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Abstract

Motivation: A complete repository of gene–gene interactions is key for understanding cellular

processes, human disease and drug response. These gene–gene interactions include both protein–

protein interactions and transcription factor interactions. The majority of known interactions are

found in the biomedical literature. Interaction databases, such as BioGRID and ChEA, annotate

these gene–gene interactions; however, curation becomes difficult as the literature grows expo-

nentially. DeepDive is a trained system for extracting information from a variety of sources, includ-

ing text. In this work, we used DeepDive to extract both protein–protein and transcription factor

interactions from over 100 000 full-text PLOS articles.

Methods: We built an extractor for gene–gene interactions that identified candidate gene–gene re-

lations within an input sentence. For each candidate relation, DeepDive computed a probability

that the relation was a correct interaction. We evaluated this system against the Database of

Interacting Proteins and against randomly curated extractions.

Results: Our system achieved 76% precision and 49% recall in extracting direct and indirect inter-

actions involving gene symbols co-occurring in a sentence. For randomly curated extractions, the

system achieved between 62% and 83% precision based on direct or indirect interactions, as well

as sentence-level and document-level precision. Overall, our system extracted 3356 unique gene

pairs using 724 features from over 100 000 full-text articles.

Availability and implementation: Application source code is publicly available at

https://github.com/edoughty/deepdive_genegene_app

Contact: russ.altman@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A complete repository of the gene–gene interactions is a key for

understanding cellular processes, human disease and drug re-

sponse. Furthermore, these interactions inform gene network ana-

lyses that typically rely on curated interaction databases. Two

types of interactions are critical for understanding how a protein

or gene affects biological or disease processes: physical protein–

protein interactions (PPIs) and transcription factor interactions

(TFIs). PPIs include interactions where two proteins physically

bind to one another to form a complex or otherwise modify the

function of one or both proteins. Alternatively, TFIs involve tran-

scription factors directly binding upstream of a gene to control

transcription of that gene. Modifications to PPIs and/or TFIs can

have a detrimental effect on their associated cellular processes. An

improved understanding of both of these interactions (henceforth

called gene–gene interactions for simplicity) may help uncover the
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genetic basis of many complex diseases and the impact of small

molecules (including drugs) on these networks.

Repositories such as BioGRID (Chatr-Aryamontri et al., 2014)

(http://thebiogrid.org/), the Human Protein Reference Database

(Keshava Prasad et al., 2009) (HPRD; http://www.hprd.org/) and

the Database of Interacting Proteins (Salwinski et al., 2004) (DIP;

http://dip.doe-mbi.ucla.edu) contain high-quality curated physical

PPIs. Additionally, the ChIP Enrichment Analysis database

(Lachmann et al., 2010) (ChEA; http://amp.pharm.mssm.edu/chea/

chipchip.php) provides both curated and high-throughput transcrip-

tion factor relationships. However, these and other resources require

manual curation of the biomedical literature to gather gene–gene

interactions. While biomedical curation is valuable, literature

repositories, such as the National Center for Biotechnology

Information’s PubMed database, continue to grow exponentially

(Larsen and von Ins, 2010). As of March 2015, PubMed contained

over 24 million citations and over 15 million abstracts. Complete

and constant curation of such a large and continuously growing

database is costly, both in terms of time and money. As the literature

continues growing, resources such as BioGRID, HPRD and DIP may

miss gene–gene interactions. Similarly, human error may introduce

false relationships depending on the definition of an interaction and

the associated source. Thus, although these resources contain easily

accessible high-quality relationships, they cannot be treated as the

sole sources of all known gene–gene interactions.

