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one- and two-dimensional 
electromagnetically induced 
gratings in an er3+ - doped yttrium 
aluminum garnet crystal
tao Shui1, Ling Li2, Xin Wang2 & Wen-Xing Yang1*

A coherently prepared er3+-doped yttrium aluminum garnet (YAG) crystal with a four-level 
ionic configuration is exploited for realizing one-dimensional (1D) and two-dimensional (2D) 
electromagnetically induced gratings (eiGs). owing to the probe gain induced by the incoherent 
pump, the diffraction efficiency of the crystal grating, especially the first-order diffraction, can be 
significantly improved via increasing the incoherent pumping rate or decreasing the probe detuning. 
The enhancement of the grating diffraction efficiency originates from the interference between the gain 
and phase gratings. It is also demonstrated that the diffraction of the crystal grating can be dynamically 
controlled via tuning the intensity and detuning of the standing-wave driving field or the concentration 
of er3+ ion. More importantly, the probe energy of the diffraction side lobes around the central principle 
maximum is comparable to that of the first-order diffraction field for small driving intensity or large 
driving detuning. our scheme may provide a possibility for the active all-optical control of optical 
switching, routing and storage in fiber communication wavelengths.

In the past few decades, the study of electromagnetically induced grating (EIG) has been one of the hot spots 
in optics due to its potential applications in optical switching and routing1,2, optical bistability3, light storage4, 
self-imaging5,6, and four-wave mixing dipole soliton7. Note that EIG, which is created by using a standing-wave 
(SW) laser field to replace the traveling-wave laser field in electromagnetically induced transparency, can diffract 
the incident probe beam into high-order diffraction directions. Such a diffraction grating is derived from the 
spatial periodic modulation of the amplitude and phase of the transmission function. It was first theoretically 
proposed by Xiao et al.8 and experimentally observed in cold atomic systems9,10. Since then, EIG has been exten-
sively investigated in atomic systems11–22, crystal of molecular magnets system23, quantum wells and dots24–27 and 
hybrid artificial molecule28,29. Among these studies, the improvement of the diffraction efficiency of the coherent 
grating can be achieved via some feasible approaches such as giant Kerr nonlinearity11, Raman gain14, parity-time 
symmetry (or antisymmetry)18–20,26, van der Waals interaction22 and the surface plasmon and tunneling effect29.

On the other hand, much attention has been attracted to the study of Er3+-doped yttrium-aluminum-garnet 
(YAG, chemical formula Y3Al5O12) crystal since the stimulated emission from Er3+ ions in the YAG crystal was 
first observed by Zharikov et al.30. It should be worth pointing out that Er3+-doped YAG crystal, where some of 
the Y3+ ions are replaced by Er3+ ions, is an efficient active medium for solid-state lasers operating in the eye-safe 
wavelengths31, which have been applied to the fields of optical communication and biomedicine. Recent years, 
based on the atomic coherence and quantum interference effects, many kinds of quantum optical phenomena, 
such as electromagnetically induced transparency (EIT)32, large refractive index with vanishing absorption33, 
positive and negative dispersion34, flattened gain35 and optical bistability and multistability36,37, have been studied 
in Er3+-doped YAG crystals. These solid-state systems based on the Er3+-doped YAG crystals have the similar 
properties to atomic vapors, but with the advantage of no atomic diffusion. So far, to our best knowledge, studies 
have not been extended to the investigation of the diffraction of the EIG in the Er3+-doped YAG crystal.

