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Abstract 

Background:  Automated ICD coding on medical texts via machine learning has been a hot topic. Related studies 
from medical field heavily relies on conventional bag-of-words (BoW) as the feature extraction method, and do not 
commonly use more complicated methods, such as word2vec (W2V) and large pretrained models like BERT. This study 
aimed at uncovering the most effective feature extraction methods for coding models by comparing BoW, W2V and 
BERT variants.

Methods:  We experimented with a Chinese dataset from Fuwai Hospital, which contains 6947 records and 1532 
unique ICD codes, and a public Spanish dataset, which contains 1000 records and 2557 unique ICD codes. We 
designed coding tasks with different code frequency thresholds (denoted as fs ), with a lower threshold indicating a 
more complex task. Using traditional classifiers, we compared BoW, W2V and BERT variants on accomplishing these 
coding tasks.

Results:  When fs was equal to or greater than 140 for Fuwai dataset, and 60 for the Spanish dataset, the BERT vari-
ants with the whole network fine-tuned was the best method, leading to a Micro-F1 of 93.9% for Fuwai data when 
fs = 200 , and a Micro-F1 of 85.41% for the Spanish dataset when fs = 180 . When fs fell below 140 for Fuwai dataset, 
and 60 for the Spanish dataset, BoW turned out to be the best, leading to a Micro-F1 of 83% for Fuwai dataset when 
fs = 20 , and a Micro-F1 of 39.1% for the Spanish dataset when fs = 20 . Our experiments also showed that both the 
BERT variants and BoW possessed good interpretability, which is important for medical applications of coding models.

Conclusions:  This study shed light on building promising machine learning models for automated ICD coding by 
revealing the most effective feature extraction methods. Concretely, our results indicated that fine-tuning the whole 
network of the BERT variants was the optimal method for tasks covering only frequent codes, especially codes that 
represented unspecified diseases, while BoW was the best for tasks involving both frequent and infrequent codes. The 
frequency threshold where the best-performing method varied differed between different datasets due to factors like 
language and codeset.
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Background
During patients’ visits at hospitals, rich text data is gen-
erated, such as diagnoses from health professionals. An 
important task is to assign the codes from the Interna-
tional Classification of Diseases (ICD) system to the text, 
with each code representing a disease or procedure. The 
coding task serves as basis for a wide range of applica-
tions, including reimbursement, epidemiological studies 
and health service research. At present, the task is mainly 
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accomplished by clinical coders who are trained to grasp 
coding rules, yet manual coding is time-consuming and 
prone to errors, promoting automated ICD coding via 
machine learning to be a hot topic.

Using machine learning to fulfill automated ICD cod-
ing basically comprises two phases, feature extraction 
and classifier building. Feature extraction is crucially 
important, as it plays the role of a bridge between raw 
text and classifiers, and should extract useful features 
from raw text as many as possible. At present, there 
are three typical feature extraction methods, namely 
bag-of-words (BoW), word2vec (W2V) and large pre-
trained natural language processing (NLP) models. BoW 
is widely used in traditional machine learning. It treats 
text as a collection of words without strict orders, and 
ignores complicated semantic and syntactic informa-
tion. W2V was introduced by Mikolov et al. [1], and has 
been adopted in a great many studies. Splitting a train-
ing corpus into windows of text, W2V uses context words 
to predict central words (or vice versa), through which 
word embeddings for corresponding vocabulary can be 
learned. Compared with BoW, W2V is capable of guid-
ing word embeddings to embody semantic and syntactic 
information in dense real-valued low-dimensional vec-
tors. Large pre-trained NLP models gain much attention 
over recent years, the key point underlying which is first 
mining knowledge from large corpora with complicated 
neural networks, and then transferring the knowledge to 
downstream tasks to improve their performances. The 
most representative large pre-trained model is BERT, 
which was trained on large corpora from various fields 
and has been proven quite useful over many NLP tasks 
[2]. In comparison to W2V, models like BERT can learn 
far more language semantics and domain knowledge.

Existing studies relating to automated ICD coding can 
be categorized into two streams. The first is from medical 
field [3–14]. These studies focus on developing applicable 
models for a subset of ICD codes based on private datasets. 
BoW is adopted as the feature extraction method mostly, 
and conventional classifiers or similarity-based methods 
are commonly used to accomplish automated coding. In 
specific, using BoW and support vector machine (SVM), 
Karimi et  al. (2017) auto-assigned 16 codes to radiology 
reports and resulted in a Micro-F1 of over 80% [8], Koop-
man et al. (2015) predicted 85 cancer related codes based 
on death certificates and reached a F1-score of 70% [6], 
and Kaur and Ginige (2018) automatically allocated two 
codes relating to respiratory and gastrointestinal systems 
and achieved a F1-score of 91.4% [7]. Applying BoW on 
unstructured clinical notes, Elyne et  al. (2016) concluded 
that unstructured and structured data were complemen-
tary in predicting codes covering several medical special-
ties [14]. To the best of our knowledge, W2V and large 

pretrained NLP models, which hold advantages over BoW 
in analyzing syntax and semantics, have not been com-
monly used yet.

The second is from computer science [15–24], where 
most studies use W2V and deep learning neural net-
works as feature extraction methods, and mainly tar-
get on developing models on large public datasets, such 
as MIMIC-III [25–27]. For instance, Mullenbach et  al. 
(2018) proposed a network named CAML, which con-
sists of a convolutional layer and a label attention layer 
[18]. Lately, some studies are keen on pretraining BERT-
like architectures on large medical corpora, with the 
purpose of making the model more fitted for medical 
missions. One example is BioBert, which was pretrained 
on PubMed corpora and confirmed effective in deal-
ing with tasks such as ICD coding [28]. Although having 
adopted more advanced feature extraction methods, the 
metrics reported by these studies are generally not high. 
For instance, the state-of-the-art F1-score for the full 
codes in MIMIC-III is currently below 60% [20].

For the purpose of application, this study targeted on 
comparing BoW, W2V and BERT variants on auto-assign-
ing ICD codes to medical records. Like some related stud-
ies [7, 8], the scale of the datasets in this study is limited, 
therefore we used logistic regression (LR) and SVM instead 
of deep learning models as classifiers. We designed coding 
tasks with different code frequency thresholds. In general, 
a higher threshold means more frequent codes to predict 
and thus a less complex task. Our goal is to uncover which 
feature extraction method is most effective, and whether 
the most effective one varies across tasks at different com-
plex levels. Achieving the goal can be of help in building 
promising coding models and assisting coding practice.

Methods
This section first briefly describes the feature extraction 
methods, classifiers and evaluation metrics used in this 
study, and then gives details of our methodology.

