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The hypothalamus is most often associated with innate behaviors such as is hunger,

thirst and sex. While the expression of these behaviors important for survival of the

individual or the species is nested within the hypothalamus, the desire (i.e., motivation)

for them is centered within the mesolimbic reward circuitry. In this review, we will

use female sexual behavior as a model to examine the interaction of these circuits.

We will examine the evidence for a hypothalamic circuit that regulates consummatory

aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity

that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH),

activating β-endorphin projections to the medial preoptic nucleus (MPN), which in turn

modulate ventromedial hypothalamic nucleus (VMH) activity—the common output from

the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters

and receptors but induces dendritic spines that are for estrogenic induction of lordosis

behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the

mating experience produces long term changes in dopamine signaling and structure.

Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine

signaling through the induction of a long lasting early immediate gene. While estrogen

alone increases spines in the ARH, sexual experience increases dendritic spine density in

the nucleus accumbens. These two circuits appear to converge onto the medial preoptic

area where there is a reciprocal influence of motivational circuits on consummatory

behavior and vice versa. While it has not been formally demonstrated in the human,

such circuitry is generally highly conserved and thus, understanding the anatomy,

neurochemistry and physiology can provide useful insight into the motivation for sexual

behavior and other innate behaviors in humans.

Keywords: estrogen, progesterone, MOR, β-endorphin, dopamine, D1 receptors, dendritic spines, membrane

estrogen receptor

INTRODUCTION

Mating, a social behavior, is directly influenced by hormonal state, which transmits information
about the internal state of the animal to steroid responsive circuits in the nucleus
accumbens and hypothalamus. These circuits integrate the hormonal state of the animal with
environmental/sensory cues to produce an appropriate response (Micevych and Ulibarri, 1992).
Female sexual behavior is divided into three components: attractivity, proceptivity, and receptivity
(Beach, 1976). The best studied of these are proceptivity and receptivity. The behavioral
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Micevych and Meisel Physiology of Motivation for Sex

FIGURE 1 | The estradiol induction of sexual receptivity in the female rat is indicated by lordosis behavior. The CNS regulation of this global response to hormonal and

sensory input is regulated by a diffuse circuit that extends from the limbic system to the spinal cord. Within this lordosis regulating circuit, estradiol acts rapidly through

estradiol membrane signaling (EMS) to release neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH), which activates β-endorphin (β-END)

projection neurons that extend to the medial preoptic nucleus (MPN). The MPN is an important integrative node receiving accessory olfactory and limbic input. β-END

activates MOR, producing a transient inhibition of the MPN which is relieved by progesterone in the cycling female. The MPN MOR neurons in turn project to the

ventromedial nucleus of the hypothalamus (VMH), the final common output of the hypothalamus. The EMS and resulting transient inhibition is necessary for the full

expression of lordosis behavior in the rat. In addition to its VMH efferents, the MPN sends a GABAergic inhibitory projection to the VTA. Estrogen inhibition of the MPN

contributes to dopaminergic activation of the nucleus accumbens, which both regulates sexual motivation and mediates the rewarding consequences of sexual

behavior. Estradiol’s actions on the combined circuits serve to initiate sexual motivation in the male’s presence, modulate the expression of sexual behavior to tactile

stimulation provided by the mounting male, and to feed forward, increasing the efficiency of future copulatory interactions in a way that presumably increases

reproductive success.

manifestations of the motivation to copulate by a female
are expressed as the female’s willingness to accept the male’s
mount attempts and proceptive behaviors that include hopping,
darting, and ear “wiggling” enticing the male to copulate. In
the female rodent, developing ovarian follicles secrete estradiol
into the peripheral circulation. This estradiol acts in mesolimbic
circuits to increase motivation and in the hypothalamus to
increase receptivity. Estradiol induces progesterone receptors
(PR) within the hypothalamus (Parsons et al., 1979, 1980, 1981;
McGinnis et al., 1981; Shughrue et al., 1997a; Alves et al.,
2000) and stimulates synthesis of progesterone in astrocytes.
This neuroprogesterone induces proceptive behaviors (Micevych
and Sinchak, 2013), and the bolus of progesterone from the
corpus luteum of the ovary acts on hypothalamic circuits to
facilitate receptive behaviors since estradiol levels in the intact
rat are insufficient to induce lordosis by themselves (Beach,
1948; Young, 1961; Powers, 1970; Sodersten and Eneroth, 1982).
In addition to hypothalamic regions, motivation for mating
behavior is heavily influenced by the release of dopamine (DA)
in the nucleus accumbens. A persistent question in the field is
the interaction of reward circuits and motoric circuits to elicit
behavior, a model of which is summarized in Figure 1.

The mesolimbic motivational circuitry involves the classic
reward circuit of projections from the ventral tegmental

area (VTA) to the nucleus accumbens. Experiments in
which the female rat paces the sexual encounter have
demonstrated an increase in the release of dopamine in the
reward pathway in anticipation of sexual contact (reviewed
in Cummings and Becker, 2012) and female rats with
basal forebrain damage including the nucleus accumbens
resist the male’s attempts to mount (e.g., Rivas and Mir,
1991).