The growing burden on manual curation has spurred the develop-

ment of text mining tools for biological entities and relations (includ-

ing protein interactions). The simplest approach for text mining

relations is entity co-occurrence where a relationship between two

entities is proposed based on sentence- or abstract-level co-occurrence

statistics. While useful for well-established relationships, these

approaches tend to introduce a large number of false positives if no fil-

tering technique is applied. Furthermore, they cannot detect low fre-

quency relationships. The STRING database (Franceschini et al.,

2013) uses protein–protein co-occurrence as one type of text mining

evidence for protein interactions; however, this type of evidence tends

to have a lower weight compared with other types of PPI evidence in

STRING. PPI Finder extracts protein interactions using co-occurrence

at the abstract level along with relevant interaction words and PPI

database and Gene Ontology term matches (He et al., 2009). Other

methods identify articles or sentences that contain PPIs but do not

focus on the precise interactions (Chen et al., 2014; Hoffmann and

Valencia, 2004; Kim et al., 2012). Still other systems use rules to ex-

tract interactions; PPLook (Zhang et al., 2010) and PPInterFinder

(Raja et al., 2013) use specific interaction patterns to extract PPIs

from sentences. These high precision patterns include ‘A interact with

B’ and ‘Binding of A and B’. While rule-based approaches can achieve

high precision, their rules can reduce recall. Unsupervised and semi-

supervised approaches allow for scalability and look for novel pat-

terns in a new document corpus. To address these different types of

systems, Quan et al. (2014) developed both an unsupervised and

semi-supervised system for biological entity extraction (including

PPIs) that uses interaction pattern clustering, dependency parsing and

phrase structure to extract interactions from text. Despite these and

other contributions (Czarnecki et al., 2012; Papanikolaou et al.,

2015; Tikk et al., 2010), there remains a need for a high performing

semi-supervised scalable text-mining tool to create a more complete

gene–gene interaction database.

Text mining systems are designed to extract information from

text in a domain-oriented manner. DeepDive is a trained system for

extracting information from a variety of sources, including text

(Niu et al., 2012a, b). The name DeepDive refers to the system

framework that includes application code and an inference engine.

While DeepDive provides the inference engine, users write the appli-

cation code for their specific task. This application code includes en-

tity or relation definitions, feature generation and training example

labeling. Users also write the inference rules used by DeepDive dur-

ing the inference. These probabilistic rules include features and rules

describing relationships between entities or relations.

Specifically for text extraction, the pipeline for DeepDive in-

cludes (i) text preprocessing, (ii) candidate entity or relation con-

struction, (iii) inference and (iv) system tuning. Text preprocessing

includes parsing the full text for sentences, tokens or words, parts of

speech and dependency graph relationships. Extractors in the appli-

cation take these sentences as input and construct candidate entities

or relations that include features and labels for training examples.

The inference engine in DeepDive uses these candidate mentions and

relations, along with inference rules, to compute probabilistic pre-

dictions for each candidate. This system relies on human experts to

tune specific entity and relation extractors by developing useful fea-

tures and training examples for their specific use case. DeepDive has

been successfully applied to two scientific domains (Peters et al.,

2014; Zhang et al., 2013), but biomedical text and entities provide a

unique challenge due to the ambiguity of many entity names and

shared context of many co-occurring genes.

DeepDive’s underlying probabilistic graphical model allows

users to automatically label training data to learn important fea-

tures. This automatic labeling is done using distant supervision

(Mintz et al., 2009). This labeling is called distant supervision be-

cause the user automatically labels a set of training data using

known entities or relationships from an independent data source. In

this way, the user can apply distant supervision to quickly scale the

training data without need for manual labeling. Recently, text min-

ing methods have begun using distant supervision for specific biolo-

gical domains (Poon et al., 2015), but distant supervision has not

been used for large-scale labeling of gene–gene interactions from ei-

ther biomedical or biological context.

Although current PPI text mining methods have begun leveraging

expert opinions to extract information from text (Tastan et al., 2015),

these methods have not been developed for a large scale extraction

task. With this in mind, we aimed to extract gene and protein inter-

actions from text using DeepDive and expert tuning. Additionally, we

applied the concept of distant supervision to biomedical text mining

without limiting the application to a specific process or pathway.

Finally, we applied this system to the entirety of three PLOS journals

to extract all known human gene–gene interactions.

2 Methods

An overview of the gene–gene extraction system is depicted in Figure

1 and is described below. First, we parsed a corpus of documents for

sentences, words (or tokens) and dependency graphs. Next, the gene–

gene extractor constructed candidate relations from the parsed sen-

tences. These candidate relations consisted of two co-occurring genes

in the sentence and the set of features that describe their relationship

based on the text. After we marked a set of these relations as training

examples, DeepDive calculated a probability that the candidate rela-

tion was a true gene–gene interaction in the sentence. Finally, we per-

formed a tuning process to increase system performance.