Feature extraction methods
Bag‑of‑words
BoW is widely used in traditional machine learning. The 
model treats text as a collection of words (or n− grams ) 
without strict orders, and ignores complicated semantic 
and syntactic information. To calculate weights of words 
in a document, the term frequency-inverse document 
frequency ( tf − idf  ) method is mostly adopted. Accord-
ing to tf − idf  , given a corpus D containing N docu-
ments, the weight of word wi in document dj is:

(1)wi,j = tfi,j × log

(

N

dfi

)
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where tfi,j is the term frequency of wi in dj and dfi is the 
number of documents that mention wi . As the equation 
indicates, words occurring more in dj and less in D are 
considered more representative of dj and given higher 
weights. Features from BoW are generally high-dimen-
sional and sparse.

Word2vec
Since proposed by Mikolov et  al. [1], W2V has been 
widely used in both traditional machine learning and 
deep learning studies. The method involves two alterna-
tive models, continuous bag-of-words (CBOW) and skip-
gram, both of which are simple multiple-layer perceptron 
structures, as shown in Fig. 1.

As preprocessing, W2V transforms a training corpus 
into text windows of pre-defined size, and randomly ini-
tializes word embeddings for corresponding vocabulary. 
Given a text window during training, CBOW uses context 
words to predict the central word, while skip-gram uses 
the central word to predict context words. Training loss 
is assessed by cross entropy and word embeddings are 
gradually adjusted during backpropagation. After enough 
training, the embeddings tend to converge and are ready 
for downstream tasks.

Compared with BoW that only utilizes frequency infor-
mation, W2V is capable of extracting abstract semantic 
and syntactic features which are dense, real-valued and 
low-dimensional.

Large pretrained NLP models
The basic idea underlying large pre-trained NLP models 
is employing complex neural networks to mine knowl-
edge from large corpora first, and then transferring the 
knowledge to downstream tasks to improve their per-
formances. BERT is a typical such model [2], which has 

received much attention lately [29–34]. The neural net-
work of BERT1 is a 12-layer encoder of Transformer [35], 
where each layer consists of a residual multi-head self-
attention layer and a residual feed forward layer, both of 

Fig. 1  Word2vec. Left: CBOW. Right: skip-gram 

Fig. 2  The unit layer of the encoder of Transformer

1  BERT means the base model of BERT in this paper.
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which are followed by layer normalization, as shown in 
Fig. 2. Next sentence prediction (NSP) and masked lan-
guage modeling (MLM) are used as learning tasks. After 
trained on a large corpus from various fields, BERT has 
been proven very useful in fulfilling a wide range of NLP 
tasks [36, 37]. Some studies proposed some variants 
of BERT, one of which is RoBERTa [30], which uses the 
same network as BERT, but was trained with improved 
procedures such as larger batches and more steps. Note 
that W2V provides word embeddings that are static and 
context-agnostic once trained. In contrast, BERT and 
its variants play the role of sentence encoders, as they 
encode sequences of tokens and provided embeddings for 
tokens by taking contextual information in the sequences 
into account. This can be aiding in handling ambiguity in 
text and extracting more informative features for down-
stream tasks.

Classifiers
Logistic regression
LR is widely used as a baseline classifier because of its sim-
plicity and high efficiency [38]. Given a binary depend-
ent variable y and m predictors x = {x1, x2, . . . , xm} , the 
model can be expressed as:

where α and β are intercept and coefficients respectively, 
and can be estimated via maximum likelihood estima-
tion. Provided with n observations(xi, yi) (1 ≤ i ≤ n) , the 
log likelihood of LR regularized with L2 norm is:

where � is a positive penalty factor. Maximizing l(α,β) 
using gradient descent methods leads to optimal parame-
ters α⋆ and β⋆ that fit training data best. As we focused on 
comparing different feature extraction methods, we did 
not tune � comprehensively. Choosing � from 1, 12 , 

1
3 , 

1
4 , 

1
5 , we implemented training and tests on some randomly 
sampled data, and found � = 1

5 generally led to better 
results. Hence � = 1

5 was used throughout the study.

Support vector machine
SVM is one of the most successful conventional clas-
sifiers, due to its capability of handling a large num-
ber of features and simultaneously being memory 
efficient [39], and has been adopted in many stud-
ies for automated ICD coding [5–8]. Given a data set 
D = {(xi, yi)|yi = 1/− 1, 1 ≤ i ≤ n} where xi repre-
sents feature values, yi is a class label and n indicates 

(2)p(y = 1) =
1

1+ e−(α+βT x)

(3)l(α,β) =

n
�

i=1

ln p(yi|xi,α,β)−
�

2



α2 +

m
�

j=1

β2
j





data volume, SVM aims at searching for the hyperplane 
with the largest margin P: wx + b = 0 that separates 
D0 = {(xi, yi)|yi = −1} from D1 = {(xj , yj)|yj = 1} . w and 
b are usually calculated by solving the following optimi-
zation problem:

Subject to:

ξ = {ξi : 1 ≤ i ≤ n} are called slack variables, standing for 
the tolerance of SVM for misclassifications. C is a positive 
penalty factor on the slack variables. A larger C gener-
ally leads to higher training accuracy, yet puts the model 
under the risk of overfitting. φ(xi) is a transformation 
function which transforms data x into a new space, with 
the purpose of increasing the chance of separating data 
belonging to different classes which can not be separated 
in the original space. Kernel functions K(x, y), which sat-
isfies: K (x, y) = φ(x) · φ(y) , is introduced to simplify 
the transformation calculations. Commonly used kernel 
functions include linear function and radial basis func-
tion. In this study, linear kernel function was used. Using 
the same method of selecting � for LR, we chose C = 1

5 
for SVM in all of the experiments.

Data
Basic introduction
Fuwai dataset

Fuwai Hospital is a Chinese hospital featured in treat-
ing cardiovascular diseases. With the approval from the 
Ethics Committee at Fuwai Hospital, we obtained a data-
set lasting from January 2019 to February 2019, which 
includes no identifiable personal information. The data-
set contains 6947 records, in which each record consists 
of a textual diagnosis summary for a patient and a list of 
codes, which are the Chinese version of standard ICD-10 
diagnosis codes. Totally, the dataset involves 1532 unique 
codes. As preprocessing, we cleaned the diagnosis sum-
maries by removing all numbers and symbols except for 
‘[’ and ‘]’2 , and used Jieba3 package to cut the cleaned text 
into words. To obtain medical terms more precisely, we 
loaded a Chinese medical vocabulary from Sogou4 into 
Jieba, which contains 90,047 terms relating to diagnoses, 
medicine and so on.