In this paper, we investigate the Fraunhofer diffraction characteristics of one-dimensional (1D) and 
two-dimensional (2D) diffraction gratings realized in an Er3+-doped YAG crystal with four-level ionic configura-
tion. By taking advantage of the incoherent pumping process and the periodic spatial modulation of the driving 
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field with standing wave pattern, a gain grating or hybrid (gain-phase) grating with high diffraction efficiency 
can be realized. We demonstrate that the incoherent pumping field and the probe detuning play important roles 
on the forming of the 1D and 2D gratings and their diffraction efficiency. By increasing the incoherent pumping 
rate and decreasing the probe detuning, we can significantly enhance the interference between the gain and phase 
gratings, and thereby improving the diffraction efficiency of the crystal grating. Furthermore, it is found that the 
diffraction efficiency of the crystal gratings is controllable by tuning the probe detuning and the intensity and 
detuning of the SW driving field or the concentration of Er3+ ion. More importantly, the probe energy of the 
diffraction side lobes around the zeroth diffraction order is comparable to that of the first-order diffraction for 
small driving intensity or large driving detuning. Moreover, our results also show that 1D and 2D crystal gratings 
exhibit different diffraction characteristics for the same optical parameters. Such crystal gratings, operating in the 
fiber communication band, may be more useful in optical communication and optical information processing.

Model and Method
Light-matter interactions in er3+-doped YAG crystal. As schematically shown in Fig. 1(a), we consider 
a four-level Er3+ ionic system in an Er3+-doped YAG crystal. The designated states can be chosen as follows: 

I1 4
15/2⟩| = , ⟩| = I2 4

13/2, | = I3 4
11/2⟩  and I4 4

9/2⟩| = . A weak probe field Ep with Rabi frequency Ωp and an inco-
herent pumping field with an pumping rate R are applied to the transitions →2 1  and →3 1 , respectively, 
while the transition →4 2  is driven by a strong driving field Ed with Rabi frequency Ωd. Here, we take the level 
1  as the energy origin. In the Schrödinger picture and under the electric-dipole and rotating-wave approxima-
tions, the total Hamiltonian for the four-level Er3+ ionic system is given by 
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where Δp = ωp − ω21 and Δd = ωd − ω42 are the detunings of the probe and driving fields, respectively. Equation (2)  
describes the interaction between the coherent applied fields and Er3+ ions. It is worth noting that Eq. (2) can 
also be rewritten in a 4 × 4 matrix form: 
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The dynamics of the atomic system can be described by using the density matrix approach as 

t
i H L t[ , ] [ ( )] (4)I
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∂
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Here, the Liouvillian matrix L[ρ(t)] indicating the irreversible relaxation can be written as 

Figure 1. (a) Schematic of diagram of a four-level Er3+ ionic system interacting with probe, driving and 
incoherent pumping fields. (b) Sketch of the spatial configuration of the three laser beams with respect to the 
crystal and diffraction orders.
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where σ11 = R(ρ33 − ρ11) + Γ21ρ22 + Γ31ρ33 + Γ41ρ44, σ22 = Γ32ρ33 + Γ42ρ44 − Γ21ρ22, σ33 = R(ρ33 − ρ11) + (Γ31 + 
32)ρ33 − Γ43ρ44 and σ44 = (Γ41 + Γ42 + Γ43)ρ44. Γij is the spontaneous-emission decay rate from the state i  to the 
state j , while γij is the decay rate of the coherence between the states i  and j  (i, j = 1, 2, 3, 4; i > j), given by 
γ γ= Γ + +R( )/2dph
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where μij is the electric-dipole matrix moment between level i  and level j , which can be calculated via the fol-
lowing equation38,39: 
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where Ωm(m = 2, 4, 6) represents the phenomenological intensity parameter, J and ′J  are the quantum numbers 
of angular momentum of the state i  and j , respectively. The factor 2 in Eq. (7) arose from the Kramers degener-
ate of the Stark levels of the Er3+ ion. The squared reduced matrix element α α′ ′ ′ ′f SL J U f S L J4 ( ) 4 ( )N m N 2

 can 
be obtained40 and the spectral intensity parameters can be described by an empirical formula41
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where X is the concentration of the doped Er3+ ions. A and B are empirical parameters: A = 1.0 and B = 0.33 
for Ω2; A = 1.1 and B = 0.7 for Ω4; A = 1.4 and B = 0.59 for Ω6.

