graphical user interface ✓
Outputting ancestral sequences ✓ N/A ✓ ✓ ✓
Output format PHYLIP,

NEXUS, FASTA
PHYLIP, FASTA, NEXUS,

CLUSTAL, POO
PHYLIP,

FASTA, NEXUS
PHYLIP, FASTA,

NEWICK, MAT, Info
PHYLIP,
FASTA

Inserting output header ✓ ✓
Output compression Gzip
Programming language C C++ C++ Python C++
*, all partitions must share the same evolutionary model; **, a mixture model is a set of substitution models where each site has a probability of belonging to a substitution
model; ***, users can specify different evolutionary models to individual branches of a tree.

Phylogenetic Sequence Simulator · https://doi.org/10.1093/molbev/msac092 MBE

3

https://doi.org/10.1093/molbev/msac092

approaches to minimize the computing time. To deter-
mine when to use each approach, we compared the run-
time of the rate matrix approach with the probability
matrix approach on simulations using different combina-
tions of L and t (see Methods).

The simulation results showed that the rate matrix ap-
proach is generally faster than the probability matrix ap-
proach when L*t, 2.226 and L*t, 17.307 for the
discrete and continuous rate heterogeneity models, re-
spectively. Therefore, the adaptive approach applies the
ratematrix approach for those branches that satisfy this in-
equality; otherwise, it will apply the probability matrix
approach.

AliSim is Fast and Efficient Across a Range of
Conditions without Indels
We benchmarked AliSim against Seq-Gen, INDELible,
Dawg, and phastSim for a range of common phylogenomic
simulation conditions with and without indels. Specifically,
we simulated “deep” data with 30K sites and 10K to 1M
sequences, and we simulated “long” data with 30K se-
quences and 10K to 1M sites (see Methods). We note be-
fore presenting these results that phastSim is designed
specifically to simulate data along trees with a large pro-
portion of extremely short branches. The trees in these si-
mulations do not match these conditions, and so one
might expect phastSim to perform poorly here. We include
phastSim here for completeness and present a comparison
of phastSim and AliSim under the conditions for which
phastSim was designed later.

Figure 2 shows the benchmarking results. In the simula-
tions without indels, when the data sets were small, run-
times and memory usage were similar across all pieces of
software. However, AliSim shows increasing advantages
in runtimes and memory usage as the data sets get bigger.
For example, for the deepest data set (30K sites and 1M se-
quences; fig. 2A), Seq-Gen, Dawg, INDELible, phastSim, and
AliSim required 2, 3.2, 4.9, .24, and 1.4 h of runtime, re-
spectively. And for the longest data set (30K sequences
and 1M sites; fig. 2C), Seq-Gen, Dawg, INDELible,
phastSim, and AliSim required 2.2, 2.1, 3.7, .24, and
1.4 h respectively. Thus, AliSim is a fast sequence simulator
under a range of conditions.

AliSim shows dramatic improvements over other software
in peakmemory usage. Figures 2B and D show that these im-
provements become large even for fairlymodestly-sizeddata-
sets. For the deepest dataset (30K sites and 1M sequences; fig.
2B), Seq-Gen, Dawg, INDELible, and AliSim required 56, 488,
502, and 1.3 GB RAM, respectively (phastSim peak memory
usagewasnot recorded as it took.24 h to run). For the long-
est dataset (30K sequences and 1M sites; fig. 2D), Seq-Gen,
Dawg, INDELible, and AliSim consumed 56, 534, 499, and
0.2 GB RAM, respectively (as above, phastSim was excluded
because it took .24 h to run). Importantly, the memory
usage of AliSim only grows sub-linearly with respect to the
data set size. For the deep-data simulations, when increasing
the number of sequences from 10K to 1M (100-fold), the

RAM consumption of AliSim only increased from 137 MB
to 1.3 GB (�10-fold increase, fig. 2B). For the long-data simu-
lations, increasing the sequence length from 10K to 1M sites
(100-fold) only increased the RAM usage marginally from
156 MB to 222 MB (less than a 2-fold increase, fig. 2D). This
result is due to the memory saving techniques employed in
AliSim (see Methods), which work particularly well in these
simulations because they have relatively balanced tree
shapes.