(4)min
w,b,ξi

{
1

2
wTw +

C

2

n
∑

i=1

ξ2i }

(5)
{

yi(w
Tφ(xi)+ b) ≥ 1− ξi

ξi ≥ 0, 1 ≤ i ≤ n

2  The symbols directly indicate some ICD codes.
3  https://pypi.org/project/jieba/.
4  Available at: https://​pinyin.​sogou.​com/​dict/​cate/​index/​132.

https://pinyin.sogou.com/dict/cate/index/132.
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CodiEsp dataset
CodiEsp dataset [40] is a public dataset released by 

the CLEF eHealth 2020 conference5. The dataset con-
tains 1000 Spanish clinical records, and provides both 
Spanish and English textual diagnosis summaries. In this 
study, the Engish version was used. A list of gold standard 
CIE-10 diagnosis codes, which are the Spanish version of 
ICD-10 diagnosis codes, were assign to each record. 2557 
unique codes appear in the dataset. We deleted all sym-
bols, numbers and stop words in the records at the pre-
processing stage.

Descriptive analysis
Descriptive statistics of the datasets are listed in Table 1. 
For Fuwai data, we additionally summarized the charac-
ter-level statistics.

For each dataset, we ranked the codes by their frequen-
cies in descending order, and plotted the frequencies 
against the rankings (Fig. 3). Apparently, the distributions 
of the code frequencies in both datasets follow long-tail 
distribution. Figure 4 shows the 10 most frequent codes 
and their frequencies regarding each of the datasets.

Codes with few records would result in overfitting 
when training classifiers. Therefore, we selected a subset 
of codes to predict by setting a code frequency threshold 
fs . Intuitively, a smaller fs means more infrequent codes 
to predict and thus a more complex coding task. To find 
out whether the best feature extraction method varies 
across tasks at different complex levels, we experimented 
with different thresholds on each of the datasets. Under 
each threshold, we only used data relating to at least one 
of qualified codes. 80% of selected data was for training 
and the rest was for test.

Evaluation metrics
In accordance with related studies [6, 7, 16, 18], we 
mainly used F1-score and AUC​ to assess coding perfor-
mance. Micro-F1, Macro-F1, Micro-AUC​ and Macro-
AUC​ were used as specific metrics. A micro metric 
corresponds to the hypothetical single code that inte-
grates all individual codes, while a macro metric is the 

mean of metrics for each individual code. Micro met-
rics place more weights on codes with more records. As 
a comparison, macro metrics treat each code equally. In 
automated ICD coding where codes are most likely to 
distribute disproportionately, micro metrics, especially 
Micro-F1, are generally given more attention.

F1-score and AUC​ regarding a single code are 
described as follows.

F1
Assume there are a set of records among which t1 are in 
class 1 indicating a code is assigned. After feeding the 
records into a trained model, p1 are tagged with 1, within 
which tp1 are correctly tagged. Then the F1-score of the 
coding performance is:

where Precision = tp1/p1 and Recall = tp1/t1.

(6)F1 =
2× Precision× Recall

Precision+ Recall

Table 1  Descriptive statistics of the datasets

Fuwai CodiEsp

Word Character Code Word Code

Token size 691,418 1,557,769 44,366 161,078 11,158

Vocabulary size 9130 1768 1532 14,885 2557

Average length 99.5 224.2 6.4 161.1 11.2

(a) Fuwai dataset.

(b) CodiEsp dataset.
Fig. 3  The distribution of code frequencies in the datasets

5  https://​clefe​health.​imag.​fr/?​page_​id=​185

https://clefehealth.imag.fr/?page_id=185
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AUC​
AUC​ stands for area under the curve, where the curve is 
receiver operating characteristic (ROC) curve. Many clas-
sification models, including LR and SVM, finally output 
probabilities that records belong to class 1, instead of 
directly 1 or 0. Therefore, a calibration threshold needs 
to be used to transform the probabilities to classes . With 
ROC, numerous such thresholds are firstly selected, and 
true positive rate (TPR) and false positive rate (FPR) 
under each threshold are computed. Then the TPRs are 
plotted against the FPRs, resulting in the curve. A larger 
AUC​ indicates a model with better performance.

Method design
Figure  5 depicts the framework of our methodology. 
We designed coding tasks with different code frequency 
thresholds. In terms of each coding task, we accom-
plished code prediction by both feature-based methods 
and fine-tuning BERT variants, and evaluated coding 

performance on test data. Details of the feature extrac-
tion methods are given below.

BoW
We extracted features via unigram, unigram+bigram, 
unigram+bigram+trigram separately. As there are gen-
erally tens of thousands of features resulted from each 
combination, we applied the filter method with Chi-
square test to select most significant 1,000 features 
during training. For each feature, we calculated its signifi-
cance with respect to each individual code, and took the 
maximum significance as the final metric for ranking the 
feature. Related experiments were finished using Sklearn 
package [41].

W2V
Using gensim package [42], we trained both word and 
character embeddings based on Fuwai dataset, and word 
embeddings based on CodiEsp dataset. Parameters 
used during training and their descriptions are listed in 
Table 2.

We used average pooling to obtain the embedding of 
a textual record. Specifically, we looked up embeddings 
of all words (characters) in a record and took the mean 
at all dimensions as word-level (character-level) record 
embedding. For Fuwai dataset, we respectively adopted 
record embeddings at character-level and word-level, and 
also used the concatenation of both kinds of embeddings 
in the experiments.

BERT variants
For Fuwai dataset, we used a Chinese pre-trained model 
named RoBERTa-Mini [2, 30, 43, 44], which has 4 layers 
of transformer encoder units and represents characters 
with embeddings of 256 dimensions in each layer. Note 
that in the Chinese context, pre-trained NLP models are 
generally character-based rather than word-based, due 
to tremendous size of Chinese word vocabulary. Albeit 
recently there are some attempts at word-based models 
like WoBert [45], they only cover a vocabulary of lim-
ited size, and would encounter severe out-of-vocabulary 
problems when used in medical studies.

For CodiEsp dataset, we used a English pre-pretrained 
model named BERT-mini [46, 47], which has the same 
network structure as RoBERTa-Mini.

As both models can handle input sequences up to 512 
tokens, medical records longer than 512 tokens were 
truncated in our experiments, while those shorter than 
512 tokens were padded with meaningless tokens. For 
Fuwai dataset, among all the coding tasks, at most 4.6% 
of more than 6,000 records were truncated. The deleted 
content was mostly detailed symptom descriptions. 
Therefore, the truncation imposed little influence on the 

Fig. 4  The most frequent 10 codes in the datasets
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coding performance of RoBERTa-Mini. As for CodiEsp 
dataset, no clinical records need to be truncated.

