

Correction

Correction: Graillot, B.; et al. Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M. *Viruses* 2014, 6, 5135–5144

Benoît Graillot ^{1,2}, Marie Berling ^{1,3}, Christine Blachere-López ⁴, Myriam Siegwart ⁵, Samantha Besse ² and Miguel López-Ferber ^{1,*}

Received: 16 November 2015; Accepted: 26 November 2015; Published: 3 December 2015 Academic Editors: John Burand and Madoka Nakai

- ¹ LGEI, Ecole des Mines d'Alès, Institut Mines-Telecom et Université de Montpellier Sud de France. 6, Avenue de Clavières, 30319 Alès, France; benoit.graillot@mines-ales.fr (B.G.); mberling@crea.fr (M.B.)
- Natural Plant Protection, Arysta LifeScience Group, Avenue Léon Blum, 64000 Pau, France; samantha.besse@arysta.com
- ³ Present address: CREA, 215 Avenue de la Roche Parnale, ZI Motte Longue, 74130 Bonneville, France
- ⁴ INRA, 6, Avenue de Clavières, 30319 Alès, France; christine.blachere-lopez@mines-ales.fr
- ⁵ INRA, unité PSH, Agroparc, 84914 Avignon Cedex 9, France; myriam.siegwart@avignon.inra.fr
- * Correspondence: miguel.lopez-ferber@mines-ales.fr; Tel.: +33-466-782-704 (ext. 123); Fax: +33-466-782-701

Abstract: In our article "Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M." (*Viruses* 2014, 6, 5135–5144; doi:10.3390/v6125135) [1] we obtained resistance values of the codling moth, *Cydia pomonella*, RGV laboratory colony [2], when challenged with Cydia pomonella Granulovirus, Mexican Isolate (CpGV-M), that were lower than those previously published [2]. Careful analysis of both the RGV colony and the CpGV-M virus stock used led to the realization that a low level contamination of this virus stock with CpGV-R5 occurred. We have made new tests with a verified stock, and the results are now in agreement with those previously published.

Keywords: Cydia pomonella granulovirus; codling moth; biological control; resistance development

In our article "Progressive Adaptation of a CpGV Isolate to Codling Moth Populations Resistant to CpGV-M." (*Viruses* 2014, 6, 5135–5144; doi:10.3390/v6125135) [1] we obtained resistance values of the RGV laboratory colony, when challenged with Cydia pomonella Granulovirus, Mexican Isolate (CpGV-M), that were lower than those previously published [2].

Careful analysis of both the RGV colony and the CpGV-M virus stock used led to the realization that a low level contamination of this virus stock with CpGV-R5 occurred.

We have made new tests with a verified stock, and the results are now in agreement with those published by Berling *et al.* [2] and in the same range as those obtained with another insect population, CpRR1 [3].

Below you will find the corrected Table 2 for our recently published article [1], in which line 7 has changed.

Table 2. Pathogenicities, measured by lethal concentration (LC) $_{50}$ and LC $_{90}$ of four viral isolates on *Cydia pomonella* laboratory colonies susceptible and resistant to CpGV-M.

Host Colony	Virus Isolate	Total No. of Insects Tested	No. of OB/μL (95% CI)		Slope \pm SE	X ²	Resistance Factor (Fold) ^(a)	
			LC ₅₀	LC ₉₀			LC ₅₀	LC ₉₀
Susceptible	CpGV-M	786	13.10 (6.55–23.20)	223.10 (110.70–654.18)	1.04 ± 0.09	5.99	1.0	1.0
	NPP-R1 (b)	689	25.80 (14.48–39.93)	328.55 (196.93–702.51)	1.16 ± 0.13	1.28	2.0	1.5
	2016-r4 (b)	999	39.65 (6.40–133.91)	$805.85 (260.20-1.36 \times 10^3)$	0.98 ± 0.11	13.6	3.0	3.5
	2016-r8	445	48.37 (21.18–81.44)	280.52 (158.02-857.03)	1.678 ± 0.25	4.67	3.7	1.3
	2016-r16	790	6.76 (2.6–13.37)	59.63 (27.54–278.55)	1.36 ± 0.13	11.42	0.5	0.25
Resistant	CpGV-M	1619	$2.22 \times 10^6 \ (1.19 \times 10^6 - 5.67 \times 10^6)$	_	0.50 ± 0.07	10.6	1.7×10^{5}	
	NPP-R1 (b)	578	166.31 (91.21–278.27)	$1.28 \times 10^4 (5.95 \times 10^3 - 3.80 \times 10^4)$	0.70 ± 0.08	4.81	13	57
	2016-r4 (b)	1201	102.31 (63.20–146.91)	$1.57 \times 10^3 (1.01 \times 10^3 - 2.97 \times 10^3)$	1.10 ± 0.10	6.21	7.8	7
	2016-r8	456	41.27 (26.97–58.96)	319.24 (207.87–582.06)	1.44 ± 0.17	1.83	3.2	1.5
	2016-r16	545	22.43 (13.73–34.36)	410.67 (240.16–846.43)	1.02 ± 0.11	3.60	1.7	1.8

⁽a) The pathogenicity of CpGV-M on susceptible larvae is used as a reference level; (b) Results from [2].

As a consequence, the first paragraph in the Discussion section must also be changed:

"Codling moth resistant natural populations did not respond to control by CpGV-M. The resistance levels were variable, from a hundred-fold to more than a thousand-fold resistance as a function of the relative frequency of the resistant genotypes. The RGV resistant colony, developed from a natural population, exhibits a homogeneous resistance level against CpGV-M higher than 10^5 (for LC₅₀) compared to the level for the susceptible colony."

We apologize to the readers of *Viruses* for any inconvenience this may have caused.

References

- 1. Graillot, B.; Berling, M.; Blachere-López, C.; Siegwart, M.; Besse, S.; López-Ferber, M. Progressive adaptation of a CpGV isolate to codling moth populations resistant to CpGV-M. *Viruses* **2014**, *6*, 5135–5144. [CrossRef] [PubMed]
- Berling, M.; Blachere-Lopez, C.; Soubabere, O.; Lery, X.; Bonhomme, A.; Sauphanor, B.; Lopez-Ferber, M. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl. Environ. Microb. 2009, 75, 925–930. [CrossRef] [PubMed]
- 3. Asser-Kaiser, S.; Fritsch, E.; Undorf-Spahn, K.; Kienzle, J.; Eberle, K.E.; Gund, N.A.; Reineke, A.; Zebitz, C.P.W.; Heckel, D.G.; Huber, J.; *et al.* Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. *Science* **2007**, *317*, 1916–1918. [CrossRef] [PubMed]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).