In the limit of weak probe field, a perturbation expansion method is used for deriving the analytical and 
steady-state solution for i j( , 1, 2, 3, 4)ij
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and solve Eq. (4) order by order. At the zero order, we obtain non-zero density-matrix elements as 
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At the first order, we obtain 
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Therefore, the probe susceptibility χp, can be written as 
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where N0 denotes the number of doped ions per unit volume. Note that the real and imaginary parts of probe 
susceptibility χp represent the dispersion and absorption-gain, respectively.

Fraunhofer diffraction of 1D EIG. It can be seen from Eq. (11) that both the real and imaginary parts of 
the probe susceptibility χp depend on the intensity of the driving field. The space-dependent driving field can 
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result in the spatial modulation of the dispersion and absorption-gain for probe field. In this case, the Er3+-doped 
YAG crystal can be treated as an EIG. For 1D EIG, the 1D space-dependent driving field Ωd(x) is a SW field, which 
can be written as 

πΩ = Ω Λx x( ) sin( / ), (12)d d0

where 2Λ is the spatial period of the SW field. In this situation, 1D EIG can diffract the probe beam propagating 
in the z direction into different diffraction directions. Under the slowly varying envelope approximation and in 
the steady-state regime, the propagation of the probe field is described by the reduced wave equation as 
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where λp is the wavelength of the probe beam. Equation (13) can be rewritten as E z i E/p pχ∂ ∂ =′ , where 
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2
0 . Note that ′z  is a dimensionless variable by setting ζ = (ϵ0ℏλpΓ)/(πN0|μ21|2) as the 

unit of z.
We assume that the interaction length between Er3+ ions and probe field along the z direction, i.e., the thick-

ness of the thin Er3+-doped YAG crystal, is L. Thus, the transmission function, which is defined as the ratio of the 
output field amplitude to the input field amplitude, can be given by 

= χ χ−T x e e( ) , (14)Im x L iRe x L[ ( )] [ ( )]

where |T(x)| = e−Im[χ(x)]L and Φ(x) = Re[χ(x)]L are the amplitude and phase of 1D transmission function, respec-
tively. Such a grating is the superposition of an amplitude grating and a phase grating.

By 1D Fourier transform of T(x), we can obtain 1D Fraunhofer diffraction-intensity function: 
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where θ indicates the diffraction angle with respect to the z direction and M represents the number of spatial 
periods of the atomic grating illuminated by the probe beam. F(θ) is the Fraunhofer diffraction of a single space 
period Λ, which is given by 
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In particular, if the condition of θ λ= Λmsin /m p  is satisfied, the diffraction intensity Im along the m-order 
diffraction direction can be calculated by I F T x e dx( ) (1/ ) ( )m m
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Fraunhofer diffraction of 2D EIG. For 2D EIG, the 2D space-dependent driving field x y( , )dΩ ′ ′  is a super-
position of two orthogonal SW fields with the same frequency along the ′x  and y′ directions, i.e., 

x y x y( , ) [sin( / ) sin( / )]d d0 π πΩ = Ω Λ + Λ′ ′ ′ ′ ′ ′ , where 2Λ′ is the period of the two SW fields. It should be noted that 
′ ′x y  coordinates are obtained by rotating the xy coordinates counterclockwise 45 degrees, and then 
= +′x x y2 /2 2 /2 and y x y2 /2 2 /2= − +′ . Thus, in the xy coordinates, the 2D driving field can be 

rewritten as 

π πΩ = Ω + Λ + − + Λx y x y x y( , ) [sin( ( )/ ) sin( ( )/ )], (17)d d0

in which 2 2Λ = Λ′  is selected. In this case, the dispersion and absorption-gain can be periodically modulated 
along the x and y directions with the period Λ. Therefore,the 2D transmission function T(x, y) can be written as 

T x y e e( , ) , (18)Im x y L iRe x y L[ ( , )] [ ( , )]= χ χ−

where |T(x, y)| = e−Im[χ(x, y)]L and Φ(x, y) = Re[χ(x, y)]L are the amplitude and phase of the transmission function, 
respectively.