We also tested the performance of existing tools on simu-
lating MSAs from SARS-CoV-2-like trees. These differ from
theprevious simulations because they contain a largepropor-
tion of extremely short branch lengths, a situation for which
phastSim was explicitly designed. In SARS-CoV-2-like data si-
mulations without indels (supplementary fig. S1A,
Supplementary Material online), phastSim and AliSim were
the two fastest pieces of software, requiring 10 and 14 min re-
spectively, whereas Seq-Gen, Dawg, and INDELible took 1.8,
2.7, and 3.3 h, respectively, to simulate 1M sequences of
30K sites. In terms of RAM consumption, phastSim and
AliSim only needed 1.4 and 1.3 GB RAM, respectively, where-
as Seq-Gen, Dawg, and INDELible required 56, 482, and
502 GB RAM (supplementary fig. S1B, Supplementary
Material online). We note that the performance of
phastSim in these conditions is particularly remarkable be-
cause it is written in Python. Because of this, it may be that
the language itself rather than the sequence simulation algo-
rithms of phastSim limit its performance, and we speculate
that phastSim may be able to be even faster if re-written in
C or C++.

AliSim is Memory-Efficient in Simulations with Indels
or Other Complex Models
We further compared the performance of AliSim, Dawg,
and INDELible in simulations with insertion–deletion
models. Seq-Gen and phastSim were excluded in this com-
parison because Seq-Gen does not support indels and
phastSim only produces unaligned sequences. Due to ex-
cessive computation times by all software, we reduced
the number of sequences by 100-fold. The results (fig. 2E,
F, and supplementary fig. S1C and D, Supplementary
Material online) showed that INDELible consumed a
huge amount of memory and could only simulate up to
1K sequences for trees with normal branch lengths. Both
Dawg and AliSim can complete all simulations. Dawg
was 2.4–6.4 times faster than AliSim but consumed up
to 95 times more memory.

Finally, we also tested other scenarios such as
SARS-CoV-2-like data simulations with indels
(supplementary fig. S1E and F, Supplementary Material on-
line), discrete Gamma rate heterogeneity (supplementary
fig. S2, Supplementary Material online) and codon models
(supplementary fig. S3, Supplementary Material online). In
terms of runtimes, AliSim is up to 1.7 times slower than the
fastest software (Dawg) in simulating codon data with indels;
but up to 7 times faster than the second-fastest software
(Seq-Gen or Dawg) in all other simulations. In terms of

Ly-Trong et al. · https://doi.org/10.1093/molbev/msac092 MBE

4

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
https://doi.org/10.1093/molbev/msac092

memory consumption, AliSim was always the most efficient
in all settings, using up to 880 times less RAM than the
second-best piece of software.

The Efficiency of the Adaptive Algorithm
The adaptive approach helps AliSim achieve high perform-
ance by selecting the most efficient simulation approach
for each branch. For example, in simulations under trees

where branch lengths were generated from an exponential
distribution with a mean of 0.1, the adaptive method ap-
plies the probability matrix approach rather than the
rate matrix approach on most branches, simply because
most branches are longer than the switching parameters.
The benefits of the adaptive approach can be measured
in our simulations by forcing AliSim to use one method.
For example, using the adaptive approach, AliSim took

FIG. 2. Runtimes and peak
memory consumptions of five
software AliSim, Seq-Gen,
Dawg, INDELible, and
phastSim for deep-data (vary-
ing number of sequences and
30K sites; sub-panels A and B)
simulations without indels,
long-data (varying number of
sites and 30K sequences; sub-
panels C and D) simulations
without indels, and varied #se-
quences (varying number of se-
quences and setting root
sequence length at 30K sites;
sub-panels E and F) simulations
with indels.