The lordosis-regulating, receptive circuit involves limbic
and hypothalamic nuclei including the posterodorsal medial
amygdala (MeApd), the bed nucleus of the stria terminalis
(BSt), medial preoptic nucleus (MPN), arcuate nucleus (ARH),
and ventromedial nucleus (VMH) of the hypothalamus
(Sinchak and Micevych, 2001; Sinchak et al., 2010; Polovin
et al., 2012; reviewed in Micevych et al., 2015). It is in the
ARH that estradiol has its initial behaviorally-relevant actions,
which are mediated by membrane-initiated signaling. The
VMH is the final common projection from the integrative
hypothalamic and limbic circuits to the periaqueductal gray
(PAG), reticular formation and vestibular nuclei, which in
turn, send inputs to spinal motoneurons innervating trunk
and neck musculature needed for the lordosis posture
(reviewed in Pfaff et al., 1994)—a hallmark of sexual
receptivity.
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While, the common perception is that estradiol stimulates
sexual receptivity, this is only the final result. The mechanisms
in the interval between estradiol increasing in the blood and
lordosis behavior are complicated and involve an inhibition
in the hypothalamus but activation in the mesolimbic circuit.
Ovariectomized (OVX) females are not sexually receptive with
or without progesterone for approximately 24 h after estrogen
(estradiol benzoate, EB) priming (Green et al., 1970; Quadagno
et al., 1972; Sinchak and Micevych, 2001).

STEROID ACTIVATION OF SEXUAL
RECEPTIVITY

The ability to copulate with a male regardless of the her
motivational state was defined by Beach as sexual receptivity,
physically manifested as the lordosis reflex (Beach, 1948, 1976
and reviewed in Micevych and Sinchak, 2007). This posture
includes a stereotypic arching of the back, elevation of the
hindquarters, dorsiflexion of the tail and extension of the neck.
The lordosis quotient, a measure of sexual receptivity, is defined
as the number of lordosis reflexes by the female in response to
the number of mounts X 100. As Sternson indicates, lordosis is
among the most dramatic behavioral responses in neuroscience
(Sternson, 2013). What makes the lordosis reflex so valuable,
however, is its reproducibility (i.e., the lordosis quotient is
repeatedly achieved for a specific dose of estradiol or estradiol
+ progesterone).

In the intact cycling rat, the sequential release of estrogens and
progesterone from the ovary tightly regulates sexual receptivity.
Various doses and timing of treatments with estradiol as well as
treatments with estrogens and progesterone have been used over
the years to induce the lordosis reflex (described inMicevych and
Sinchak, 2013). What all of these paradigms have in common
is that they all require estrogen and that sexual receptivity lags
behind the administration of estradiol. This refractory period
lasts ∼20–24 h. Since the early 1980s, when it was demonstrated
that gene transcription was needed for estrogenic induction
of lordosis behavior, this lag-time was assumed to be due to
the transcription of proteins necessary for lordosis behavior
(Rainbow et al., 1980, 1982; Parsons et al., 1982). Among
the first of these proteins to be discovered was PR (Parsons
et al., 1979, 1980, 1981; McGinnis et al., 1981; Shughrue et al.,
1997b; Alves et al., 2000). Indeed, progesterone was necessary
to induce lordosis with low exogenous estradiol doses and at
“early” (∼24 h post estradiol) time points (Parsons et al., 1980;
Sinchak and Micevych, 2001). What this theory hypothesis
does not explain is how estrogens alone induce lordosis, which
required higher estrogen doses and a longer interval between
estrogen treatment and the behavior (Pfaff, 1970 reviewed in
Clemens and Weaver, 1985). What has emerged is the idea
that different behavioral circuits are activated by estradiol only
treatment compared with estrogen and progesterone (reviewed
in Sinchak et al., 2015). In the ARH, estradiol-only facilitation
of lordosis reflex requires the activation of the opioid receptor,
ORL-1, but estradiol + progesterone does not (Borgquist et al.,
2014). While the motivation of sexual behavior is driven by

