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Abstract——Preconditioning, postconditioning, and re-
mote conditioning of the myocardium enhance the ability
of theheart towithstandaprolonged ischemia/reperfusion
insult and the potential to provide novel therapeutic para-
digms for cardioprotection. While many signaling path-
ways leading to endogenous cardioprotection have been
elucidated in experimental studies over the past 30 years,
no cardioprotective drug is on themarket yet for that indi-
cation. One likely major reason for this failure to translate
cardioprotection into patient benefit is the lack of rigorous
and systematic preclinical evaluation of promising cardio-
protective therapiesprior to their clinical evaluation, since
ischemic heart disease in humans is a complex disorder
caused by or associated with cardiovascular risk factors
and comorbidities. These risk factors and comorbidities in-
duce fundamental alterations in cellular signaling cas-
cades that affect the development of ischemia/reperfusion
injury and responses to cardioprotective interventions.
Moreover, some of the medications used to treat these co-
morbiditiesmay impact on cardioprotection by againmod-
ifying cellular signaling pathways. The aimof this article is
to review the recent evidence that cardiovascular risk

factors aswell as comorbidities and theirmedicationsmay
modify the response to cardioprotective interventions. We
emphasize the critical need for taking into account the
presenceof cardiovascularrisk factorsaswell as comorbid-
ities and their concomitant medications when designing
preclinical studies for the identification and validation of
cardioprotectivedrug targets and clinical studies. Thiswill
hopefullymaximize the success rate of developing rational
approaches to effective cardioprotective therapies for the
majorityofpatientswithmultiple comorbidities.

Significance Statement——Ischemic heart disease is a
major cause of mortality; however, there are still no cardi-
oprotective drugs on the market. Most studies on cardio-
protection have been undertaken in animal models of
ischemia/reperfusion in the absence of comorbidities; how-
ever, ischemic heart disease develops with other systemic
disorders (e.g., hypertension, hyperlipidemia, diabetes,
atherosclerosis). Here we focus on the preclinical and
clinical evidence showing how these comorbidities and
their routine medications affect ischemia/reperfusion in-
jury and interferewith cardioprotective strategies.

I. Introduction

Acute myocardial infarction (AMI) and subsequent
heart failure (HF) remain the leading causes of death

and disability worldwide. Effective treatment of AMI
is based on procedures that promote the return of blood
flow to the ischemic zone of the myocardium (i.e., reperfu-
sion therapy). The achievement of prompt and successful
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reperfusion to the infarct-related artery has revolutionized
the management of ST-segment elevation myocardial in-
farction (STEMI), which is mostly equivalent to AMI
arising from epicardial coronary artery plaque rup-
ture [type I myocardial infarction (MI)] and complete
acute coronary artery occlusion and is associated with
acute ST-segment elevation on the electrocardiogram
(ECG). Nonetheless, there is considerable room for fur-
ther improvement. Reperfusion, however, may lead to
further myocardial cell death, termed lethal myocardial
reperfusion injury. Currently, there is no effective drug
therapy for ischemia/reperfusion (I/R) injury (IRI) on
the market, and routinely used pharmacological agents
for ischemic heart disease do not salvage the I/R myo-
cardium when applied at reperfusion. As such, new
therapeutic targets are needed to protect the myocar-
dium against the detrimental effects of acute IRI to
reduce myocardial infarct size (IS), preserve left ven-
tricular (LV) function and prevent the onset of HF
(Heusch et al., 2014; Hausenloy et al., 2017; Heusch
and Gersh, 2017; Heusch, 2020).
The heart possesses a remarkable ability to adapt

to I/R stress, and this molecular plasticity of the heart
in I/R has been the focus of intense research. Over
the past 35 years, many cardioprotective strategies
against myocardial IRI have been proposed. The car-
dioprotective strategies can be categorized based on
the specific protective modality, time of application,

and cellular or intracellular targets. The cardioprotec-
tive strategies that have been studied most are based
on either (i) the controlled application of episodes of
brief I/R (ischemic conditioning by mechanical occlusion
and reperfusion of heart and other tissues), (ii) the ap-
plication of physical measures (e.g., exercise), or (iii) the
administration of chemical substances (pharmacological
agents) (see Section II) (Fig. 1).
Established pharmacological treatments administered