0
1

2
3

4
5

#Sequences

R
un

tim
es

 in
 H

ou
rs

A

AliSim

Seq−Gen

Dawg

INDELible

phastSim

10K 100K 500K 1M

AliSim
Seq−Gen
Dawg
INDELible
phastSim

0
10

0
20

0
30

0
40

0
50

0

#Sequences

R
A

M
 U

sa
ge

 in
 G

B

B

AliSim

Seq−Gen

Dawg
INDELible

phastSim

10K 100K 500K 1M

AliSim
Seq−Gen
Dawg
INDELible
phastSim

0
1

2
3

4
5

6
7

#Sites

R
un

tim
es

 in
 H

ou
rs

C

AliSim

Seq−Gen
Dawg

INDELible

phastSim

10K 100K 500K 1M

AliSim
Seq−Gen
Dawg
INDELible
phastSim

0
10

0
20

0
30

0
40

0
50

0

#Sites

R
A

M
 U

sa
ge

 in
 G

B

D

AliSim

Seq−Gen

Dawg
INDELible

phastSim

10K 100K 500K 1M

AliSim
Seq−Gen
Dawg
INDELible
phastSim

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

#Sequences

R
un

tim
es

 in
 H

ou
rs

E
AliSim

Dawg

INDELible

100 1K 5K 10K

AliSim
Dawg
INDELible

0
10

20
30

40
50

60

#Sequences

R
A

M
 U

sa
ge

 in
 G

B

F

AliSim

Dawg
INDELible

100 1K 5K 10K

AliSim
Dawg
INDELible

Deep-data simulations without indels

Long-data simulations without indels

Varied #sequences simulations with indels

Phylogenetic Sequence Simulator · https://doi.org/10.1093/molbev/msac092 MBE

5

https://doi.org/10.1093/molbev/msac092

only 1.4 h to simulate 1M sequences of 30K sites (fig. 2A).
However, if we force AliSim to employ only the rate matrix
approach, it takes more than 5 h to simulate the same data
set. Similarly, the adaptive approach took only 14 min to
simulate a data set on a SARS-CoV-2-like tree
(supplementary fig. S1A, Supplementary Material online),
but if we force AliSim to use the probability matrix ap-
proach, the same simulation takes 1.4 h.

Software Validation
To validate the AliSim, we simulated 287 MSAs with 100
sequences across a wide range of substitution models
and insertion–deletion rates of 0.0, 0.02, 0.04, 0.06, 0.08,
and 0.1. These choices of indel rates follow empirical stud-
ies (Cartwright 2009). We then ran IQ-TREE to determine
the best-fit model using ModelFinder (Kalyaanamoorthy
et al. 2017) and reconstructed phylogenetic trees under
the best-fit model. We compared the topology between
the true trees and the inferred trees using the
Robinson-Foulds distance (Robinson and Foulds 1981).

Supplementary table S1, Supplementary Material online
shows that in 148 tests (51.57%), the true model was re-
covered as the best-fit model. In 243 tests (84.67%), 246
tests (85.71%), and 267 tests (93.03%), the true models ap-
pear in the top-2, top-3, and top-4 best models, respective-
ly. The average Robinson-Foulds distance between the true
trees and the inferred trees across all test cases was 2.06
(s.e. 0.135). That means the inferred trees differed from
the true trees by only 1.03 of 97 (1.06%) internal branches.
The tree lengths (sum of branch lengths) of the inferred
trees differed from the true trees by only 1.9%.

For simulations with non-zero insertion–deletion rates,
the average differences in the alignment length and pro-
portion of gaps between MSAs simulated by AliSim and
those by INDELible were 0.52% and 0.25%, respectively
(supplementary table S2, Supplementary Material online).

Conclusion
In conclusion, AliSim is a fast and memory-efficient simu-
lation tool, which simplifies and speeds up many common
workflows in phylogenetics. AliSim offers a very broad
spectrum of simulation features. Thanks to a small mem-
ory footprint, AliSim can simulate even very large align-
ments on personal computers.