2.1 Literature corpus
We obtained full-text PDF documents from PLOS One, PLOS

Biology and PLOS Genetics (Zhang and Re, 2015). We chose the
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journals due to their relevance to biology and genetics research from

the PLOS publisher. These corpora contained 102 764, 3565 and

4416 documents, respectively. We converted each PDF document to

text using the Tesseract OCR engine (Smith, 2007), and we parsed

the text of each document using Stanford CoreNLP 1.3.4 (Manning

et al., 2014). Each document was split into individual sentences and

each sentence tokenized. Tokens were labeled with parts of speech

tags, named entity recognition tags and dependency graph relation-

ships to other tokens in the sentence.

2.2 Gene–gene extractor
The gene–gene extractor takes a document or sentence as input and

constructs a set of candidate relations. Here, a candidate relation

has two components: two co-occurring genes in the sentence and the

set of features that describe that gene pair in the sentence. We will

refer to both proteins and genes as genes unless discussing a specific

type of interaction (e.g. a physical PPI).

2.2.1 Extracting co-occurring gene pairs

We define a co-occurring gene pair as two genes co-occurring within

a sentence in a given document. We restrict sentences to contain no

more than 50 tokens. The extractor annotated tokens in the sentence

as genes if they occurred in a dictionary of human gene symbols con-

taining both HUGO Gene Nomenclature Committee (HGNC) offi-

cial symbols and alternate symbols from the NCBI Gene database.

We require genes to match the dictionary exactly and do not accept

case-insensitive matches. Finally, we only extract gene symbols as a

gene mention and disregard full name mentions. From the set of

annotated gene tokens in a sentence, we constructed all pairs of dis-

tinct gene symbols.

2.2.2 Extracting features

Each candidate relation included a set of features that provided text-

ual information about the co-occurring gene pair from the associ-

ated sentence. Feature categories and examples are depicted in

Figure 2. These features included one and two word windows

around each gene entity in the sentence, prepositional interaction

patterns and a variety of dependency graph features. Instead of

hard-coding specific features before running the extractor, we de-

veloped high-level feature patterns that became specific binary fea-

tures based on the input sentences. For example, instead of

specifically creating a feature for the phrase ‘interacts with’ between

the two genes in the sentence, we created a high-level feature pattern

for any word sequence occurring between the two genes in the sen-

tence. In this way, we developed a binary feature for ‘interacts with’

between genes and binary features for any phrase occurring between

the genes in the training data.

2.3 Distant supervision
We used distant supervision (Mintz et al., 2009) to apply labels to

gene–gene candidate relations. Distant supervision allows us to

Fig. 1. Gene–gene extraction pipeline. (A) We performed text pre-processing to parse documents into sentences and tokens and to construct dependency graphs

between tokens in the sentences. This parsed data were stored in a sentences database. (B) The gene–gene extractor constructed candidate relations from the

sentences and deposited them into a database. These relations composed of a pair of genes and features from the sentence. (C) DeepDive calculated probabilities

that the candidate relation was an interaction using inference rules based on the features. (D) We performed system tuning to identify and correct system errors.

Furthermore, we performed a snowball technique where we input correct relations as new training examples in the next system iteration

Fig. 2. High-level feature patterns. Boxes represent relevant patterns in the sen-

tence for the feature. Light gray boxes indicate features for GeneA and black

boxes indicate features for GeneB. Shared boxes are represented with a medium

gray box. The feature applies to both genes if only a light gray box is present
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apply a label (True, False or Unknown) to a candidate relation if the

interaction status of the gene pair is known from an independent

source. Without distant supervision, DeepDive does not know that

the candidate relation is a true interaction. However, if we know

that two genes interact from an independent source, we can label all

sentences appropriately and use these labeled candidate relations as

training examples.

We created an is_correct variable for each gene–gene candi-

date relations and labeled is_correct as True (known PPI or tran-

scription factor relationship), False (known negative interaction or

randomly selected candidate relation) or Unknown. We labeled can-

didate relations as True if the relations occurred in the BioGRID

database with Co-crystal Structure, Reconstituted Complex or Co-

purification evidence or if the relations occurred in the ChEA data-

base. To not overfit the features toward a small set of high frequency

True interactions, we created a list of high frequency known gene–

gene interactions during tuning (see Section 2.5) and labeled these

candidate relations as Unknown. In contrast, we defined a False can-

didate relation as a gene–gene candidate relation that was either

annotated in the Negatome 2.0 database (Blohm et al., 2014) or was

randomly selected with no interaction evidence. For the Negatome

database, we used the combined-stringent data set (containing both

the manual- and PDB-stringent data sets), further restricted to

human interactions. For the random False candidate relations, we

selected eight percent of candidate relations that were not annotated

in BioGRID or ChEA and did not contain potential interaction evi-

dence as negative examples.