the pleasure derived from the copulatory act (e.g., Meisel and
Mullins, 2006), reproduction requires the coordination of sexual
receptivity with the production of a viable oocyte that can
be fertilized. As mentioned above, this stimulus is estradiol
which rises during the estrous cycle until it peaks on proestrus.
Circulating levels of (ovarian) progesterone are elevated several
hours after the female becomes sexually receptive (Moss, 1974;
Sodersten and Eneroth, 1981). We tested the idea that in the
intact rat both estradiol and progesterone were needed for
sexual receptivity by treating OVX/ADX rats with 10µg EB and
then 48 h later with 17 β-estradiol. In this paradigm blockade
of progesterone receptors or steroidogenesis did not attenuate
sexual receptivity, but did block proceptive behaviors (Micevych
et al., 2008; Micevych and Sinchak, 2011). These results support
the idea that lordosis is sensitive to estradiol levels and
progesterone is responsible for inducing proceptive behaviors
(Tennent et al., 1980; Lumia et al., 1981) and demonstrate
that neuroprogesterone mediates proceptive behaviors. Further,
the study showed that neither progesterone nor progesterone
receptors are needed for estradiol-only induced lordosis. Finally,
progesterone terminates lordosis behavior. Thus, progesterone’s
action are bi-phasic, first it augments the estradiol induced
lordosis behavior and then prevents it (Goy et al., 1966; Nadler,
1970; Sodersten and Eneroth, 1982; Meisel and Sterner, 1990).

ARH to MPN to VMH Circuit
The ARH to MPN neural subcircuit provides an excellent
opportunity to examine steroid signaling that regulates sexual
receptivity. Within the ARH, a population of β-endorphin (β
-END) expressing neurons inhibit lordosis by acting on the µ-
opioid receptor (MOR; Cheung and Hammer, 1995; Torii et al.,
1999; Mills et al., 2004). β-END is one of several posttranslational
proteins expressed in proopiomelanocortin (POMC) neurons.
While much attention, in terms of metabolic control, has been
lavished on the POMC neurons that project to the periventricular
nucleus (Jacobowitz and O’Donohue, 1978; Bell et al., 2000;
Melnick et al., 2007), another POMC population regulates sexual
behavior through its projection to the MPN (Jacobowitz and
O’Donohue, 1978; Cheung and Hammer, 1995; Bell et al., 2000;
Ibrahim et al., 2003; Mills et al., 2004; Melnick et al., 2007).
Reproductively important POMC neurons appear to have a
distinct morphology, and sensitivity to MOR agonists and ATP-
sensitive potassium (KATP) channel modulators (Jacobowitz
and O’Donohue, 1978; Cheung and Hammer, 1995; Bell et al.,
2000; Ibrahim et al., 2003; Mills et al., 2004; Melnick et al.,
2007). An acute effect of estradiol treatment in OVX rats is the
activation and internalization of MOR in the MPN, leading to
inhibition of lordosis behavior (Sirinathsinghji et al., 1986; Pfaus
and Pfaff, 1992; Sinchak and Micevych, 2001; Sanathara et al.,
2011). Reversal of MOR activation produces a facilitation of
sexual receptivity (Eckersell et al., 1998; Sinchak and Micevych,
2001; Micevych et al., 2003; Mills et al., 2004; Sinchak et al., 2005;
Dewing et al., 2007).

Throughout the estrous cycle, the pattern of MPN MOR
activation/internalization tracks the sexual receptivity of the
female, that is,MOR are deactivated (internalized) on the evening
of proestrus when the rat is sexually receptive and reactivated on
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the morning of estrus when she is no longer receptive (Sinchak
and Micevych, 2003; reviewed in Micevych and Sinchak, 2013;
Sinchak et al., 2015).

A series of experiments sought to identify the ER mediating
this transient inhibition. First, the MOR activation was not
observed in ERαKO mice but was present–in ERβKO mice
(Micevych and Sinchak, 2013). Second, in the ARH, a membrane
impermeable estradiol-biotin conjugate induced MOR activation
(Dewing et al., 2007) indicating amembrane ERα (mERα). Third,
mERα forms a signaling complex with metabotropic glutamate
receptor-1a (mGluR1a) (mERα-mGluR1a) that activates MOR
(Dewing et al., 2007, 2008). Fourth, estradiol membrane-initiated
signaling (EMS) through the mERα-mGluR1a complex activates
PKCθ to induce internalization of MPN MOP and actively
inhibit lordosis (Dewing et al., 2008). It is well established that
estradiol activates the POMC from the ARH. Estradiol sensitive
inputs appear to modulate POMC activity. In the rat, estradiol
appears to act on NPY neurons, a subpopulation of which express
ERα mRNA (Sar et al., 1990; Simonian et al., 1999). In N-38s
immortalized hypothalamic neurons that express NPY, we have
shown mERα, which mediates the estradiol activation of PKCθ,
increases extracellular-signal regulated kinases 1/2 (ERK1/2)
and intracellular free calcium (Micevych and Dominguez, 2009;
Dominguez et al., 2013), results consistent with an estradiol-
induced activation of NPY-Y1receptors on MPN-projecting
POMC neurons, which inhibit lordosis behavior (Clark et al.,
1985; Mills et al., 2004).