Materials and Methods
We developed AliSim in C++ as an extension to the
IQ-TREE software to take advantage of all models of se-
quence evolution provided in IQ-TREE. Generally, AliSim
works by first generating a sequence at the root of the
tree following the stationarity of the model. AliSim then
recursively traverses along the tree to generate sequences
at each node of the tree based on the sequence of its an-
cestral node. AliSim completes this process once all the se-
quences at the tips are generated. In the following, we
introduce general notations and three simulation

approaches to simulate sequence evolution along a branch
of a tree in a general case with indels.

Let Q= (qxy) be a rate matrix of a Markov model, where
x, y∈Σ, a finite alphabet, for example, the alphabet of nu-
cleotides or amino acids; qxy is the instantaneous substitu-
tion rate from x to y. Q is normalized such that the row

sum is zero: qxx = − ∑

y=x
qxy and the total substitution

rate is one:
∑

x
px qxx = −1, where πx is the state fre-

quency. For stationary models, we normalize Q by the
equilibrium state frequencies, but for non-stationary mod-
els such as branch-specific models, Q is normalized by the
state frequencies of the corresponding branch.
Additionally, we assume a model of rate heterogeneity
across sites, such as the invariant site proportion, the con-
tinuous/discrete Gamma model (Yang 1994), or the
distribution-free rate model (Yang 1995; Soubrier et al.
2012). Let rI, rD be the insertion and deletion rate, respect-
ively, relative to the substitution rate. Let ΦI, ΦD be the
insertion-length and deletion-length distributions, re-
spectively. AliSim allows users to use built-in indel-length
distributions, such as Geometric, Negative Binomial,
Zipfian, and Lavalette distributions (Fletcher and Yang
2009), or specify their own distributions. By default,
AliSim uses a Zipfian distribution with an exponent of
1.7 as previously estimated from empirical data (Benner
et al. 1993; Cartwright 2009). Given a sequence X =
x1x2 . . . xL, xi [S< {− } (where

′ − ′
denotes the gap

character), at an ancestral node of a phylogenetic tree; a
vector of site-specific rate R= r1r2…rL, ri is generated ac-
cording to the site-rate heterogeneity model; and a branch
length t, as the number of substitutions per site, of the
branch connecting the ancestral node to a descendent
node, we now describe three approaches to generate a
new sequence Y = y1y2 . . . yL′ , yi [S< {− }, at the des-
cendent node. L

′
might be different from L if the insertion

rate is non-zero.
The rate matrix approach: This approach implements

the Gillespie algorithm (Gillespie 1977) as follows. We
compute the total mutation rate for the ancestral se-
quence X as the sum of site-specific mutation rates: M=
S+ I+D, where S, I, D is the total rate of substitutions, in-
sertions, and deletions of all sites respectively.

S = −∑L

i=1
qxixi ri; I= rI(L+ 1); D= rD(L− 1+ uD), where

uD is the mean of the deletion size distribution
(Cartwright 2005).

0) Set Y← X and L
′
← L.

1) Generating a waiting time w for a mutation to occur
from an exponential distribution with a mean of 1

M.
2) If w . t, no mutation occurs, then we stop and re-

turn Y as the sequence at the descendent node.
3) If w ≤ t, a mutation occurs and we randomly select

a mutation type as substitution, insertion, or dele-
tion with probabilities of S

M , I
M , D

M respectively.
4) If the mutation type is substitution:

Ly-Trong et al. · https://doi.org/10.1093/molbev/msac092 MBE

6

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
https://doi.org/10.1093/molbev/msac092

4.1. Randomly select a non-gap position i, 1≤ i≤
L
′
where the substitution occurs with prob-

abilities
−qyiyi ri

S . If Y contains only gaps, we ter-
minate the algorithm.

4.2. Randomly choose a new state zi according to
probabilities

qyizi
−qyiyi

.