Overall, we used this strategy to mark 42 736 candidate rela-

tions as True, 65 606 relations as False and 1 617 806 relations as

Unknown. Because the distant supervision can incorrectly annotate

a sentence and because we wanted to verify that a labeled sentence

contained an interaction, we marked each True and False candi-

date relation also as Unknown. In this way, DeepDive could assign

a candidate relation a probability if that relation was used for

training.

To increase the potential number of sentences denoting negative

interactions (e.g. Gene A does not interact with Gene B), we

included an additional corpus of 6585 abstracts from PubMed that

contained co-occurring genes from the Negatome database. These

annotations were only used for training the system and were not

used as evaluation.

2.4 Inference with DeepDive
DeepDive is a system for probabilistic inference that utilizes factor

graphs to compute probabilities for random variables. For our

work, we created a random variable is_correct for each candi-

date relation. We input all candidate relations with is_correct

labels into DeepDive, with 50% training examples held-out for

learning feature weights as well as internal testing and calibration.

Because information regarding a gene–gene interaction may be

spread out across multiple sentences in a document, we used condi-

tional random fields to link candidate relations to the previous

mention of the gene pair in the document. For high-throughput

Gibbs sampling in DeepDive, we used 1000 learning iterations

with one sample for each learning iteration, 1000 inference iter-

ations, a diminish learning rate of 0.95 and a learning rate of

0.001. The output included a probability for each candidate rela-

tion’s is_correct value being True for a given sentence. On the

basis of previous work with DeepDive (Niu et al., 2012a, b; Zhang

et al., 2013), we applied a probability cut-off of 0.90 for calling an

extraction as correct; all other candidate relations were marked as

incorrect.

2.5 System calibration
We manually tuned the gene–gene extractor by iteratively updating

the features and training examples (Fig. 1D). For each iteration, we

conducted an error analysis; we calculated precision and an esti-

mated recall using 100 random candidate relations with a probabil-

ity greater than 90% and 100 random candidate relations with a

probability less than 90%. At the end of each iteration, we updated

the extractor and overall system to address missing feature patterns

and distant supervision and then reran the extractor and DeepDive

to repeat the process. Prior to system development, we decided to

freeze the system once the system achieved an estimated precision

and/or recall of 90% for a given iteration.

With each iteration of the error analysis, we used the snowball

technique to increase positive training examples in the following it-

eration. We defined the snowball set as the set of gene–gene pairs

that were labeled as Unknown candidate relations in the previous it-

eration but were a true interaction from the text. This set was then

added as an additional source of True training examples, along with

the BioGRID and ChEA sets. In this way, we learned new inform-

ative features based on the sentences that had not been seen by the

system during previous iterations.

2.6 Evaluation
We evaluated our system against a gold standard of curated PPIs

and using random curation of candidate relations. We conducted a

document-level evaluation where we selected the gene–gene pair

with the highest probability from all sentences containing that pair

across the document as the representative interaction. For physical

PPIs, we compared against the DIP. We restricted this curation set

to be human only, no homodimers and PLOS Biology articles. This

gold standard contained 226 PPI-document pairs from 71 unique

documents. We also curated a random sample of 264 candidate rela-

tions with probability �90% (Curation_Positive) and 299 candidate

relations with probability less than 90% (Curation_Negative) from

a set of 10 000 random PLOS documents. For the DIP gold stand-

ard, we calculated both precision and recall. For the

Curation_Positive, we calculated sentence-level and document-level

precision. Sentence-level precision only counted correct candidate

relations in a given sentence as true positives. However, sentences

do not exist in isolation in the document and thus we also calculated

document-level precision where a candidate relation was counted as

a true positive if the genes interacted in the document. To not train

and tune the system on the documents in the gold standard and cur-

ation sets, we removed the 71 PLOS documents from DIP and the

10 000 random documents for the curation until after tuning was

complete. We selected the 10 000 documents to provide a large cor-

pus from which to obtain relevant interactions for curation.