Estradiol controls the level of cell signaling in the ARH
through modulation of levels of mERα. In primary cultured
neurons, astrocytes, immortalized neurons and in vivo, estradiol
treatment transiently increases trafficking of ER to the membrane
(Bondar et al., 2009; Dominguez and Micevych, 2010). Plasma
mER levels are determined by a balance of trafficking to
the membrane, requiring ER palmitoylation and interaction
with caveolin-1 (CAV1; Razandi et al., 2002; Meitzen et al.,
2013), and internalization, requiring phosphorylation and
β-arrestin-1 (Arrb1; Dominguez et al., 2009). Knockdown
of CAV1 prevented the trafficking of ERα to the plasma
membrane in vivo. Interestingly, ERα14, a splice variant of
ERα concentrated on the membrane in cultured cells from
nervous tissue (Gorosito et al., 2008; Bondar et al., 2009;
Dominguez and Micevych, 2010; Dominguez et al., 2013) was
still trafficked to the plasma membrane (Christensen et al.,
2011). To ascertain the role of β-arrestin-1 (Arrb1) in receptor
dynamics, we studied ERα and ERα1 in ARH tissue and
N-38 neurons (Wong et al., 2015). As expected, Arrb1 was
critical for ERα internalization following estradiol stimulation,
but unexpectedly, trafficking of ERα14 was also dependent
on Arrb1. With siRNA, which reduced Arrb1 protein by
80%, membrane levels of ERα14 were almost half of the
control levels. Interestingly, previous studies have indicated
that EMS requires ERα transactivation of mGluR1a, and that
ERα14 does not associate with mGluR1a (Bondar et al., 2009).
The loss of ERK1/2 activation after Arrb1 siRNA indicates
that Arrb1 helps organize the mER signaling machinery.
Moreover, this loss of Arrb1-dependent signaling in the female
ARH prevented EB induced lordosis behavior indicating that

microcircuits in the ARH activated by estradiol need Arrb1 to
function.

The microcircuits in the ARH mediating estradiol regulation
of behavior are much more complex than indicated by the
previous discussion. One indication of this is the role of GABA
in this nucleus. GABAB receptors mediate both initial and
sustained estradiol–induced activation of β-END release into
the MPN (Sinchak et al., 2013). Inhibition of GABAB receptors
in the ARH blocked estradiol-induced MPN MOR activation,
which is needed for lordosis behavior, (Torii and Kubo, 1994;
Torii et al., 1995, 1996, 1997, 1999). Knockdown of the GABA
synthetic enzymes, GAD65 and GAD67, prevented facilitation of
lordosis (McCarthy et al., 1994). Together these results indicate
that estradiol-induced MOR activation is maintained at least
in part by GABAB signaling. Antagonizing GABAB receptors
30 h after estradiol priming mimics the action of progesterone
in this circuit (Sinchak and Wagner, 2012). The idea that
progesterone acts through the silencing GABAB receptors is
intriguing (Micevych and Sinchak, 2013). Nevertheless, these
data indicate that the neurochemistry of sexual receptivity is
a far from settled science and will require further research to
unravel.

Mesolimbic Circuitry and Sexual
Motivation
In contrast to the hypothalamic circuitry which regulates the
expression of sexual receptivity—lordosis, the mesolimbic
circuitry regulates behavioral processes key to the motivational
control of the expression of female sexual behavior (Salamone
et al., 2016). Bindra (1969) offered one of the early
neurobiological conceptualizations of motivation in which
an organism’s internal physiological state interacts with
environmental stimuli that have intrinsic value to create the
“central motive state.” This central motive state in turn induces
postural adjustments (e.g., lordosis) and organized motor
outputs (e.g., hopping and darting) that comprise the species
typical actions related to each central motive state. Further, with
experience motivated behaviors can be conditioned to increase
the range of incentive stimuli and the animal’s responses.
Berridge (2007) refined this conceptualization of motivation to
argue that mesolimbic dopamine primarily responds to incentive
salience which increase the animal’s “wanting” of rewarding
stimuli. Though the literature on female sexual behavior is
rather limited, it is notable that basal forebrain lesions of the
mesolimbic pathway encompassing the nucleus accumbens
increase the likelihood that a female rat will resist the male’s
mounting attempts or more rapidly escape the male (a decrease
in “wanting” incentive stimuli), though if the male is able to
forcibly apply tactile flank stimulation the lesioned female
will exhibit the postural adjustments of the reflexive lordosis
response (Dohanich and McEwen, 1986; Rivas and Mir, 1990,
1991; Guarraci et al., 2002). Such early studies formed the basis
for conclusions that the mesolimbic system was associated
with the incentive motivational properties of female sexual
behavior. Our view of the female sexual behavior literature is that
mesolimbic dopamine is involved in the rewarding consequences
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of sex (or “liking”) and incentive salience (“wanting”), both of
which can be modified by the animal’s experience.

The biological relevance of sexual motivation is seen in
the modification of subtle sexual responses thought to impact
reproductive success. Female rats display a series of approach
and avoidance behaviors to males which regulate the temporal
frequency of mounting attempts by the male (Bermant, 1961;
Edmonds et al., 1972). Indeed, there is an optimal number of
intromissions and periodicity of those intromissions needed to
stimulate a set of neuroendocrine reflexes requisite for successful
uterine implantation of embryos, though the specific sensory
requirements differ among species. This pattern of vaginal
stimulation was termed the “species vaginal code” by Diamond
(1970) and typically is the optimal pattern of stimulation needed
to produce a conditioned place preference (Paredes and Vazquez,
1999).