4.3. Update the total substitution rate to reflect
the new state: S � S+ (qyiyi − qzizi)ri.

4.4. Assign yi← zi and go to step 7.

5) If the mutation type is insertion:
5.1. Uniformly select a non-gap position i, 1≤ i≤

L
′ + 1 where the insertion occurs.

5.2. Randomly generate a new sequence Z= z1…zj
based on the stationary distribution of the
model, where the sequence length j follows
the insertion-length distribution ΦI.

5.3. Insert Z into Y at position i. If i= L
′ + 1, Z is

appended at the end of Y.
5.4. Insert a stretch of j gaps into position i of the

sequences at all other nodes of the tree so
that all sequences have the same length.

5.5. Generate a vector of site rates (s1,…, sj) ac-
cording to the distribution of rate heterogen-
eity across sites and insert this vector into R,
at position i.

5.6. Update the sequence length L
′
← L

′ + j, the

total substitution rate S � S−∑j

i=1
qzizi si,

the total insertion rate I← I+ rIj, and the to-
tal deletion rate D←D+ rDj.

5.7. Go to step 7.

6) If the mutation type is deletion:
6.1. Generate a deletion length, j, from the

deletion-length distribution ΦD.
6.2. Uniformly select a non-gap position i, 1≤ i≤

L
′ − j+ 1 , where the deletion occurs.

6.3. Initialize P= {p1, p2,…, pj}, a set of j non-gap
positions in Y starting at position i. Note
that pj might be greater than i+ j if there
are gaps between position i and i+ j.

6.4. Update the total substitution rate

S � S+∑

i[P
qyiyi ri; then ∀i [P, we set yi

←
′ − ′

and ri← 0.
6.5. Update the total insertions rate I← I− rIj, and

the deletion rate D←D− rDj.

7) Update the total mutation rate: M← S+ I+D and
the time t← t−w. Go back to step 1.

The probability matrix approach: Instead of generating a
series of waiting times, the probability matrix approach
generates a new state yi for each site in the sequence based
on the state xi, i= 1, 2,…, L. For each site i, we compute the
transition probability matrix P(t, ri) = eQtri . Then, the new
state yi is drawn from the probability distribution
Pxiyi(t, ri), yi [S. Note that when using a discrete rate

model with k categories, we only need to compute P(t,
ri) exactly k times to save computations. Whereas for a
continuous Gamma rate model, we have to compute P(t,
ri) for each site independently. After processing substitu-
tions with the probability matrix approach, to simulate in-
dels, we apply the Gillespie algorithm as described above
on the new sequence Y without considering substitutions
by setting and maintaining the total substitution rate S at
zero.

The adaptive approach: In simulations without indels,
the probability matrix approach has a time complexity in-
dependent of branch lengths, but the time complexity for
the rate matrix approach grows with increasing branch
lengths. In simulations with indels, the branch lengths af-
fect the runtime of the rate matrix approach more signifi-
cantly than that of the probability matrix approach. We
expect the rate matrix approach to outperform the prob-
ability matrix approach for small t but the opposite for
large t. Therefore, we derived an adaptive approach, in
which we determined a switching parameter from the se-
quence length. For all branches where the branch length is
smaller than this parameter, we employ the rate matrix ap-
proach. For the remaining (long) branches, we use the
probability matrix approach. That means our adaptive al-
gorithm will automatically switch between these two ap-
proaches on a per-branch basis to minimize the
computations.

To determine the switching parameter, we performed
simulations with different sequence lengths, ranging
from 1K to 100K sites (a total of 19 tests), with/without
rate heterogeneity. We measured the runtimes of the
probability matrix approach when simulating MSAs under
a random Yule-Harding tree with 10K tips based on the
general time-reversible (GTR) model (Tavaré and Miura
1986) with/without continuous Gamma rate heterogen-
eity using a Gamma shape of 0.5. For each test case, we ap-
plied binary search on a predefined range of branch length
to determine the switching parameter where the runtime
of the rate matrix approach is less than the probability ma-
trix approach (supplementary table S3, Supplementary
Material online). We then determine the switching para-
meters using a least square fit across the simulations.