2.7 Interaction trends
To understand how interaction knowledge changes over time, we

calculated interaction trends for each gene that occurred in an inter-

action. We defined an interaction document as a document that con-

tained at least one interaction extracted by DeepDive. For each

gene, we calculated the number of documents from 2004 to 2014

that contained interactions involving that gene. We normalized the

number of interaction documents for each gene by the number of

total interaction documents per year.
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3 Results

After the tuning process, we evaluated the extracted gene–gene inter-

actions against the DIP database and against curation of random

extractions.

3.1 DeepDive extractions and features
Given the candidate relations from the gene–gene extractor,

DeepDive computed a probability that each relation was a true

interaction. Out of 1 671 944 total relations not used for training,

there were 12 390 gene–gene relations with a probability �0.9 and

47 881 relations with a probability �0.8. Of these 12 390 gene–gene

relations, there were 4182 gene symbol pairs, 5355 NCBI Gene

database GeneID pairs and 3356 GeneID pairs with multiple map-

pings from gene symbols to GeneIDs removed. The full histogram of

probabilities for all candidate relations is provided in Figure 3.

Additional calibration plots for the held-out test set from DeepDive

are depicted in Supplementary Figure S1. Of the 3356 unique

GeneID pairs, 2271 (67.7%) were not annotated in BioGRID, 3092

(92.1%) were not annotated in DIP and 2222 (66.2%) were not

annotated by either DIP or BioGRID (database overlap for DIP,

BioGRID and Negatome available in Supplementary Data).

Additionally, three GeneID pairs were annotated by the Negatome

database but were unannotated by either DIP or BioGRID. Despite

annotation by the Negtome database, all three pairs were correct

interactions from their respective sentences and documents.

In total, our system extracted 3 422 176 features, with 724 fea-

tures with a weight greater than 0.1. Table 1 lists the top 10 positive

features constructed from feature patterns for gene–gene relation-

ships (top 724 features are provided in Supplementary Data).

A positive weighted feature provides evidence that the factor func-

tion with that feature in DeepDive’s factor graphs labels true

interactions, while a negative feature provides evidence for negative

interactions. Unsurprisingly, the top features describe sentences with

the verbs ‘bind’, ‘interact’ and ‘regulate’ between the genes. While

the top 724 features contain specific dependency paths between

genes in the sentence, a collapsed dependency path of gene—verb—

gene had the greatest signal of the dependency path features.

Overall, window-based features comprised 67% (487) of the top

724 features. Supplementary Table S1 lists the frequencies for fea-

ture patterns present in the top features (feature descriptions pro-

vided in Supplementary Data).

3.2 Evaluation against DIP
We compared 226 PPIs curated from 71 PLOS documents by DIP to

candidate relations from our system with �90% probability. Our

results are summarized in Table 2. Our system obtained 48% preci-

sion and 11% recall (DIP evaluation set). However, 38% of the false

positives were true interactions that were unannotated by DIP. With

these false positives as true positives, our system obtained 68% pre-

cision with a slight boost of recall to 14% (DIP_Rescue). However,

when we compare against interactions where both the standard gene

symbols (official HGNC or accepted alternate symbol) and the inter-

action are present in the same sentence, we obtain 46% recall

(DIP_Sentence). Finally, we evaluated against DIP with indirect

interactions in the false positives as true positives (DIP_Indirect).

Our system obtained 76% precision and 49% recall. The inter-

actions that were outside the gene–gene interaction definition

included non-standard gene symbols (54%), full names only (17%)

and non-human symbols (16%).

3.3 Evaluation against curation
In addition to DIP, we evaluated 264 random candidate relations

with �90% probability (Curation_Positive) and 299 random candi-

date relations with probability less than 90% (Curation_Negative)

against manual curation. Results are summarized in Table 3. For the

Curation_Positive, we achieved a precision of 62% when evaluated

on direct interactions (Curation_Positive_Stringent) and a precision

of 79% on direct and indirect interactions (Curation_Positive_All)