The highly active pattern of approach/avoidance regulates the
receipt of intromission for female rats. Female hamsters have a
very different sexual behavior pattern in that they are relatively
immobile, maintaining the lordosis posture for up to 90% of
the interaction with the male; seemingly the male determines
the pacing of intromissions. However, the female hamster has
subtle perineal movements that regulate the male’s ability to
achieve intromission (Noble, 1979, 1980). Anesthetizing the
female hamster’s perineum dramatically reduces intromissions,
pointing to the female’s control of the mating interaction (Noble,
1980).

Pacing of sexual interactions with the male is seen the first
time female rats or hamsters are placed with a male. Still, sexual
experience can modify these sexual interactions (Bradley et al.,
2005; Meerts et al., 2014). In hamsters this change in copulatory
efficiency was tested by giving females different levels of sexual
experience and measuring the frequency of intromissions by
the male. Giving female hamsters 6 weekly tests (but not 2
tests) for sexual behavior increased the percentage of the male’s
mounts that included intromission (termed “hit rate”) on the
following test (Bradley et al., 2005; Hedges et al., 2009). This
was true whether that seventh test was conducted 1 or 6 weeks
after the last sexual experience test (Bradley et al., 2005). Thus,
sexual experience seems to increase the female hamster’s ability
to regulate intromission by the male (in Berridge’s term, increases
“wanting”) and these effects of experience are persistent for at
least several months without any further experience.

Direct tests of the rewarding (or “liking”) consequences of
female sexual behavior have most commonly used a conditioned
place preference paradigm (Oldenburger et al., 1992; Meisel
and Joppa, 1994; Paredes and Alonso, 1997). Here females are
allowed to freely explore an apparatus containing two unfamiliar
chambers, which determines the degree to which the female
has an initial preference for either of the chambers. The female
is then sequestered in one chamber during mating and placed
alone in the other chamber over a series of conditioning trials.
After the conditioning trials, the female is placed back in the
apparatus alone and allowed to explore as in the preconditioning
session. Importantly, control conditions in which females are
successively placed alone (without the addition of mating or
other stimuli) in both chambers are used to establish that simply

repeated exposure to the chambers does not produce a change
from the initial preference. A significant increase in the time
spent in the chamber in which sexual behavior occurred in the
postconditioning test compared with the preconditioning test is
operationally defined as evidence for sexual reward.

Two other rather clever behavioral approaches have
strengthened our understanding of the motivational control of
female sexual behavior. One approach utilizes a bilevel chamber
that capitalizes on the speed advantage of female rats to avoid
and escape the male’s approaches (Mendelson and Pfaus, 1989).
The idea here is that the female can quickly change levels of the
apparatus to pace her copulatory interactions with a male rat.
Pfaus performed factor analyses on a number of female behaviors
in this apparatus and was able to validate the distinction between
appetitive/motivational responses and copulatory responses in
female rats (Pfaus et al., 1990). Becker took a different approach
(Cummings and Becker, 2012) by designing an operant chamber
in which the male and female rats were separated by a sliding
door. The female had the capability to make a nose poke response
for the door to open to get access to the male. The male was
tethered in a compartment on the other side of the door, which
permitted him the freedom to mate with the female, but not
to leave the compartment. Computer interfaced video tracking
software recorded the location of the female in the apparatus,
through which the computer closed the door when the female
returned to her original compartment. In this way the female
could control the pacing of access to the male.

For both rats and hamsters, pacing of the male’s intromissions
depends on estradiol and progesterone with the mesolimbic
circuitry one target of these hormone effects.

Spinogenesis: A Common Feature of
Hypothalamic and Mesolimbic Circuitry
Estradiol Induces Dendritic Spines in the ARH
At this point in time, it is well-established that estradiol regulates
morphological plasticity in various parts of the brain (Matsumoto
and Arai, 1979; Woolley and McEwen, 1993; Staffend et al., 2011;
reviewed in Micevych and Christensen, 2012). In the VMH, the
final common pathway out of the hypothalamus of information
relevant to lordosis behavior, estradiol increased spine density
and dendritic branching (Frankfurt et al., 1990; Meisel and
Luttrell, 1990; Calizo and Flanagan-Cato, 2000, 2002; Madeira
et al., 2001; Gonzalez-Burgos et al., 2015). Interestingly, estradiol
also reduced the length of long primary dendrites that extend
laterally out of the VMH the potential site of afferents from the
MPN that are inhibited by β-END (Sinchak et al., 2010). These
results suggest that as MOR inhibition wears off or is blocked
with progesterone, excitatory afferents contact newly formed
dendritic spines, activating VMH neurons.