Memory Optimization Techniques
Naively, when simulating sequences along a bifurcating
tree with n tips, we need to store up to (2n–1) sequences,
consisting of (n− 1) internal nodes and n tips. To save
memory, we release the memory allocated to the sequence
of an internal node if the sequences of its children nodes
are already generated. In addition, in simulations without
partitions, AliSim writes out the tip sequences to the out-
put file immediately after simulating them, then frees the
memory. This approach considerably reduces the max-
imum number of sequences that need to be stored in
memory from (2n− 1) to the maximum depth of the
tree. For a balanced bifurcating tree, this maximal depth
is log2(n)+ 1, leading to a substantial reduction in memory

Phylogenetic Sequence Simulator · https://doi.org/10.1093/molbev/msac092 MBE

7

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
https://doi.org/10.1093/molbev/msac092

usage. But in the worst case of a completely unbalanced
tree, the tree depth is n and we still save half of the mem-
ory. Hence, the memory saving depends on the tree shape.

Benchmark Experimental Set-up
We benchmarked AliSim against Seq-Gen, Dawg,
INDELible, and phastSim. The benchmark was run on a
Linux server with 2.0 GHz AMD EPYC 7501 32-Core
Processor and 1-TB RAM. All simulators generated align-
ments in PHYLIP format. We ran all software in single
threaded mode. Inspired by the newly emerged
SARS-CoV-2 data, we tested the ability of all tools to simu-
late alignments with 30K sites and 10K, 100K, 500K, and
1M DNA sequences. For the model of sequence evolution,
we applied the GTR model with a 0.2 proportion of invari-
ant sites and a continuous Gamma model of rate hetero-
geneity across sites (shape parameter of 0.5). We ran
different software to simulate sequences along random
trees, drawn under the Yule-Harding model and exponen-
tially distributed branch lengths with amean of 0.1. We call
this the deep-data simulation. Moreover, to mimic the size
of real phylogenomic datasets, we simulated MSAs with
30K sequences and increased sequence length from 10K
to 1M sites. This is called long-data simulation. For simula-
tions with indels, we applied empirical parameters (Graur
et al. 1989; Gu and Li 1995; Cartwright 2009) with the in-
sertion and deletion rates of 0.03 and 0.09, respectively,
and the indel-lengths drawn from a truncated Zipfian
(Power-Law) distribution (Fletcher and Yang 2009) (a=
1.7; max= 50). Note that for INDELible, we used Method
2, which is more efficient than Method 1 in simulations
with continuous rate heterogeneity across sites (Fletcher
and Yang 2009). For phastSim, we used the “hierarchical”
approach because the “vanilla” algorithm does not support
continuous rate variation.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.

Acknowledgments
This work was supported by a Chan-Zuckerberg Initiative
grant for open source software for science to B.Q.M. and
R.L., an Australian Research Council Discovery Grant
(DP200103151 to R.L. and B.Q.M.), a Moore-Simons
Foundation grant 735923LPI (https://doi.org/10.46714/
735923LPI) to B.Q.M., and partly by a Vingroup Science
and Technology Scholarship (VGRS20042M to N.L.T.).
The computational results have been obtained on the clus-
ter at the Center for Integrative Bioinformatics Vienna
(CIBIV). We thank Arndt von Haeseler for valuable com-
ments and providing access to the CIBIV cluster; Caitlin
Cherryh, Yu Lin, Fred Jaya, Weiwen Wang for their com-
ments on the manuscript; Andrew Roger and Edward
Susko for helpful discussions.

Data Availability
The data underlying this article are available in the
Supplementary Material Online and the Zenodo
Repository, at https://doi.org/10.5281/zenodo.6361862.

References
Abadi S, Avram O, Rosset S, Pupko T, Mayrose I. 2020. ModelTeller:

model selection for optimal phylogenetic reconstruction using
machine learning. Mol Biol Evol. 37(11):3338–3352.