to patients with cardiovascular disease potentially affect
the outcome from IRI and the possibility to protect the
heart. Additionally, new pharmacological treatments—
derived through the better understanding of the un-
derlying signaling cascades involved in endogenous
cardioprotection—could be administered either prior
to a sustained episode of I/R (i.e., prior to cardiovascu-
lar surgery) or as early as possible during reperfusion
[in case of patients with STEMI undergoing primary
percutaneous coronary interventions (PPCI)] to poten-
tially protect further from IRI.
Ischemic heart disease results from coronary ath-

erosclerosis, which, in turn, develops as a conse-
quence of a number of comorbidities predisposing
to atherosclerosis development; it always coexists
with other systemic disease states. These comorbid-
ities include systemic arterial hypertension with re-
lated LV hypertrophy and metabolic diseases such as
hyperlipidemia or diabetes mellitus. In addition, age

Ischemia/reperfusion (I/R)

Ischemic/mechanical pre- and postconditioning

Cardioprotective drugs

I/R injury: 
• contractile dysfunction 
• arrhythmias
• myocardial infarction
• microvascular damage

Major risk factors, 
comorbidities, and their 
medications interfere with 
cardioprotective efficacy

Severity of I/R injury is 
influenced by major risk factors, 
comorbidities, and their 
medications

Remote ischemic/mechanical conditioning

brief periods of I/R in a remote tissue 

Fig. 1. The concept of ischemia/reperfusion injury and cardioprotection by pre-, post-, and remote conditioning as well as by drugs is expressed graphi-
cally (black areas denote periods of ischemia). Myocardial ischemia and reperfusion lead to I/R injury characterized by the development of contractile dys-
function, arrhythmias, tissue necrosis (infarction), and microvascular damage. Ischemic preconditioning is a well-described acute and subacute adaptive
response in which brief exposure to I/R bymechanical occlusion of coronary arteries markedly enhances the ability of the heart to withstand a subsequent
ischemia/reperfusion injury. In this diagram, 2 brief periods of ischemia are used to precondition the myocardium against a subsequent period of ischemia
that is longer than the preconditioning periods. Brief cycles of I/R applied following a longer period of ischemia also confer cardioprotection against the
consequences of I/R, a phenomenon termed “ischemic postconditioning.” Brief cycles of I/R applied in a remote cardiac tissue or remote organ (in this dia-
gram the upper limb by a pressure cuff) before, during, or right after a longer period of cardiac ischemia also provides cardioprotection, a phenomenon
termed “remote conditioning.” The cardioprotective effect of conditioning strategies results in attenuation of I/R injury. Major cardiovascular risk factors
and their medications influence the severity of ischemia/reperfusion injury and interferes with cardioprotective efficacy.
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and sex are major nonmodifiable risk factors affecting
the development of ischemic heart disease. These risk
factors and comorbidities exert multiple biochemical
effects on the heart that affect the development of IRI
and interfere with responses to cardioprotective inter-
ventions (Figs. 2 and 3).
The aim of this article is to update our previous re-

views (Ferdinandy et al., 1998; Ferdinandy et al.,
2014; Ferdinandy et al., 2007) on the effect of cardio-
vascular risk factors and comorbidities on IRI and
cardioprotection and to show the ongoing critical
need for preclinical studies that model the presence
of risk factors and comorbidities and their pharmaco-
logical treatments. Such studies are required for the
proper validation of molecular targets for cardiopro-
tection as well as the efficacy and safety of potential
cardiovascular drugs (Heusch, 2015, 2020), thereby
maximizing the chances of success for translation of
cardioprotection into the clinical arena and for the
benefit of the majority of ischemic heart disease pa-
tients who have multiple comorbidities and associ-
ated medications.