Regarding both BERT variants, the outputs from the 
last layer were used, which mainly consists of two parts. 
One is a feature vector for the [CLS] token, which is 
automatically added on the beginning of each input 
sequence for the NSP task. The other is a embedding 

matrix where columns correspond to input tokens. 
Accordingly, we adopted two methods to achieve auto-
mated coding. The first is adding a fully connected 
layer above the feature vector, which contains the 
same number of neurons as that of target codes. Sig-
moid was used as the activation function. During train-
ing we fine-tuned the whole network and only the top 
fully connected layer respectively. Adam was employed 
as the optimization algorithm, with batch size set to 
32 and binary cross entropy as the loss function. Con-
sidering the random issue induced by operations such 
as parameter initialization and data split, we ran 5 
rounds of training and tests when using the fine-tuning 
method. Within each round, different random seeds 
were used to split data. The mean of metrics from all 
the rounds were reported finally. The second method is 
using the embedding matrix as token features to train 
LR and SVM, with columns corresponding to padded 
tokens excluded. Average-pooling was used to gener-
ate record embeddings. Besides using the embedding 
matrix directly, we also experimented with concatenat-
ing the embeddings from the BERT variants and W2V.

Fig. 5  The framework of our methodology

Table 2  Parameters for training W2V embeddings

Parameters Descriptions For 
Fuwai 
dataset

For 
CodiEsp 
dataset

sg Whether Skip-gram is used. 1 1

size The dimension of resulting embed-
dings.

256 128

window The length of a text window. 5 5

iter Training on data for how many 
iterations.

5 5

min_count Discarding words/characters 
appearing less than how many 
times.

3 3
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Results
Frequent codes only
We started with fixing the code frequency threshold fs 
as relatively high values, in which situation each cho-
sen code occurs frequently in the datasets. In specific, 
for Fuwai data, we set fs as 200, and 37 codes meet the 
standard, whose occurrences account for 61.6% of the 
total code occurrences. 6,398 records were selected. For 
CodiEsp dataset, we set fs as 180, and 3 codes meet the 
standard, whose occurrences account for 5.4% of the total 
code occurrences. 473 clinical records were selected. 
Coding results for the datasets are listed in Tables 3 and 
4, respectively. The largest Micro-F1 for each feature 
extraction method is shown in bold, and the largest glob-
ally is marked in underline.

Regarding the classifiers, for Fuwai dataset, LR mostly 
performed better than SVM over all the metrics using 
same features, whereas for CodiEsp dataset, SVM mostly 
outperformed LR over all the metrics given same fea-
tures. The result held across experiments with different fs 
for both datasets.

Focusing on the feature extraction methods for 
Fuwai dataset, RoBERTa-Mini with the whole network 

fine-tuned achieved the best results regarding all the 
metrics except for Macro-F1, and reached a Micro-F1 
of 93.87%, a Micro-Precision of 95.38%, and a Micro-
Recall of 92.43%. As a dramatic comparison, RoBERTa-
Mini with only the top layer fine-tuned performed quite 
poorly.

As for the other methods, BoW led to more promis-
ing results, with a Micro-F1 of 92.27%, a Micro-Preci-
sion of 95.35%, and a Micro-Recall of 89.39%. In regards 
of the embedding methods, using word and character 
embeddings together outperformed using either one. 
Specifically, concatenating the RoBERTa-Mini charac-
ter embeddings and W2V word embeddings was better 
than the other options, reaching a Micro-F1 of 84.2%, a 
Micro-Precision of 89.7%, and a Micro-Recall of 79.34%.

Similar conclusions can be drawn for CodiEsp data-
set. BERT-mini with the whole network fine-tuned 
performed best, reaching a Micro-F1 of 85.41%, a 
Micro-Precision of 85.4%, and a Micro-Recall of 85.6%. 
BoW followed, resulting in a Micro-F1 of 72.27%, a 
Micro-Precision of 77.48% and a Micro-Recall of 67.72%. 
Regarding the embedding methods, solely using the 

Table 3  Coding results for Fuwai dataset with fs = 200

For BoW, _uni, _uni_bi and _uni_bi_tri mean unigram, unigram+bigram and unigram+bigram+trigram respectively. For W2V, _comb means concatenating 
character and word embeddings, while _char (_word) means merely character (word) embeddings. For RoBERTa_embeddings, _char means merely the RoBERTa-Mini 
embeddings, and _comb means concatenating the RoBERTa-Mini embeddings and W2V word embbeddings. For RoBERTa_finetune, whole and top_layer mean fine-
tuning the whole network and only the top fully connected layer respectively

Feature extraction & classifiers Macro-F1 (%) Micro-F1 (%) Macro-AUC​ (%) Micro-AUC (%)

BoW

 LR_uni 84.44 91.54 88.58 93.75

 SVM_uni 84.69 91.78 89.27 94.10

 LR_uni_bi 84.83 92.27 89.08 94.41

 SVM_uni_bi 83.02 91.57 88.23 93.93

 LR_uni_bi_tri 83.01 91.50 88.00 93.88

 SVM_uni_bi_tri 78.21 89.45 85.20 92.19

W2V

 LR_word 53.14 75.07 71.60 82.05

 SVM_word 35.73 64.92 64.09 75.10

 LR_char 48.03 70.54 68.77 79.04

 SVM_char 26.30 58.86 60.37 71.64

 LR_comb 61.73 80.27 75.75 85.47

 SVM_comb 46.26 73.68 69.17 80.51

RoBERTa_embeddings

 LR_char 64.56 78.59 77.90 85.51

 SVM_char 51.30 75.24 71.86 82.45

 LR_comb 72.41 84.20 82.23 89.07

 SVM_comb 64.25 81.41 77.57 86.44

RoBERTa_finetune

 top_layer 4.31 40.59 69.56 80.32

 whole 83.39 93.87 98.65 99.55
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word embeddings from BERT-mini performed better 
than the other options, leading to a Micro-F1 of 63.9%.

Considering both frequent and infrequent codes
We chose relatively low fs in this section, in order to find 
out the most effective feature extraction methods when 
analyzing both frequent and infrequent codes.

Specifically, fs = 20 was used for both datasets. For 
Fuwai dataset, 248 codes and 6,906 records were chosen. 
The occurrences of the code subset account for 90.1% 
of the total code occurrences. For CodiEsp dataset, 106 
codes and 931 records were selected, with 41.4% of the 
total code occurrences covered. Coding results for the 
datasets are separately listed in Tables 5 and 6.

The results for both datasets diffed a lot from those 
in the last subsection. The methods of fine-tuning the 
BERT variants performed poorly. BoW became the best 
in terms of Micro-F1. For Fuwai dataset, it reached a 
Micro-F1 of 82.99%, a Micro-Precision of 94.69%, and a 
Micro-Recall of 73.86%. For CodiEsp dataset, it led to a 
Micro-F1 of 39.13%, a Micro-Precision of 84.78%, and a 
Micro-Recall of 25.43%.

Regarding the embedding methods, using the embed-
dings from the BERT variants and W2V together was the 
best choice for both datasets.