Adell JC, Dopazo J. 1994. Monte Carlo simulation in phylogenies: an
application to test the constancy of evolutionary rates. J Mol Evol.
38(3):305–309.

Beaumont MA, Zhang W, Balding DJ. 2002. Approximate
Bayesian computation in population genetics. Genetics 162(4):
2025–2035.

Benner SA, Cohen MA, Gonnet GH. 1993. Empirical and structural
models for insertions and deletions in the divergent evolution
of proteins. J Mol Biol. 229(4):1065–1082.

Cartwright RA. 2005. DNA assembly with gaps (Dawg): simulating
sequence evolution. Bioinformatics 21(Suppl. 3):31–38.

Cartwright RA. 2009. Problems and solutions for estimating indel
rates and length distributions. Mol Biol Evol. 26(2):473–480.

Crotty SM, Minh BQ, Bean NG, Holland BR, Tuke J, Jermiin LS, von
Haeseler A. 2020. GHOST: recovering historical signal from het-
erotachously evolved sequence alignments. Syst Biol. 69(2):
249–264.

De Maio N, Boulton W, Weilguny L, Walker CR, Turakhia Y, Corbett-
Detig R, Goldman N. 2022. phastSim: efficient simulation of se-
quence evolution for pandemic-scale datasets. PLoS Comput
Biol. 18(4):e1010056.

Fletcher W, Yang Z. 2009. INDELible: a flexible simulator of biological
sequence evolution. Mol Biol Evol. 26(8):1879–1888.

Garland T, Dickerman AW, Janis CM, Jones JA. 1993. Phylogenetic
analysis of covariance by computer simulation. Syst Biol. 42(3):
265–292.

Gaston D, Susko E, Roger AJ. 2011. A phylogenetic mixture model for
the identification of functionally divergent protein residues.
Bioinformatics 27(19):2655–2663.

Gillespie DT. 1977. Exact stochastic simulation of coupled chemical
reactions. J Phys Chem. 81(25):2340–2361.

Goldman N. 1993a. Statistical tests of models of DNA substitution. J
Mol Evol. 36(2):182–198.

Goldman N. 1993b. Simple diagnostic statistical tests of models for
DNA substitution. J Mol Evol 37(6):650–661.

Graur D, Shuali Y, Li WH. 1989. Deletions in processed pseudogenes
accumulate faster in rodents than in humans. J Mol Evol. 28(4):
279–285.

Gu X, Fu Y-X, Li W-H. 1995. Maximum likelihood estimation of the
heterogeneity of substitution rate among nucleotide sites. Mol
Biol Evol. 2(4):546–557.

Gu X, Li WH. 1995. The size distribution of insertions and dele-
tions in human and rodent pseudogenes suggests the loga-
rithmic gap penalty for sequence alignment. J Mol Evol.
40(4):464–473.

Harding EF. 1971. The probabilities of rooted tree-shapes generated
by random bifurcation. Adv Appl Probab. 3(1):44–77.

Huelsenbeck JP. 1995. Performance of phylogenetic methods in
simulation. Syst Biol. 44(1):17–48.

Kalyaanamoorthy S, Minh BQ,Wong TKF, von Haeseler A, Jermiin LS.
2017. ModelFinder: fast model selection for accurate phylogenet-
ic estimates. Nat Methods 14(6):587–589.

Kendall DG. 1948. On the generalized “birth-and-death” process.
Ann Math Stat. 19(1):1–15.

Kuhner MK, Felsenstein J. 1994. A simulation comparison of phyl-
ogeny algorithms under equal and unequal evolutionary rates.
Mol Biol Evol. 11(3):459–468.

Ly-Trong et al. · https://doi.org/10.1093/molbev/msac092 MBE

8

http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
https://doi.org/10.46714/735923LPI
https://doi.org/10.46714/735923LPI
http://academic.oup.com/molbev/article-lookup/doi/10.1093/molbev/msac092#supplementary-data
https://doi.org/10.1093/molbev/msac092

Leuchtenberger AF, Crotty SM, Drucks T, Schmidt HA,
Burgstaller-Muehlbacher S, von Haeseler A. 2020.
Distinguishing felsenstein zone from farris zone using neural net-
works. Mol Biol Evol. 37(12):3632–3641.