In the ARH, estradiol-induced morphological plasticity was
shown to be necessary for the induction of lordosis behavior
(Christensen et al., 2011, 2012; Christensen andMicevych, 2012).
Estradiol treatment increases dendritic spine density within 4 h,
and it remains stable for 48 h. However, the composition of spines
with different morphology changed. The early appearing spines
were filopodial, morphology suggestive of immature, inactive
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and unstable spines (Christensen et al., 2011). Such filopodial
spines are highly labile, rapidly appearing and disappearing
during intense neural activity until they are stabilized by
contacting an appropriate presynaptic partner (Parnass et al.,
2000; Grutzendler et al., 2002; Trachtenberg et al., 2002). At
approximately 24 h, a time point at which lordosis can be
elicited by prior progesterone treatment, the population hasmore
mushroom-shaped spines. Mushroom-shaped spines appear to
be stable and functional, with receptors and anchoring proteins
that allow for synaptic transmission. Stabilization of spines
requires mature postsynaptic spines with receptors anchored at
the postsynaptic specialization by scaffold proteins (Srivastava
et al., 2008; reviewed in Srivastava and Penzes, 2011; Micevych
and Christensen, 2012), and a presynaptic element for synaptic
communication.

An actin scaffold underlies dendritic spines. Indeed,
spine formation requires rearrangement of the underlying
actin cytoskeleton. In the ARH, an increase in β-actin
immunoreactivity is correlated an increase in spines
demonstrated with Golgi staining (Christensen et al.,
2011). Estrogenic regulation of spinogenesis was shown
to involve ERα-mGluR1a signaling leading to modulation
of actin dynamics through phosphorylation of molecules
important for spine formation including cofilin, an actin
depolymerizing factor (for review see Sarmiere and Bamburg,
2004; Hotulainen and Hoogenraad, 2010; Sanchez et al., 2012).
Cofilin must be deactivated (phosphorylated) to allow the
formation of filamentous actin and new spines (Bamburg,
1999; Meng et al., 2002). Estradiol, within an hour, induces
cofilin phosphorylation which can be inhibited by mGluR1a
antagonism (Christensen et al., 2011). Cytochalasin D, which
prevents β-actin polymerization, abrogated both estradiol-
induced spine formation and lordosis behavior (Christensen
et al., 2011). It has been proposed that estradiol rapidly induces
labile spines but another stimulus is needed to stabilize them
(Srivastava et al., 2008; reviewed in Srivastava and Penzes, 2011).
On-going experiments point to membrane-initiated estradiol
regulation of pre- and post-synaptic proteins, suggesting that,
for stability, newly formed spines associate with a presynaptic
element (Rudolph et al., 2016).

Sexual Experience Effects on Dendritic Spines in

Nucleus Accumbens
Morphological changes in the mesolimbic system are dependent
on both estradiol availability and on sexual experience. Estradiol
treatment of either female rats or hamsters decreases spine
density on medium spiny neurons in the core of the nucleus
accumbens (Staffend et al., 2011; Peterson et al., 2015). The
assumption is that estradiol exerts these effects on dendritic spine
plasticity through membrane estrogen receptor interactions with
metabotropic glutamate receptors (Micevych and Mermelstein,
2008). Consistent with this hypothesis are observations that pre-
exposure to an mGluR5 antagonist blocks the estradiol effects on
dendritic spines (Peterson et al., 2015).

Sexual experience increases dendritic spine density in medium
spiny neurons of female hamsters, particularly in the core
of the nucleus accumbens (Staffend et al., 2014). Dendritic

spines receive excitatory, largely glutamatergic, inputs and have
different morphologies which are thought to reflect biophysical
properties impacting excitability of the neurons (Tonnesen
and Nagerl, 2016). The increase in dendritic spines following
sexual experience in hamsters was primarily associated with
a change in filopodial spines, which have “silent synapses.”
Developmentally, silent synapses are enriched in glutamatergic
NMDA receptors with an absence of AMPA receptors (Liao
et al., 1999). In adulthood, silent synapses contain both NMDA
and AMPA receptors, though with a preponderance of NMDA
receptors (Huang et al., 2009). As a proxy for electrophysiological
characterization of silent synapses, we measured AMPA and
NMDA receptors in the nucleus accumbens of female hamsters
following sexual experience. No changes in AMPA receptor
gene expression or protein for either the GluA1 or GluA2
subunits were detected. Similarly, there were no changes in
NMDA receptors measured by levels of the NR2B subunit,
however, increased phosphorylation of tyr1472 of the NR2B
subunit was observed. This specific phosphorylation site confers
membrane stability to NR2B containing NMDA receptors (Chen
and Roche, 2007), providing indirect evidence that female
sexual experience increases NMDA-biased silent synapses in the
nucleus accumbens. Clearly this idea needs to be confirmed
electrophysiologically.