for each individual sentence. For document-level interactions, the

Fig. 3. Histogram of probabilities assigned to gene–gene candidate relations

Table 1. Top 10 positive gene–gene features from DeepDive

Feature Weight

Single_Verb_Between_Genes_[bind] 1.25

Single_Verb_Between_Genes_[interact] 1.07

Verb_On_Dependency_Path_[bind] 0.91

Verb_On_Dependency_Path_[interact] 0.74

Single_Verb_Between_Genes_[regulate] 0.67

Verb_Between_Genes_[bind] 0.63

Verb_On_Dependency_Path_[regulate] 0.58

Window_Left_Gene1_Phrase_[GENE and] 0.57

Window_Right_Gene2_1gram_[protein] 0.57

Window_Left_Gene1_Phrase_[interaction between] 0.51

Table 2. Evaluation against the DIP curated gold standard

Precision Recall F measure

DIP 0.48 0.11 0.17

DIP_Rescue 0.68 0.14 0.23

DIP_Sentence 0.68 0.46 0.54

DIP_Indirect 0.76 0.49 0.59

DIP contained all unique interactions, DIP_Rescue included true positives

not curated by DIP, DIP_Sentence included DIP_Rescue but only included

standard gene symbols co-occurring in a sentence as positives in DIP and

DIP_Indirect included DIP_Sentence and indirect interactions as true

positives.

Table 3. Sentence- and document-level precision for Curation_

Positive set of gene–gene candidate relations

Sentence-level

precision

Document-level

precision

Curation_Positive_Stringent 0.62 0.71

Curation_Positive_All 0.79 0.83
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system achieved a precision of 71% on Curation_Positive_Stringent

and 83% on Curation_Positive_All. For the Curation_Negative,

there were only four false negatives out of 299 negatives (1.3%).

One of these false negatives was a TFI, while another was an inter-

action found in a reference title with no other mention in the

document.

The false positives included two categories of errors in the pipe-

line. The first are non-gene entities (NG), where a gene symbol is

the same as an acronym in text. These ambiguous gene symbols

included domains (e.g. PTB gene vs. PTB domain) and other gen-

eral acronyms (e.g. APC gene vs. APC acronym). APC, in particu-

lar, is a difficult case due to its widespread use as an acronym for

studies, organizations and processes, along with the APC gene

symbol being the widely used official symbol for the adenomatous

polyposis coli gene. The second category of pipeline errors is bad

parse errors. These errors included incorrect sentence splitting and

incorrect tokenization from the parser. In the case of sentence

splitting, instead of correctly evaluating two genes co-occurring in

the same sentence, two or more sentences were combined as a sin-

gle sentence and the two genes in the candidate relation occurred

across these sentences.

3.4 Interaction trends
By extracting all interactions from three PLOS journals, we were

able to detect interaction trends at the journal level and at the gene

level. On average in documents that contained at least one inter-

action, PLOS Biology had 4.2 interactions per document. PLOS

One documents contained 3.2 interactions per interaction document

and PLOS Genetics contained 2.7 interactions per interaction docu-

ment. We also evaluated trends of gene-based publications from

2004 to 2014. Figure 4 depicts the number of documents per year

for the top 10 genes in 2013.

4 Discussion

In this work, we developed a gene–gene relation extractor for the

system DeepDive and applied it to the entirety of three PLOS jour-

nals. Our system performance is on par, if not better, than current

systems that have been applied only to abstracts. We extracted direct

physical PPIs, indirect interactions and TFIs to create a complete

view of known protein and gene interactions. By extracting both

PPIs and TFIs, our work enables not only the construction of protein

interaction networks but also how these networks impact or are im-

pacted by gene regulation.

While different groups have focused on extracting physical PPIs,

other types of gene–gene relationships, including transcription fac-

tors, are key for understanding biological processes, disease etiology

and drug response (Lee and Young, 2013). To build a complete

knowledgebase of gene and protein relationships, we extracted both

physical PPIs as well as transcription factors with their respective

target genes. Apart from the impact these different types of inter-

actions have on one another, oftentimes a single isolated sentence

will be too vague to deduce the type of interaction. For example, the

verb ‘associate’ can be used for both PPIs and TFIs and does not pro-

vide enough information to specify the interaction type. Evaluating

a combined interaction system presents a challenge because there is

no combined test set for both types of gene–gene interactions. To

properly evaluate, we checked extractions in DIP-curated documents

for missed transcription factor relationships and counted them as

true positives. Additionally, we performed a random curation to as-

sess performance for both types of interactions.