Results with multiple code frequency thresholds
We intended to uncover more details about how the 
best feature extraction method varied with respect to 
code frequency thresholds. Accordingly, we let fs change 
between (20, 200) for Fuwai dataset and increased it by 
20 each time. For CodiEsp dataset, we let fs take 40, 60, 
80, 100, and 140 respectively6. For each of the thresholds, 
the number of the qualified codes and selected records, 
and the proportion of the total code occurrences covered 
by the qualified codes are given in Additional file 1. Fig-
ures  6 and 7 display the best Micro-F1 and Micro-AUC​ 
under each of the feature selection methods in relation to 
the multiple fs.

Interestingly, fine-tuning the whole network of the 
BERT variants consistently led to the highest Micro-
AUC​ for both datasets. As the definition indicates, a 
higher AUC​ generally means higher TPR and 1-FPR, in 
other words, higher Recall for both positive and negative 
cases given multiple calibration thresholds, and it does 
not directly relate to Precision for positive cases. How-
ever, In the ICD coding task, both Precision and Recall 
for positive cases are quite important in coding practice, 
and can be captured by F1-score. Hence, we placed more 

Table 4  Coding results for CodiEsp dataset with fs = 180

Aside from BERT_embeddings, the suffixes have the same meanings as those in Table 3. For BERT_embeddings, _word means merely the BERT-mini embeddings, and 
_comb means concatenating the BERT-mini embeddings and W2V word embbeddings

Feature extraction & classifiers Macro-F1 (%) Micro-F1 (%) Macro-AUC​ (%) Micro-AUC​ (%)

BoW

 LR_uni 63.55 63.68 70.44 70.04

 SVM_uni 70.68 70.34 75.13 74.45

 LR_uni_bi 63.93 63.85 72.36 71.08

 SVM_uni_bi 72.46 72.27 77.22 75.95

 LR_uni_bi_tri 62.41 62.26 71.39 69.97

 SVM_uni_bi_tri 69.48 69.26 75.39 73.90

W2V

 LR_word 56.07 56.07 64.39 64.62

 SVM_word 59.52 59.63 66.86 67.11

BERT_embeddings

 LR_word 64.00 63.90 69.33 68.61

 SVM_word 59.15 59.02 64.29 64.11

 LR_comb 61.26 60.91 66.32 65.85

 SVM_comb 62.52 62.45 67.68 67.73

BERT_finetune

 top_layer 17.21 22.19 48.79 49.40

 whole 85.32 85.41 91.44 92.82

6  For CodiEsp dataset, we did not let fs take 120 and 160, as they resulted in 
the same subsets of data as those resulted from 100 and 140 respectively.
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Table 5  Coding results for Fuwai dataset with fs = 20

Feature extraction & classifiers Macro-F1 (%) Micro-F1 (%) Macro-AUC​ (%) Micro-AUC​ (%)

BoW

 LR_uni 52.95 82.99 71.82 86.88

 SVM_uni 47.41 82.70 70.46 86.73

 LR_uni_bi 46.25 80.79 69.10 85.48

 SVM_uni_bi 37.70 79.07 66.11 84.13

 LR_uni_bi_tri 39.12 72.85 65.93 80.49

 SVM_uni_bi_tri 27.24 67.62 61.68 76.77

W2V

 LR_word 22.81 63.29 58.79 74.85

 SVM_word 12.74 53.46 55.07 68.99

 LR_char 19.16 58.43 57.17 72.09

 SVM_char 8.16 45.92 53.19 65.40

 LR_comb 29.08 69.02 61.32 78.13

 SVM_comb 16.92 61.84 56.97 73.39

RoBERTa_embeddings

 LR_char 34.75 69.03 63.89 79.25

 SVM_char 23.41 64.75 59.58 75.74

 LR_comb 39.44 74.32 66.00 82.17

 SVM_comb 29.64 70.59 62.16 79.01

RoBERTa_finetune

 top_layer 0.67 31.06 62.83 84.21

 whole 2.43 41.25 75.00 90.26

Table 6  Coding results for CodiEsp dataset with fs = 20

Feature extraction & classifiers Macro-F1 (%) Micro-F1 (%) Macro-AUC​ (%) Micro-AUC​ (%)

BoW

 LR_uni 5.96 13.81 51.81 53.72

 SVM_uni 24.06 39.13 58.61 62.61

 LR_uni_bi 2.42 6.29 50.70 51.62

 SVM_uni_bi 12.79 23.56 54.39 56.75

 LR_uni_bi_tri 1.55 4.04 50.43 51.03

 SVM_uni_bi_tri 8.14 14.76 52.70 54.00

W2V

 LR_word 0.57 2.31 50.15 50.57

 SVM_word 0.00 0.00 50.00 50.00

BERT_embeddings

 LR_char 15.81 22.77 55.42 57.28

 SVM_char 15.34 21.39 56.00 57.55

 LR_comb 17.71 26.45 56.25 58.78

 SVM_comb 18.24 25.75 57.43 59.68

BERT_finetune

 top_layer 0.01 0.04 52.70 65.02

 whole 1.72 6.71 68.40 74.87
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weights on Micro-F1 when evaluating the feature extrac-
tion methods7.

Focusing on Fuwai dataset, the point where fs = 140 
can be observed as a turning point. When fs was equal to 
or greater than 140, RoBERTa-Mini with the whole net-
work fine-tuned resulted in the highest Micro-F1. When 
fs was lower than 140, BoW, mostly used together with 
LR, performed best.

As for CodiEsp dataset, there also exists a turn-
ing point, the one where fs = 60 . When fs equaled or 
exceeded 60, fine-tuning the whole network of BERT-
mini was most effective. Once fs fell below 60, BoW in 
conjunction with SVM consistently led to the highest 
Micro-F1.

Regarding the embedding methods on both datasets, 
using the embeddings from the BERT variants and W2V 
together generally achieved higher Micro-F1, in compari-
son to using merely the embeddings from the BERT vari-
ants or W2V.

Fig. 6  The metrics for the feature extraction methods on Fuwai 
dataset

Fig. 7  The metrics for the feature extraction methods on CodiEsp 
dataset

7  Theoretically, a higher AUC​ do not necessarily lead to a higher F1. When fs 
equaled 20, we tuned the calibration threshold, and found that the BERT vari-
ants did not result in Micro-F1 higher than that resulted by BoW. Details are 
given in Additional file 2.
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Note that the advantage of the BERT variants over BoW 
in terms of Micro-F1 was more obvious and lasted for a 
wider range on CodiEsp dataset than that on Fuwai data-
set. Besides factors like the difference in data volume and 
pretraining details of the BERT variants, the main reason 
could be as follows. In Fuwai dataset, most codes stand 
for specified diseases, such as E78.501 (hyperlipemia) 
and I25.105 (coronary atherosclerotic heart disease). 
There are some unique n− grams features quite indica-
tive of these codes, such as ’atherosclerotic’ for I25.105, 
and these features could be captured effectively by BoW 
when the feature selection was implemented, leading to 
competitive coding performance of the BoW methods 
on the frequent or infrequent codes. As a contrast, in 
CodiEsp dataset, many codes stand for unspecified dis-
eases, such as r52 (pain, not elsewhere classified) and r69 
(illness unspecified). Among the 20 most frequent codes, 
13 are such kind of codes. The uncertainty behind these 
codes might make BoW struggle in capturing informa-
tive n− grams features for predicting the codes. How-
ever, due to the capability of handling ambiguity in text, 
the BERT variants could perform promisingly when 
extracting useful features for code assignment, as long as 
enough records for target codes are provided.