Dopaminergic projections from the ventral tegmentum
synapse on nucleus accumbens medium spiny neurons that
express either excitatory dopamine D1 receptors or inhibitory
D2 receptors (Missale et al., 1998). In general, each of
these neuronal phenotypes has a different pattern of efferent
projections (Kupchik et al., 2015). Knowing the phenotype
of medium spiny neurons affected by sexual experience can
be informative for developing hypotheses about the functional
consequences of these changes in dendritic spines. Not only
were the effects of sexual experience restricted to the core of
the nucleus accumbens, but changes in spines were localized to
the D1 containing medium spiny neurons (Staffend et al., 2014).
These anatomical observations link observations of plasticity in
neural pathways associated with intrinsic fixed-action behavioral
sequences (Kalueff et al., 2016) to the control of female sexual
motivation. In this way dopamine neurotransmission may
be the mediator of sexual motivation in females. As sexual
experience produces changes in the motivational components of
sexual behavior, these changes in behavior are paralleled by a
corresponding change in neuronal plasticity.

Sexual Behavior Stimulates Mesolimbic Dopamine

Release
Analysis of the mesolimbic dopamine system’s role in
sexual motivation began with microdialysis measurements
of extracellular dopamine levels during sexual behavior in female
rats and hamsters. Dopamine release in the nucleus accumbens
of female rats during sexual encounters is associated with the
female’s ability to pace the mating interactions with the male
(Mermelstein and Becker, 1995; Becker et al., 2001; Jenkins and
Becker, 2001, 2003). Similarly, for female hamsters, dopamine
is elevated in the nucleus accumbens during sexual interactions
(Meisel et al., 1993) Dopamine release in the female hamster’s
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nucleus accumbens occurred during mating only if the male
achieved intromission (Kohlert et al., 1997). To expand on these
findings, we are now using fixed potential carbon fiber recording
from the nucleus accumbens providing an ∼1 s temporal
resolution of dopamine transients, which allows time locking the
dopamine signal to specific components of the female’s sexual
interaction with the male. There is a strong concordance between
the peak of the dopamine transients and the female’s receipt of
intromission by the mounting male. Collectively these results
indicate that intromission is a salient signal for activation of the
nucleus accumbens during sexual behavior in females and that
this dopamine release does not depend on prior experience.

Further analyses of hamsters have tested the idea that sexual
experience can potentiate the mesolimbic response to sexual
stimuli in females. Our work indicated that with 6 (but not
3) prior sexual interactions there was an augmented release
of dopamine relative to that seen in inexperienced female
hamsters (Kohlert and Meisel, 1999), paralleling the change in
hit rate noted previously. This “sensitized” dopamine response
in hamsters was confirmed by c-Fos analysis in which mating
increased the number of labeled neurons in the core of the
nucleus accumbens, with an even greater elevation of labeled
neurons in females with prior sexual experience (Bradley and
Meisel, 2001).

Plasticity in Dopamine Signaling
Female sexual experience increases dopamine release in the
nucleus accumbens during sex, and that increased dopamine
release leads to changes in neuronal morphology. This raises
the question of how changes in dopamine-mediated intracellular
signaling underlie structural and behavioral plasticities? Female
sexual experience does not affect the levels of either D1 or D2
receptors in the nucleus accumbens, nor does it impact D1 or
D2 receptor binding (Staffend et al., 2014), yet there must be
an enhancement of dopamine receptor signaling since c-Fos
production is sensitized. Stimulating dopamine D1 receptors
produces a greater cAMP response in homogenates from the
nucleus accumbens of sexually-experienced vs. inexperienced
female hamsters (Bradley et al., 2004). Though both Gpp(NH)p
(a non-hydrolyzable GTP analog) and forskolin (a direct
activator of adenylyl cyclase) increased cAMP accumulation in
a concentration-dependent manner, the absence of any further
augmentation by sexual experience on cAMP accumulation
suggested that sexual experience either impacted the coupling
of dopamine D1 receptors to G-proteins or modulated other G-
protein regulators (e.g., RGS or AGS proteins). The observation
that dopamine D1 signaling depends on interactions with
caveolin-1 raises the possibility that sexual experience affects
dopamine signaling by modulating caveolin-1 expression (Kong
et al., 2007).

Several signaling events downstream from cAMP are
impacted by sexual experience in female hamsters, particularly
elements of MAP kinase signaling. MAP kinase signaling is
relevant in this context since activity in this pathway is associated
with neuronal plasticity (Sweatt, 2001). Sexual behavior testing
does not impact MAP kinase signaling, as measured by levels of
ERK 1/2 either in its phosphorylated state or as total protein.

However, in sexually experienced females there is a dramatic
increase in phosphorylated ERK1/2 soon after a subsequent
test for sexual behavior (Meisel and Mullins, 2006). Thus ERK
1/2 phosphorylation is sensitized by sexual experience. This
response of ERK 1/2 to sexual behaviormaymediate the observed
increases in c-Fos expression.