By using the entirety of PLOS Biology, PLOS Genetics and

PLOS One, we showed how scientific knowledge about a protein’s

interactions change over the course of a decade. As the PLOS family

of journals is just over a decade old, the majority of documents con-

taining interactions occurred after 2008. With a larger corpus across

older journals, we will be able to show how genes grow or wane in

popularity due to recent research. In the future, general relation ex-

traction on full-text journals spanning a decade or more will allow

for more nuanced analyses about how our understanding on these

relations changes over time.

We constructed individual binary features from sentences en-

countered in the training data that matched high-level feature pat-

terns. As this strategy created millions of individual features, we

were concerned with overfitting the feature weights to the training

data. However, the tuning process highlighted sources of overfitting

that were subsequently removed from the system on the next iter-

ation. These sources of overfitting included highly frequent training

examples that were removed from the training data. After tuning,

93.9% of the features had a weight less than 0.001 (3 212 458 out of

3 422 176) and did not impact the final probability of a given candi-

date relation. The remaining features were not only learning pat-

terns in a noisy training set but were also learning patterns for gene

co-occurrence due to shared biological processes that are not strictly

interactions.

DeepDive allows users to automatically annotate candidate enti-

ties or relations with distantly supervised labels to learn underlying

patterns among the input features. By distantly supervising the train-

ing labels, we do not curate each sentence to confirm that the two

genes are interacting based on the sentence. Rather, we label over

100 000 candidate gene–gene relations as training examples even

though most will be co-occurrence. Using these uncertain training

examples, we were able to detect true interaction patterns at the sen-

tence level.

Instead of providing a binary output or label for each candidate,

DeepDive provides a probability that the candidate entity or relation

has some attribute (e.g. is_correct). Thus, we can select a prob-

ability cut-off to call a given output a specific label. Additionally,

DeepDive is specifically calibrated to have accuracy correlated with

probability. The system calculates accuracy using the distant super-

vision training labels, and thus this calibration represents

DeepDive’s performance based on the provided labels. During tun-

ing, the user may discover that the distant supervision labels are

missing an entire class of relations and thus incorrectly labeling can-

didates. For example, if one only uses random English word pairs as

a False relation, then the system may incorrectly say all co-occurring

Fig 4. Number of publications per year for genes appearing in high probabil-

ity interactions. Top genes are ordered by publication count in 2013
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genes are true relations due to random gene–gene pairs existing with

an easily recognizable genetic context that differs from random

English words.

DeepDive requires several iterations of tuning to remove noisy

distant supervision gene pairs and add or remove feature patterns.

At the end of each iteration of DeepDive, we conducted an error

analysis to identify sources of error in the system. We completed 24

in-depth error analyses before freezing the system for evaluation.

The false positives and false negatives from these error analyses

were caused by unbalanced feature weights and training examples,

lack of training examples for a given feature (low weighted feature)

and missing features. Important to note, we did not aim to fix spe-

cific candidate relations but rather, to identify either missing or in-

correctly weighted feature patterns.

DeepDive’s internal calibration and the user calibration are two

distinct calibration steps with respect to machine learning. For the

system calibration (learning features to predict labels), DeepDive

holds out a test set from the training labels to evaluate DeepDive’s

predictions based on the input data. On the other hand, user calibra-

tion refers to the process of adding and/or refining features or train-

ing labels manually. DeepDive’s internal calibration plots are shown

in Supplementary Figure S1. Plot (a) shows accuracy for the held-

out test set at different probability cut-offs. This calibration depicts

DeepDive’s performance solely based on the provided training

labels. On the basis of prior work with constructing features, we

only required 24 complete iterations of user calibration (calculating

an estimate of precision and recall on sample sentences) before we

froze the system. To decide when to stop this user calibration, we

decided on an estimated precision and/or recall of 90% for a given

iteration.

Because our system ultimately extracts interactions from an in-

put corpus, we cannot directly compare on previously constructed

interaction data sets for text mining. This comparison would require

new input documents, which may alter results. We evaluated our

system against the DIP interaction database; however, this evalu-

ation has its limitations. One limitation is that the 71 documents

were solely from PLOS Biology, but the system was largely trained

on PLOS One documents. Additionally, the DIP set contained PPIs

curated from documents with experimental evidence that may not

be well represented in our overall PLOS corpus.