Interpretability
The experiments above indicated that the BERT variants 
with the whole network fine-tuned was the optimal fea-
ture extraction method when assigning merely frequent 
codes, while BoW became most effective when predicting 
both frequent and infrequent codes. This section shows 
that both the BERT variants and BoW possess good inter-
pretability in automated coding, which is important for 
medical applications of coding models.

As for the BERT variants, the attention weights from its 
top layer give hints on how the models allocate impor-
tance for input tokens. In specific, the feature vector for 
code prediction is the weighted average of all embed-
dings of input tokens from the top layer. Higher attention 
weights mean more important roles of corresponding 
tokens in computing the feature vector. By observing the 
distribution of the weights, we can gain a straightforward 
view of what are key tokens, and whether those tokens 
are useful after referring to target codes.

Both BERT variants in this study adopt 4-head self-
attention mechanism, indicating that there are four 
groups of attention weights for input tokens. We used the 
largest weight for each token as the metric of importance 
and ranked all tokens in descending order according to 
the metric.

In terms of BoW, key features selected by the filter 
method are shared by all inputs, hence the interpretability 

can be achieved by analysing whether the key features are 
informative or not in relation to target codes.

For Fuwai dataset, we defined Pro_K  and Pro_N  to 
quantify the explainability of RoBERTa-Mini and BoW, 
respectively.

Given a diagnosis summary, we computed the num-
ber of characters that appear in both top K key charac-
ters from RoBERTa-Mini and corresponding code labels, 
and divided the number by K. The result can be seen as 
a metric for explainability at single record level. Pro_K  
equaled the mean over such metrics from all test records.

We calculated the number of words that appear in both 
top N key words8 from Chi-square test and correspond-
ing code labels, and divided the number by N to gain 
Pro_N .

Fixing fs as 200, we report Pro_K  for several K based 
on a randomly selected round of experiment in Table 7, 
and Pro_N  for several N in Table 8.

The tables show that both RoBERTa-Mini and BoW 
precisely located useful information for assigning the tar-
get codes.

In terms of CodiEsp dataset, Pro_K  and Pro_N  do not 
fit for BERT-mini and BoW. As mentioned above, many 
codes in the dataset represent unspecified diseases. 
As a result, many key words selected by feature extrac-
tion methods might not appear in such code labels, even 
if they are predictive of the codes. Hence, we give two 
examples to show the interpretability of BERT-mini and 
BoW below.

Fixing fs as 180, we list the top 10 key words selected 
through BoW and the 3 target codes in Table  10. For 
BERT-mini, we randomly display a clinical record and its 
ICD codes in Table 9, with the top 5 key words shown in 
bold.

The examples intuitively demonstrate that both BERT-
mini and BoW identified valuable information to predict 
the target codes.

Table 7  Pro_K  for interpreting the code assignment by RoBERTa-
Mini 

K 1 2 3 4 5

Pro_K 73.2% 74.2% 74.7% 75.2% 75.0%

Table 8  Pro_N for interpreting BoW 

N 10 20 30 40 50

Pro_N 80.0% 80.0% 83.0% 80.0% 76.0%

8  Merely key unigram features were used.
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Discussion
As expected, the lower the code frequency threshold, 
the more complex corresponding tasks, and the lower 
the performance metrics for all the feature extraction 
methods.

Experiments on both datasets suggested that the per-
formance of the BERT variants changed dramatically 
across tasks at different complex levels. When handling 
frequent codes, the BERT variants reached the most 
promising results, and their advantage over other feature 
extraction methods was more obvious when handling 
codes representing unspecified diseases. When handling 
infrequent codes, the BERT variants performed poorly, 
probably because input tokens relating to the infrequent 
codes were rare and not sufficiently seen by the BERT 
variants, and as a consequence useful semantic represen-
tation for such tokens could not be learned.

BoW and the embedding methods were more stable 
compared with fine-tuning the BERT variants, among 
which BoW performed better, suggesting that BoW was 
more suited for coding tasks that covered both frequent 
and infrequent codes. The probable reason why BoW 
was relatively effective for infrequent codes was as fol-
lows. Combined with tf − idf  and the feature selection 
via Chi-square test, BoW could capture some rare words 
or phrases that were closely associated with infrequent 
codes.

The frequency threshold that indicates the change of 
the best-performing feature extraction method varied 
between different datasets. This could be attributable 
to many factors, such as language, data volume and the 
number of predicted codes, and we can not pinpoint a 
single one as the major cause.

Focusing on the embedding methods, using embed-
dings from both the BERT variants and W2V was the 
optimal choice in most cases.

This study faces some limitations. First, we only used 
text data following a number of related studies [4, 5, 8, 
9]. However, as some research recorded [14, 23], both 
unstructured and structured data, such as various lab 
results, can help predict ICD codes. Whether using 
unstructured and structured data simultaneously would 
affect our conclusions need to be further verified.

Second, limited by the scale of the available datasets, 
we only employed traditional classifiers as many studies 
did [5–8]. These classifiers might not be capable of fully 
taking advantage of the information in the embeddings 
from W2V and the BERT variants, and this is probably 
why the embeddding methods performed not so well in 
our experiments. In the future, when datasets of larger 
scale are available, we will build sophisticated deep learn-
ing classifiers to check whether the embeddings would 
lead to more promising coding performance.

Third, currently, we merely experimented with a private 
Chinese dataset and a public Spanish dataset. Accord-
ing to related studies [10, 13], the portability of machine 
learning models for automated ICD coding might not 
be guaranteed. In the future, we will test the robustness 
of our conclusions by experimenting on more public 
datasets.