One important clue to potential molecular mediators of sexual
experience on the nucleus accumbens came from behavioral
results showing that the increase in copulatory efficiency in
sexual interactions with male hamsters was maintained for
over a month without further sexual experience. 1FosB tuned
out to be a good candidate as the molecular mediator of
this long-term behavioral plasticity. This truncated variant of
FosB confers a remarkable level of resistance to proteasome
degradation (Ulery et al., 2006; Ulery and Nestler, 2007).
No changes in pan-FosB immunocytochemical labeling were
detected in the nucleus accumbens following an acute sex
behavior test, but again in sexually experienced female hamsters
there was an increase in FosB labeling (Meisel andMullins, 2006).
Further, overexpression of 1FosB in the accumbens facilitated
conditioned place preference in female hamsters given only
two condition sessions (Hedges et al., 2009). Overexpression
of 1FosB in female hamsters also increased the male’s ability
to achieve intromission (i.e., increased hit rate) over control
females given only two prior sex tests. Overexpressing 1JunD,
the dominant negative binding partner of 1FosB (Winstanley
et al., 2007), blocked the induction of a conditioned place
preference after the requisite conditioning trials (Been et al.,
2013). Collectively, these studies demonstrate that1FosB is a key
molecular nexus for the effects of sexual experience on the long-
lasting changes in sexual reward and the efficiency of copulatory
interactions with a male.

INTEGRATING THE CIRCUITS

At the same time that the neural systems underlying the
different components of reproduction in female rodents
are separable, clearly these elements require integration for
successful reproduction. One possibility is that the activation of
ovulation, lordosis, and sexual motivation are simply temporally
coincident. Alternatively, there are nodes through which the
different circuits connect to execute this integration. The link
between the hypothalamic and mesolimbic circuits historically
has been rather mysterious, though recent work provides
an intriguing (though currently untested) hypothesis that the
MPOA could be a potential node for this integration (Coria-
Avila et al., 2014). Dominguez (along with others) traced
projections from the MPOA to the VTA (Tobiansky et al., 2013,
2016). They reported that the majority of these neurons were
GABAergic, suggesting that the MPOA provided an inhibitory
input to the VTA and in turn to the nucleus accumbens. This
inhibitory control was revealed by the use of cocaine as a
pharmacologic reinforcer, which increased the number of c-Fos
stained neurons in the nucleus accumbens of MPOA lesioned
animals and correspondingly produced a stronger conditioned
place preference (Tobiansky et al., 2013).
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An analysis of estrogen receptors provided a key extension
of the research on the MPOA as an interface between the
hypothalamus and mesolimbic dopamine system. Anatomically,
the majority of the MPOA to VTA projecting neurons stained
positively for either ERα (∼70%) or GPER (∼35%) (Tobiansky
et al., 2016). The functional significance of these estrogen
receptor containing neurons was demonstrated through intra-
MPOA estradiol infusions which enhanced cocaine mediated
dopamine release in the NAc (Tobiansky et al., 2016). These
results support the idea that theMPOA is a source of inhibition to
the mesolimbic dopamine system, which is released by estradiol
acting on these GABAergic projection neurons.

Modulation of dopaminergic neurotransmission may be a
mechanism through which estradiol modulates the inhibitory
tone of the MPOA. Dopamine D1 receptors generally signal
through excitatory G proteins, whereas D2 receptors are
coupled to inhibitory signaling pathways (Nishi et al., 1989;
Jaber et al., 1996). In this way regulating the balance of
D1:D2 signaling can impact the level of excitation in MPOA
neurons. The results of immunocytochemical staining, Western
blot analyses and autoradiographic receptor binding converged
on the conclusion that estradiol biased the ratio toward
D2 signaling, presumably reducing the intrinsic excitability
of MPOA neurons (Graham et al., 2015). The functional
impact of this altered dopaminergic signaling balance was
mirrored by pharmacological analysis. Amphetamine (which
would stimulate both D1 and D2 dopamine receptors) infused
into the MPOA increased the amount of time before the
female rat returned to the male following mounts and

ejaculation (Guarraci et al., 2008). Direct MPOA infusion
of a dopamine D2 agonist increased while a dopamine D1
agonist reduced sexual motivation measured in bilevel chambers
(Graham and Pfaus, 2010), indicating bidirectional effects of
dopamine receptor subtypes on sexual motivation. Collectively
these results identify dopaminergic efferents as a potential
source of estradiol modulation of MPOA inputs to the
VTA.

The desire to engage in sexual behavior and the performance
of sexual behavior are both neurally and functionally separable
(Georgiadis et al., 2012). The MPOA is both anatomically and
functionally positioned to integrate the actions of estradiol on
sexual motivation through the mesolimbic system, as well as on
the overt expression of lordosis through hypothalamic circuitry.
At the same time, continuing research on the hypothalamic
and mesolimbic systems controlling female sexual behavior will
undoubtedly develop amore detailed understanding of how these
anatomical and functional circuits are integrated.
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