Ling C, Cheng W, Haoyu Z, Zhu H, Hua Z. 2020. Deep neighbor in-
formation learning from evolution trees for phylogenetic likeli-
hood estimates. IEEE Access 8:220692–220702.

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD,
von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and ef-
ficient methods for phylogenetic inference in the genomic era.
Mol Biol Evol. 37(5):1530–1534.

Naser-Khdour S, Minh BQ, Robert L. 2021. The influence of model
violation on phylogenetic inference: a simulation study. bioRxiv.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a
fast and effective stochastic algorithm for estimating maximum-
likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Rambaut A, Grassly NC. 1997. Seq-gen: an application for the monte
carlo simulation of dna sequence evolution along phylogenetic
trees. Bioinformatics 13(3):235–238.

Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees.
Math Biosci. 53(1–2):131–147.

Schoeniger M, von Haeseler A. 1995. Simulating efficiently the evo-
lution of DNA sequences. Bioinformatics 11(1):111–115.

Schoeniger M, von Haeseler A. 1999. Toward assigning helical regions
in alignments of ribosomal RNA and testing the appropriateness
of evolutionary models. J Mol Evol. 49:691–698.

Soubrier J, Steel M, Lee MSY, Der Sarkissian C, Guindon S, Ho SYW,
Cooper A. 2012. The influence of rate heterogeneity among sites
on the time dependence of molecular rates.Mol Biol Evol. 29(11):
3345–3358.

Suvorov A, Hochuli J, Schrider DR. 2020. Accurate inference of tree
topologies from multiple sequence alignments using deep learn-
ing. Syst Biol. 69(2):221–233.

Tateno Y, Takezaki N, Nei M. 1994. Relative efficiencies of the
maximum-likelihood, neighbor-joining, and maximum-
parsimony methods when substitution rate varies with site.
Mol Biol Evol. 11(2):261–277.

Tavaré S, Miura RM. 1986. Some probabilistic and statistical pro-
blems in the analysis of DNA sequences. Lect Math Life Sci. 17:
57–86.

Wang HC, Minh BQ, Susko E, Roger AJ. 2018. Modeling site
heterogeneity with posterior mean site frequency profiles accel-
erates accurate phylogenomic estimation. Syst Biol. 67(2):
216–235.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate
methods. J Mol Evol. 39(3):306–314.

Yang Z. 1995. A space-time process model for the evolution of DNA
sequences. Genetics 139(2):993–1005.

Yule GU. 1925. A mathematical theory of evolution based on the
conclusions of Dr. J. C. Willis, F.R.S. Philos Trans R Soc Lond Ser
B, Contain Pap a Biol Character. 213:21–87.

Phylogenetic Sequence Simulator · https://doi.org/10.1093/molbev/msac092 MBE

9

https://doi.org/10.1093/molbev/msac092

	AliSim: A Fast and Versatile Phylogenetic Sequence Simulator for the Genomic Era
	Introduction
	New Approaches

	Results
	AliSim Supports a Wide Range of Evolutionary Models
	AliSim Offers More Realistic Simulations
	Scenario 1: Simulating MSAs that Mimic a User-Provided MSA
	Scenario 2: Simulating MSAs from a Random Tree and/or Random Parameters from Empirical/User-Defined Distributions

	AliSim Automatically Chooses a Simulation Method to Minimize the Runtime
	AliSim is Fast and Efficient Across a Range of Conditions without Indels
	AliSim is Memory-Efficient in Simulations with Indels or Other Complex Models
	The Efficiency of the Adaptive Algorithm
	Software Validation
	Conclusion

	Materials and Methods
	Memory Optimization Techniques
	Benchmark Experimental Set-up

	Supplementary Material
	Acknowledgments
	Data Availability
	References