By 2D Fourier transform of T(x, y), we can obtain 2D Fraunhofer diffraction-intensity function: 
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where θx(y) indicates the diffraction angle with respect to the z direction in the x(y) − z plane and Mx(y) represents 
the number of spatial periods of the grating along the x(y) direction. The Fraunhofer diffraction F(θx, θy) of a 
single space period Λ in 2D space is given by 

F dxe T x y e dy( , ) 1 ( , )
(20)x y

i x i y
2 0

2 sin /

0

2 sin /x p y p∫ ∫θ θ =
Λ

.π θ λ π θ λΛ − Λ −

https://doi.org/10.1038/s41598-020-60809-6


5Scientific RepoRtS |         (2020) 10:4019  | https://doi.org/10.1038/s41598-020-60809-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Here, when both msin /x
m

pθ λ= Λ and nsin /y
n

pθ λ= Λ are satisfied, we can obtain the diffraction intensity I(m, n) 
along the (m,  n)th-order diffraction direction as ∫ ∫θ θ= = Λ πΛ − Λ Λ∣ ∣I F e dx T x y( , ) (1/ ) ( , )m n x
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Experimental realization
For the experimental realization, we would like to mention some points of the Er3+-doped YAG crystal for the 
present study, which are given as follows: 

 (I) Based on the experimental results41,42, we can get the spontaneous-emission decay rate Γij of the Er3+ ions 
for different concentrations of Er3+ ion at room temperature. For simplicity, all the parameters have been 
scaled by Γ = 239.1s−1. So it is reasonable that we choose the parameters as Γ21 = Γ, Γ31 = 0.8Γ, Γ32 = 10Γ, 
Γ41 = 0.86Γ, Γ42 = 0.29Γ, Γ43 = 0.04Γ for 0.52 at . % Er3+ ion and Γ21 = 1.08Γ, Γ31 = 0.91Γ, Γ32 = 9.89Γ, 
Γ41 = 0.88Γ, Γ42 = 0.32Γ, Γ43 = 0.07Γ for 0.79 at . % Er3+.

 (II) According to the experimental result43, we have found that the dephasing time of Er3+-doped YAG crystal 
with an Er3+ concentration of 0.1%, T2 = 75 μs on the transition 4I15∕2 → 4I13∕2 of Er3+ at 1526.97 nm, the 
homogeneous linewidth Γh = 4286 Hz. Thus, it is reasonable for us to estimate the dephasing decay rate as 

15dph dph dph dph dph dph
21 31 32 41 42 43γ γ γ γ γ γ= = = = = = Γ.

 (III) Based on Eqs. (7) and ((8)), we obtain μ42 = 2.662 × 10−32 Cm for 0.52 at . % Er3+ ion and 
μ42 = 2.799 × 10−32 Cm for 0.79 at . % Er3+ ion.

Results and Discussions
In this section, we focus on analyzing the Fraunhofer diffraction characteristics of the probe beam by adjusting 
the controllable optical parameters of 1D and 2D EIGs realized in an Er3+-doped YAG crystal. Before presenting 
the numerical results, we first give the creditable evaluation of the numerical computation. Our numerical calcu-
lation is based on MATLAB R2015b software. We use the embedded FFT package to make 1D and 2D fast Fourier 
transform of the transmission function T(x) and select Λ∕40 as the step size of Fourier transform. Continuing to 
increase the sample points and decrease the step size would not result in the change of the diffraction spectra, 
which can prove the validity of our numerical computation.