Conclusion
This study aimed at comparing different feature extrac-
tion methods, namely BoW, W2V and BERT variants, 
when building applicable models for automated ICD 
coding. Our experiments demonstrated that the BERT 
variants with the whole network fine-tuned was opti-
mal for coding tasks covering only frequent codes, 
especially codes representing unspecified diseases, and 
BoW turned into the best when coding tasks involved 
both frequent and infrequent codes. The frequency 
threshold at which the best feature extraction method 

Table 9  A clinical record for interpreting the code assignment by BERT-mini 

Case description ICD code

year male patient evaluated pain grade iii obliterating arteriopathy involvement limbs received analgesic treatment 
durogesic matrix months acceptable pain control vas rescue medication paracetamol maximum daily pain unit 
emergency visit days increased pain threshold agitation nervousness picture occurs result bedside doctor medica-
tion prescribed transdermal fentanyl generic requiring rescue paracetamol increasing vas pain relief anamnesis 
patient prescribed durogesic matrix patient reviewed weeks presents pain relief vas disappearing nervousness 
presented months visit patient continues durogesic matrix occasionally paracetamol

r52 (pain not elsewhere classified)

Table 10  10 key words and the target ICD codes

Key words Target codes

fever, disease, pain, antibiotic, drainage, crp, painful, leukocytosis, vas, pleural r52(pain, not elsewhere classified), r69(illness unspecified), r50.9(Fever, 
unspecified)
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changed varied across different datasets, probably 
because of factors like language and codeset. Besides, 
both the BERT variants and BoW possessed good inter-
pretability. The conclusions can be of help in building 
effective coding models.

Abbreviations
CBOW: Continuous bag-of-words; ICD: International Classification of Diseases; 
AUC​: Area under the ROC curve; ROC: Receiver operating characteristic; NLP: 
Natural language processing; LR: Logistic regression; SVM: Support vector 
machine; tf-idf: Term frequency-inverse document frequency; W2V: Word2vec; 
NSP: Next sentence prediction; MLM: Masked language modeling; CVD: Car-
diovascular diseases; TPR: True positive rate; FPR: False positive rate.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12911-​022-​01753-5.

Additional file 1. The numbers and occurrences of qualified codes with 
respect to the multiple code frequency thresholds. 

Additional file 2. The Micro-F1 of the BERT variants with different calibra-
tion thresholds.

Acknowledgements
We appreciate the clinical coders from Fuwai Hospital on coding the dataset 
used in this study.

Authors’ contributions
SZ and XD finished the model refinements, carried out deep analysis of 
the experiment results, and drafted and revised the initial manuscript. JY 
completed initial model building and result analysis. YH, MC, and YW were 
responsible for data acquisition and quality control. WZ designed the study 
and critically reviewed and revised the manuscript. All authors read and 
approved the final manuscript.

Funding
The data collection and language polishing parts of this study were sup-
ported by Chinese Academy of Medical Sciences with the number of 
2018-I2M-AI-006.

Availability of data and materials
CodiEsp dataset can be found at: https://​zenodo.​org/​record/​38373​05#.​YYm_​
rWBBw​2x. Fuwai dataset is not publicly available due to reasonable privacy 
and security concerns, and it is not easily redistributable to researchers other 
than those engaged in the research approved by the Ethics Committee at 
Fuwai Hospital.

Declarations

 Ethics approval and consent to participate
The Ethics Committee at Fuwai Hospital approved the current research and 
granted the permission of using the dataset in this study.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Information Center, Fuwai Hospital, Chinese Academy of Med-
ical Sciences and Peking Union Medical College, Beijing, China. 2 Department 
of Information Center, Fuwai Hospital, National Center for Cardiovascular 
Diseases, Chinese Academy of Medical Sciences and Peking Union Medical 
College, 167 Beilishi Road, Beijing 100037, China. 

Received: 1 May 2021   Accepted: 4 January 2022

References
	1.	 Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word repre-

sentations in vector space. arXiv e-prints, 2013;1301–3781.
	2.	 Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep 

bidirectional transformers for language understanding. arXiv e-prints, 
2018;1810–04805.

	3.	 Chen Y, Lu H, Li L. Automatic ICD-10 coding algorithm using an improved 
longest common subsequence based on semantic similarity. PLoS ONE. 
2017;12(3):0173410.

	4.	 de Lima LR, Laender AH, Ribeiro-Neto BA. A hierarchical approach to the 
automatic categorization of medical documents. In: International confer-
ence on information and knowledge management, 1998;132–139.

	5.	 Ferrao JC, Janela F, Oliveira MD, Martins HM. Using structured ehr data 
and svm to support icd-9-cm coding. In: IEEE international conference on 
healthcare informatics, pp. 511–516. IEEE, ;2013.

	6.	 Koopman B, Zuccon G, Nguyen A, Bergheim A, Grayson N. Automatic 
ICD-10 classification of cancers from free-text death certificates. Int J Med 
Inform. 2015;84(11):956–65.

	7.	 Kaur R, Ginige JA. Comparative analysis of algorithmic approaches for 
auto-coding with icd-10-am and achi. Stud Health Technol Inform. 
2018;252:73–9.

	8.	 Karimi S, Dai X, Hassanzadeh H, Nguyen A. Automatic diagnosis coding 
of radiology reports: a comparison of deep learning and conventional 
classification methods. In: BioNLP, 2017;328–332.

	9.	 Ning W, Yu M, Zhang R. A hierarchical method to automatically encode 
Chinese diagnoses through semantic similarity estimation. BMC Med 
Inform Decis Mak. 2016;16(1):1–12.

	10.	 Sonabend A, Cai W, Ahuja Y, Ananthakrishnan A, Xia Z, Yu S, Hong C. 
Automated ICD coding via unsupervised knowledge integration (unite). 
Int J Med Inform. 2020;139:104135.

	11.	 Subotin M, Davis AR. A method for modeling co-occurrence propensity 
of clinical codes with application to icd-10-pcs auto-coding. J Am Med 
Inform Assoc. 2016;23(5):866–71.

	12.	 Zhou L, Cheng C, Ou D, Huang H. Construction of a semi-automatic icd-
10 coding system. BMC Med Inform Decis Mak. 2020;20:1–12.

	13.	 Docherty M, Regnier SA, Capkun G, Balp M-M, Ye Q, Janssens N, Tietz A, 
Löffler J, Cai J, Pedrosa MC, Schattenberg JM. Development of a novel 
machine learning model to predict presence of nonalcoholic steatohepa-
titis. J Am Med Inform Assoc. 2021;00:1–7.

	14.	 Scheurwegs E, Luyckx K, Luyten L, Daelemans W, Van den Bulcke T. Data 
integration of structured and unstructured sources for assigning clinical 
codes to patient stays. J Am Med Inform Assoc. 2016;23(e1):11–9.

	15.	 Cao P, Chen Y, Liu K, Zhao J, Liu S, Chong W. Hypercore: Hyperbolic and 
co-graph representation for automatic icd coding. In: Annual meeting of 
the association for computational linguistics, 2020;3105–3114.

	16.	 Cao P, Yan C, Fu X, Chen Y, Liu K, Zhao J, Liu S, Chong W. Clinical-coder: 
Assigning interpretable icd-10 codes to chinese clinical notes. In: Annual 
meeting of the association for computational linguistics: system demon-
strations, 2020;294–301.