There have been multiple papers and reviews focusing on protein

interaction method comparison; however, we chose not to directly

compare to other methods for multiple reasons. First, many of these

methods were designed for abstracts only and may not perform as

well on full-text articles due to different levels of detail in the full

text compared with the abstract. Second, these methods were tested

on many different corpora and small-scale gold standard data sets.

In one comparison performed by Tikk et al. (2010), performance

metrics vary depending on the gold standard used. In addition, some

methods, such as PIE (Kim et al., 2012), aim to prioritize protein

interaction abstracts or articles.

Our system has multiple components including text preprocess-

ing, gene extraction, feature construction and distant supervision.

A false positive or negative can arise from any of these compo-

nents; however, we were interested in the number of false positives

from the text preprocessing and gene extraction stages. An error in

either of these two categories represents an impossible interaction

in our system: one or both gene symbols actually being an acronym

for a non-gene entity (NG) or two genes not occurring in the same

sentence (NP). As we wanted the highest recall for gene symbols

and as these symbols are largely known and stored in databases

such as NCBI Gene database and UniProt, we decided to find

initial genes with a dictionary-based approach and have the system

learn that a non-gene entity cannot be in a gene interaction.

However, we discovered numerous cases where authors only

referred to genes by their full names or only used non-human

and non-standard gene names. To address these errors, we could

combine a dictionary-based approach along with a named entity

recognition tool such as Banner (Leaman and Gonzalez, 2008)

or GenNorm (Wei and Kao, 2011) (or even DeepDive) to catch

these non-standard gene name variants. Sentence parsing errors

occurred when two or more sentences were concatenated together,

with two genes extracted as a single candidate relation even if the

genes were present in separate sentences. These errors were intro-

duced at the text preprocessing stage. One potential solution

would be to train the Stanford parser on biomedical text to learn

the different forms of sentences, tokens and parts of speech when

complex gene names, symbols, acronyms and unknown words are

frequently used. Alternatively, we can apply the GENIA Tagger

(Tsuruoka et al., 2005) to tokenize and label words with parts of

speech; however, this would not address incorrect sentence

splitting.

To investigate errors occurring at the extractor stage, we can dis-

regard these NG errors and improve precision roughly five points

for Curation_Positive_Stringent and Curation_Positive_All to 66%

and 84%, respectively. Disregarding the NP errors, precision for

Curation_Positive_Stringent and Curation_Positive_All increased

two points to 64% and 81%, respectively. Removing both the NG

and NP errors and focusing only on extractor errors, the system

achieved 68% and 86% precision for Curation_Positive_Stringent

and Curation_Positive_All, respectively.

Text mining methods and applications require access to either

abstracts or full-text articles for data extraction. While researchers

have access to the majority of biomedical abstracts through NCBI’s

PubMed database, access to full-text articles remains limited. As of

July 2015, there are over 3.5 million articles from nearly 5000 jour-

nals in PubMed Central (PMC) but only 646 681 available through

PMC’s Open Access Subset. This set includes many journals that are

not relevant for mining gene–gene interactions but may still mention

co-occurring genes. To reduce noise from journal selection, we

focused on relevant journals from a single publisher. It is important

to note that these three journals comprise almost 17% of PMC’s

Open Access journal articles. Future system tuning on additional

open access journals will provide more interactions for use in the re-

search community.

DeepDive contains internal parallelization and optimization to

efficiently handle large document corpora. We set DeepDive’s paral-

lelization parameter to run 48 processes with a maximum of 64 GB

of memory. Not including document parsing with Stanford

CoreNLP, runtime was less than 2 h to load documents into the

database, construct candidate mentions with features and run the in-

ference engine.

In this work, we show the utility of DeepDive and distant super-

vision for extracting gene–gene interactions from a large corpus of

documents. While we tuned the system for three PLOS journals with

over 100 000 full-text documents, adding additional documents or

abstracts would require several rounds of system tuning. Our work

is the first application of DeepDive to the biomedical domain.

Specifically, we extracted 12 390 gene–gene relations linked to sen-

tences from over 100 000 full-text documents from three PLOS jour-

nals. These relations are available in Supplementary Data. This

work enables an improved and more precise understanding of gene

and protein interactions within the cell to further both experimental

and computational research.
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