For the case of 1D EIG, we first examine in Fig. 2 the influence of incoherent pumping rate R and probe detun-
ing Δp on the Fraunhofer diffraction of the crystal grating. Here, we select Er3+:  YAG crystal containing 0.52 at 
. % concentrations of Er3+ ion. Typical curves of the amplitude |T(x)| of the transmission function are shown in 
Fig. 2(a1–a3) for various R and Δp. It is obvious that the maxima of the amplitude |T(x)| are always located at the 
nodes of the SW driving field Ωd(x). The corresponding curves of the phase Φ(x) of the transmission function are 
also plotted in Fig. 2(b1–b3). When Δp = 0, the amplitude |T(x)| is greatly improved with the increase of R from 
1.77Γ to 2.17Γ because of the enhancement of probe gain in the incoherent pump process [see Fig. 2(a1)], while 
the phase Φ(x), which is unaffected by the change of R, always equals to zero due to the zero dispersion in the 
resonant light-matter interaction [see Fig. 2(b1)]. That is to say, only amplitude modulation takes place and the 
crystal grating is a pure gain grating. As shown in Fig. 2(c1), the diffraction intensities in all diffraction orders are 
remarkably improved via increasing the incoherent pumping rate, but the central principle maximum 
(zeroth-order diffraction) always dominates due to the limitation of amplitude grating8. As Δp is increased from 
0 to 8Γ, the space-dependent dispersion exists and the phase Φ(x) presents an inhomogeneous distribution over 
one space period. In this case, the crystal grating becomes a hybrid grating. As shown in Fig. 2(a2,b2), both the 
amplitude |T(x)| and the phase modulation depth ΔΦ, i.e., x xmax[ ( )] min[ ( )]ΔΦ = Φ − Φ , increase with the 
increase of R from 2.52Γ to 3.32Γ. As we know, the increase of the amplitude modulation can enhance the inten-
sities of the diffraction fields, while the increase of the phase modulation can improve the ratio of the diffraction 
intensities in the high diffraction directions. In this case, the hybrid grating can be treated as a superposition of a 
gain grating and a phase grating19, increasing the amplitude and phase modulations can enhance the interference 
between the gain and phase gratings, and thereby leading to the improvement of the diffraction efficiencies and 
more probe energy being diffracted into high diffraction orders. It is worth noting that the hybrid grating requires 
stronger incoherent pumping rate than the pure gain grating under the condition of achieving the same first-order 
diffraction intensity [see red dotted lines in Fig. 2(c1,c2)]. For a fixed incoherent pumping rate, i.e, R = 3.32Γ, 
when the probe detuning Δp is varied from 7Γ to 9Γ, the amplitude |T(x)| is decreased but the phase Φ(x) with 
ΔΦ ≃ π remains almost unchanged [see Fig. 2(a3,b3)]. The decrease of the amplitude modulation weakens the 
interference of the gain and phase gratings. Thus, the diffraction intensities of the diffraction fields decrease. 
However, the first-order diffraction peak is always highest owing to unchanged phase modulation [see Fig. 2(c3)]. 
In order to gain overall view of the effect of the incoherent pumping rate R and probe detuning Δp, we present the 
corresponding evolutions of the diffraction spectra Ip(θ) with the increase of R and Δp in Fig. 3, respectively. It is 
found that the diffraction efficiency of the crystal grating increases monotonically as R increases in the range of 
[2Γ, 3.5Γ] or Δp decreases in the range of [7Γ, 11Γ] [see Fig. 3(a,b)].

To obtain the corresponding power of the incoherent pumping field, the incoherent pumping rate R can be 
written as R = σ13Iip∕hνip, where νip and Iip are the frequency and light intensity of the incoherent pumping field, 
respectively. h is Planck constant and σ13 is the pump absorption section of Er3+ ion. The absorption cross-section 
at 967 nm pump wavelength (νip = 3.1 × 1014s−1) is 2.8 × 10−20 cm2 44,45. Thus, the light intensity Iip of the inco-
herent pumping field can be calculated for a certain value of R. Then, we can obtain the power of the incoherent 
pumping field via the formula P = AIip, where A is the cross-sectional area of the incoherent pumping field. If the 
laser beam is focused into a spot with a diameter 0.1 mm, this requires the laser power of the incoherent pump-
ing field arrives at P = 348 mW for R = 2.52Γ and P = 403 mW for R = 2.92Γ. It is obvious that the incoherent 
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pumping field has surpassed the threshold power of the Er3+-doped YAG crystal. In addition, we assume that the 
incident probe field is sufficiently weak and the interaction length is relatively short. Therefore, our scheme sat-
isfies small-signal model without considering the saturation effect. As for the SW driving field, the selected Rabi 
frequency, i.e., Ωd0 = 10Γ, is slightly larger than the selected incoherent pumping rate R. One can readily evaluate 
that the power of the SW driving field is higher the power of the incoherent pumping field.