	17.	 Li F, Yu H. Icd coding from clinical text using multi-filter residual convo-
lutional neural network. In: AAAI conference on artificial intelligence, 
2020;34, 8180–8187.

	18.	 Mullenbach J, Wiegreffe S, Duke J, Sun J, Eisenstein J. Explainable predic-
tion of medical codes from clinical text. In: Annual conference of the 
North American chapter of the association for computational linguistics: 
human language technologies, 2018;1101–1111.

	19.	 Shi H, Xie P, Hu Z, Zhang M, Xing EP. Towards automated icd coding using 
deep learning. arXiv e-prints, 2017;1711–04075.

	20.	 Vu T, Nguyen DQ, Nguyen A. A label attention model for icd coding from 
clinical text. In: International joint conference on artificial intelligence, 
2020;3335–3341.

	21.	 Xie P, Xing E. A neural architecture for automated icd coding. In: 
Annual meeting of the association for computational linguistics, 
2018;1,1066–1076.

https://doi.org/10.1186/s12911-022-01753-5
https://doi.org/10.1186/s12911-022-01753-5
https://zenodo.org/record/3837305#.YYm_rWBBw2x
https://zenodo.org/record/3837305#.YYm_rWBBw2x


Page 15 of 15Shuai et al. BMC Medical Informatics and Decision Making           (2022) 22:11 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	22.	 Xie X, Xiong Y, Yu PS, Zhu Y. EHR coding with multi-scale feature attention 
and structured knowledge graph propagation. In: ACM international 
conference on information and knowledge management, 2019;649–658.

	23.	 Xu K, Lam M, Pang J, Gao X, Band C, Mathur P, Papay F, Khanna AK, 
Cywinski JB, Maheshwari K. Multimodal machine learning for automated 
icd coding. In: Machine learning for healthcare conference, pp. 197–215. 
PMLR;2019.

	24.	 Yu Y, Li M, Liu L, Fei Z, Wu F-X, Wang J. Automatic icd code assignment 
of chinese clinical notes based on multilayer attention birnn. J Biomed 
Inform. 2019;91:103114.

	25.	 Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, 
Mietus JE, Moody GB, Peng C -K, Stanley HE. Physiobank, physiotoolkit, 
and physionet: components of a new research resource for complex 
physiologic signals. Circulation 2000;101(23), 215–220.

	26.	 Johnson A, Pollard T, Mark R. MIMIC-III clinical database (version 1.4). 
PhysioNet;2016. https://​doi.​org/​10.​13026/​C2XW26.

	27.	 Johnson AE, Pollard TJ, Shen L, Li-Wei HL, Feng M, Ghassemi M, Moody 
B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care 
database. Sci data. 2016;3(1):1–9.

	28.	 Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. Biobert: a pre-trained 
biomedical language representation model for biomedical text mining. 
Bioinformatics. 2020;36(4):1234–40.

	29.	 Zhang Z, Han X, Liu Z, Jiang X, Sun M, Liu Q. Ernie: Enhanced language 
representation with informative entities. arXiv e-prints, 2019;1905–07129.

	30.	 Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer 
L, Stoyanov V. Roberta: A robustly optimized bert pretraining approach. 
arXiv e-prints, 2019;1907–11692.

	31.	 Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R. ALBERT: a lite 
BERT for self-supervised learning of language representations.

	32.	 Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV. Xlnet: Gen-
eralized autoregressive pretraining for language understanding. arXiv 
e-prints, 2020;1906–08237.

	33.	 Jiao X, Yin Y, Shang L, Jiang X, Chen X, Li L, Wang F, Liu Q. Tinybert: 
Distilling bert for natural language understanding. arXiv e-prints, 
2020;1909–10351.

	34.	 Xu Z. Roberta-wwm-ext fine-tuning for chinese text classification. arXiv 
e-prints, 2021;2103–00492.

	35.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, 
Polosukhin I. Attention is all you need. arXiv e-prints, 2017;1706–03762.

	36.	 Gao Z, Feng A, Song X, Wu X. Target-dependent sentiment classification 
with bert. IEEE Access. 2019;7:154290–9.

	37.	 Yang W, Zhang H, Lin J. Simple applications of bert for ad hoc document 
retrieval. arXiv e-prints, 2019;1903–10972.

	38.	 Han J, Pei J, Kamber M. Data mining: concepts and techniques. New York: 
Elsevier; 2011.

	39.	 Platt JC. Sequential minimal optimization: A fast algorithm for training 
support vector machines. Report, Advances in Kernel Methods—Support 
Vector Learning ;1998.

	40.	 Miranda-Escalada A, Gonzalez-Agirre A, Armengol-Estapé J, Krallinger M. 
Overview of automatic clinical coding: Annotations, guidelines, and solu-
tions for non-english clinical cases at codiesp track of clef ehealth 2020. 
In: CLEF (Working Notes);2020.

	41.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, 
Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine 
learning in Python. J Mach Learn Res. 2011;12:2825–30.

	42.	 Řehůřek R, Sojka P. Software framework for topic modelling with large 
corpora. In: LREC 2010 workshop on new challenges for NLP frameworks, 
2010;45–50.

	43.	 Turc I, Chang M-W, Lee K, Toutanova K. Well-read students learn better: 
On the importance of pre-training compact models. arXiv e-prints, 
2019;1908–08962.

	44.	 Zhao Z, Chen H, Zhang J, Zhao X, Liu T, Lu W, Chen X, Deng H, Ju Q, Du 
X. Uer: An open-source toolkit for pre-training models. arXiv e-prints, 
1909-05658;2019.

	45.	 Su J. Wobert: Word-based chinese bert model - zhuiyiai. Technical report 
;2020. https://​github.​com/​Zhuiy​iTech​nology/​WoBERT.

	46.	 Bhargava P, Drozd A, Rogers A. Generalization in nli: Ways (not) to go 
beyond simple heuristics. arXiv preprint, 01518;2021.

	47.	 Turc I, Chang M-W, Lee K, Toutanova K. Well-read students learn better: 
the impact of student initialization on knowledge distillation. arXiv 
preprint 13, 08962 ;2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.13026/C2XW26
https://github.com/ZhuiyiTechnology/WoBERT

	Comparison of different feature extraction methods for applicable automated ICD coding
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Feature extraction methods
	Bag-of-words
	Word2vec
	Large pretrained NLP models

	Classifiers
	Logistic regression
	Support vector machine

	Data
	Basic introduction
	Descriptive analysis

	Evaluation metrics
	F1
	AUC​

	Method design
	BoW
	W2V
	BERT variants


	Results
	Frequent codes only
	Considering both frequent and infrequent codes
	Results with multiple code frequency thresholds
	Interpretability

	Discussion
	Conclusion
	Acknowledgements
	References