We then examine in Fig. 4 how the diffraction distribution of the crystal grating depends on the intensity 
and detuning of the SW driving field. In Fig. 4(a,b), the extremely large zeroth-order diffraction peaks are trun-
cated and the corresponding intensity of the truncated zeroth-order diffraction field is shown as insets to clearly 
demonstrate the progress for various Ωd0 and Δd. Figure 4(a) shows the effect of the intensity Ωd0 on Fraunhofer 
diffraction patterns. With the increase of Ωd0, the zeroth-order diffraction field decreases monotonically, while 
the diffraction fields in the high-order directions increase firstly and then decrease. In other words, there are 
optimal values of Ωd0 for which the high-order diffraction intensities reach their maxima. In Fig. 4(b), the effect 

Figure 2. (a1–a3) The amplitude |T(x)| and (b1–b3) the phase Φ(x)/π of the transmission function as a function 
of x, and (c1–c3) Fraunhofer diffraction intensity Ip(θ) as a function of sinθ for various R and Δp. (a1,b1,c1) 
Δp = 0; (a2,b2,c2) Δp = 8Γ; (a3,b3,c3) R = 3.32Γ. Other parameters are Ωd0 = 10Γ, Δd = 0, M = 5, Λ/λp = 4 and 
L = 140ζ.

Figure 3. Fraunhofer diffraction spectra of 1D grating as a function of (a) the incoherent pumping rate R with 
Δp = 8Γ and (b) the probe detuning Δp with R = 3.32Γ. Other parameters are the same as in Fig. 2.
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of the detuning Δd on the diffraction patterns is presented. It can be seen that the high-order diffraction fields also 
increase firstly and then decrease as Δd increases, which is similar to the result in Fig. 4(a), while the diffraction 
intensity in the central principle maximum increases monotonically. Therefore, one can control the diffraction of 
the crystal grating by varying the intensity and detuning of the SW driving field. Direct comparison of Fig. 4(a,b) 
implies that the diffraction side lobes around the zeroth-order diffraction peak have the same evolution trend 
with the zeroth-order diffraction intensity. More importantly, the probe energy of the diffraction side lobes is 
comparable to that of the first-order diffraction for small driving intensity or large driving detuning, which would 
hamper the application of the first-order diffraction component. To choose the suitable parameters to realize the 
high diffraction efficiency of the first-order diffraction with suppressed diffraction side lobes, we define a “dif-
fraction contrast η”, which is the intensity ratio of the first-order diffraction to the diffraction side lobe around 
the central principle maximum, i.e., η = I1∕Isl. The high performance grating can be obtained when the diffrac-
tion contrast η exceeds 10 (i.e., η ≥ 10). It is obvious that the diffraction contrast η ≥ 10 when Ωd0 ≥ 3.24Γ [see 
Fig. 4(c)] or Δd ≤ 21.7Γ [see Fig. 4(d)]. From Fig. 4(a,b), we can find that, in the high performance region, the 
intensity of the first-order diffraction field reaches its maximal value, i.e., I1 = 21.32 at Ωd0 = 3.24Γ and I1 = 22.85 
at Δd = 21.7Γ. In this situation, Ωd0 = 3.24Γ and Δd = 21.7Γ are the corresponding optimal parameters to realize 
the optimal performance of the crystal grating.

It has been found that the concentration of Er3+ ion can greatly influence the optical properties of Er3+-doped 
YAG crystal32,37. In the following, we investigate the effect of the concentration of Er3+ ion on the diffraction 
characteristics of the crystal grating in Fig. 5. The concentration of Er3+ ion in Er3+-doped YAG crystal greatly 
affects the electric dipole moment μij. We keep the intensity Ed0 of the standing-wave driving field constant. When 
Ωd0 = 10Γ for 0.52 at . % Er3+ ion concentration, we can obtain Ωd0 = 10.51Γ for 0.79 at. % Er3+ ion concen-
tration. As shown in Fig. 5(a,b), both the amplitude |T(x)| and the phase modulation depth ΔΦ decrease with 
the increase of the Er3+ ion concentration from 0.52% to 0.79%. The decrease of both the amplitude and phase 
modulation reduces the interference between the gain and phase gratings. As a result, the diffraction efficiency 
of the grating is decreased and the diffraction energy is concentrated into the central principle maximum[see 
Fig. 5(c)]. These results offer us another controllable parameter to manipulate the diffraction behaviors of the 
crystal grating.

Let us now investigate the diffraction characteristics of 2D EIG. We also select Er3+:  YAG crystal containing 
0.52 at . % concentrations of Er3+ ion. Such a grating can be realized when the space-dependent driving field is 
a superposition of two orthogonal SW fields [see Eq. (17)]. Similar to the diffraction of 1D grating, the inco-
herent pumping rate R and probe detuning Δp also play important roles in the energy distribution of different 
diffraction orders in 2D crystal grating. Figure 6 shows the influence of R and Δp on the transmission function 
and Fraunhofer diffraction patterns of the 2D grating. In the case of R = 1.833Γ and Δp = 0, the maxima of the 
amplitude |T(x, y)| are localized at the position (x, y), where x = (0.5 ± m) ⋅ Λ and y = ± n ⋅ Λ (m, n are integers), 
but the phase Φ(x, y) is zero [see Fig. 6(a1,b1)]. In this situation, the grating is a 2D pure gain grating. It can be seen 

Figure 4. (a,b) Fraunhofer diffraction spectra and (c,d) diffraction contrast η of 1D grating as a function of 
(a,c) the intensity Ωd0 with Δd = 0 and (b,d) the detuning Δd with Ωd0 = 10Γ of the SW driving field. The 
insets in (a,b) show the diffraction intensity of the truncated zeroth-order diffraction field versus Ωd0 and Δd, 
respectively. Other parameters are the same as in Fig. 2 except for R = 3.32Γ and Δp = 8Γ.
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that the most portion of probe energy is diffracted into the (± m, 0)- and (0, ± n)-order diffraction directions and 
the (0, 0)-order diffraction field dominates [see Fig. 6(c1)]. Here, the diffraction intensity in the first diffraction 
order, i.e., (± 1, 0) and (0, ± 1) orders, can arrive at 4. When R = 3.91Γ and Δp = 12Γ, as shown in Fig. 6(a2,b2), 
the maxima of the phase Φ(x, y) are localized at the positions, where the amplitude |T(x, y)| is maximal. Although 
the amplitude |T(x, y)| of the transmission function reduces in comparison with the case shown in Fig. 6(a1), but 
the approximate π phase modulation depth results in more probe energy being diffracted into the high-order 
diffraction directions. In this case, the diffraction intensities of the (± 1, 0)- and (0, ± 1)-order diffraction fields 
can also reach 4 [see Fig. 6(c2)]. To see more details, the evolutions of the diffraction intensities in the (0, 0), (0, 1), 
(0, 2) and (1, 1) diffraction orders with the incoherent pumping rate R and probe detuning Δp are plotted in Fig. 7. 
Similar to the 1D case, the studied four diffraction fields increase monotonically as R increases or Δp decreases 
and the (0, 1)- and (0, 2)-order diffraction intensities exceed the (0, 0)-order diffraction intensity for large R or Δp 
[see Fig. 7(a,b)]. Therefore, it can be concluded that the location of the maximal diffraction field of 2D grating can 
be manipulated via adjusting the values of R and Δp.

We further examine in Fig. 8 the influence of the 2D space-dependent driving field on the diffraction of 2D 
grating. The evolutions of the diffraction intensities in the (0, 0), (0, 1), (0, 2) and (1, 1) diffraction orders with 
the intensity Ωd0 and the detuning Δd of the driving field are plotted in Fig. 8(a,b), respectively. It is found that 
increasing Ωd0 or decreasing Δd can lead to the reduction of the (0, 0)-order diffraction intensity but the diffrac-
tion intensities in the (0, 1) and (0, 2) diffraction orders increase firstly and then decrease. These trends are similar 
to the 1D cases shown in Fig. 4(a,b). However, unlike the (0, 1)- and (0, 2)-order diffraction fields, the (1, 1)-order 
diffraction field shows fluctuation in the diffraction intensity with respect to Ωd0 and Δd.

Finally, we examine in Fig. 9 what will happen when the same system parameters are selected for both 1D 
and 2D gratings? Here, we select the same parameters in Fig. 2(c2) except R = 3.32Γ and M = Mx = My = 5. One 
can find from Fig. 9(a,b) that the first-order diffraction field dominates in the diffraction of 1D grating, while the 
(0, 0)-order diffraction field is maximal in the diffraction of 2D grating. Meanwhile, the first-order diffraction 

Figure 5. (a) The amplitude |T(x)| and (b) the phase Φ(x)∕π of the transmission function as a function of x, and 
(c) Fraunhofer diffraction intensity Ip(θ) as a function of θsin  for different concentrations of Er3+ ion. Other 
parameters are R = 3.32Γ, Δd = 0 and Δp = 8Γ.

Figure 6. (a1,a2)The amplitude |T(x, y)| and (b1,b2) the phase Φ(x, y)/π of 2D transmission function as a 
function of (x, y), and (c1,c2) Fraunhofer diffraction intensity Ip(θx, θy) as a function of (sin , sin )x yθ θ  for different 
R and Δp. (a1,b1,c1) R = 1.833Γ and Δp = 0; (a2,b2,c2) R = 3.91Γ and Δp = 12Γ. Other parameters are Ωd0 = 8Γ, 
Δd = 0, Mx = My = 5, Λ/λp = 4 and L = 180ζ.
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intensity, i.e., I1 = 4, is larger than the (0, 1)-order diffraction intensity, i.e., I(0, 1) = 3.32. These results indicate that 
1D and 2D EIGs exhibit different diffraction characteristics for the same optical parameters.

In summary, we have theoretically investigated the Fraunhofer diffraction of 1D and 2D EIGs realized in 
Er3+-doped YAG crystal. In the presence of the incoherent pumping process, the induced spatial gain modulation 
without or with phase modulation results in the generation of the gain or hybrid grating, where the high diffrac-
tion intensities are achievable in the high-order diffraction directions. It is demonstrated that increasing the 
incoherent pumping rate and decreasing the probe detuning can significantly improve the diffraction efficiencies 
of the 1D and 2D crystal gratings. We give a suitable physical interpretation for the diffraction behaviors via the 
interference of the gain and phase gratings. Furthermore, it is found that the diffraction intensity of each diffrac-
tion field is also controllable by tuning the intensity and detuning of the SW driving field or the concentration of 
Er3+ ion. More importantly, the probe energy of the diffraction side lobes around the central principal maximum 

Figure 7. Fraunhofer diffraction intensities of 2D grating for some diffraction orders as a function of (a) the 
incoherent pumping rate R with Δp = 12Γ and (b) the probe detuning Δp with R = 3.91Γ. Other parameters are 
the same as in Fig. 6.

Figure 8. Fraunhofer diffraction intensities of 2D grating for some diffraction orders as a function of (a) the 
intensity Ωd0 with Δd = 0 and (b) the detuning Δd with Ωd0 = 8Γ of the SW driving field. Other parameters are 
the same as in Fig. 6 except for R = 3.91Γ and Δp = 12Γ.

Figure 9. Fraunhofer diffraction spectra of (a) 1D and (b) 2D gratings for R = 3.32Γ and M = Mx = My = 5. 
Other parameters are the same as in Fig. 2(c2).
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is comparable to that of the first-order diffraction field for small driving intensity or large driving detuning, which 
would limit the use of the first-order diffraction component. Based on this situation, we find the suitable optical 
parameters to realize the optimal performance of the grating. Finally, we note that the transition I I15/2

4
13/2

4→  
driven by weak probe field coincides with the third transparency-window of the optical fiber. Therefore, our 
scheme may provide the possibility for the active all-optical control of optical switching, routing and storage in 
communication wavelengths.
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