II. Experimental Approaches to
Cardioprotection

An orchestrated communication between the various
cell types of the heart is vital for the maintenance of
myocardial homeostasis. The human heart contains
billions of cardiomyocytes; their activity needs to be
coordinated to facilitate contractile activity, supported
by fibroblasts, endothelial, and smooth muscle cells

(Hausenloy, Chilian, et al., 2019), immune cells, and
sympathetic and parasympathetic neurons (Hausenloy,
Bøtker, et al., 2019). Intercellular communication in the
heart can occur directly through cell–cell contacts, in-
cluding gap junctions and tunneling nanotubes, or at
longer distances involving the release of soluble factors
or vesicle-enclosed mediators (for review see Martins-
Marques et al., 2021). In stress conditions, such as acute
I/R and developing AMI, a finely tuned crosstalk between
the different types of cardiac cells assumes particular im-
portance to sustain efficient responses in wound healing
and extracellular matrix remodeling (Daiber et al., 2021).
Crosstalk between cardiac and inflammatory cell-types
also facilitates endogenous adaptive protection against
IRI, the so-called conditioning phenomena (Fig. 2).

A. Conditioning Phenomena

1. Ischemia-Related. The “conditioning” phenomena
describe the IS reduction after sustained I/R by brief non-
lethal periods of I/R, which are performed either before
(pre), during (per), or after (post) the sustained ischemia
followed by reperfusion. Whereas in ischemic precondi-
tioning (PreC) or ischemic postconditioning (PostC) the
heart itself is subjected to the conditioning I/R, in remote
ischemic conditioning (RIC) organs or tissues other than
the heart (e.g., skeletal muscle) undergo I/R, and this
“conditioning at a distance” reduces myocardial IS (for
review see Hausenloy et al., 2017; Heusch et al., 2015).
As with ischemic PreC, the benefits of RIC appear to be
biphasic with a short initial window of protection during
the first 12 hours, followed by a period of loss of protec-
tion and finally a longer “delayed” or “second” window of

Fig. 2. This diagram shows some of the major cel-
lular mechanisms suspected to contribute to cardio-
protection induced by either mechanical or drug-
induced conditioning stimulus of different cells of
the heart tissue that leads to attenuation of I/R in-
jury of the heart. Most of the cellular mechanisms
of cardioprotection seems to be unexplored so far, as
conditioning stimuli of cardioprotection is associ-
ated with extensive changes in cellular signaling
that also includes global cardiac gene expression
profile at the coding and noncoding RNA, proteome,
and metabolome levels. AMPK, adenosine 50-mono-
phosphate activated protein kinase; ANT, adenine
nucleotide translocase; cGMP, cyclic guanosine mo-
nophosphate; CYPD, cyclophilin D; NO, nitric ox-
ide; GSK-3b, glycogen synthase kinase-3b; HSP,
heat shock proteins; KATP,ATP-dependent potas-
sium channel; MAPK, mitogen-activated protein
kinase; miR, micro-RNA; mitoHKII, mitochondrial
hexokinase II; mPTP, mitochondrial permeability
transition pore; NLRP3, nucleotide-binding and
oligomerization domain (NOD)-like receptor do-
main-containing protein 3; PKA, protein kinase A;
PKC, protein kinase C; PKG, protein kinase G;
PLC, phospholipase C; ROS, reactive oxygen spe-
cies; STAT, signal transducers and activators of
transcription; TNF, tumor necrosis factor.
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protection lasting as long as 72 hours after RIC exposure
(Madias, 2015). When using leg ischemia to induce RIC
in mice, leg temperature is decisive for cardioprotec-
tion, and leg hypothermia abrogates protection (Penna
et al., 2022). The importance of different conditioning
strategies to improve patients’ outcome is highlighted
in Section III.
Repeated administration of RIC over weeks or months

(long-term RIC), has been investigated for improving
several aspects of cardiovascular health (for review
see Epps et al., 2016; Chong et al., 2019). A seminal
experimental study demonstrated that RIC repeated
daily for 28 days after MI protected against adverse
LV remodeling and increased survival in a rat model
even though IS was not reduced compared with the
single RIC treatment (Wei et al., 2011). This was fur-
ther supported by a rat study showing survival bene-
fit even when RIC treatment was commenced 4 weeks
after MI (Yamaguchi et al., 2015). In a lipopolysaccha-
ride-induced mouse model mimicking bacterial sepsis,
RIC reduced circulating and myocardial inflammatory

mediators and led to improved LV function, cardiac
output, and survival (Honda et al., 2019). Moreover,
repeated RIC provided an additional 7 days survival
benefit beyond a single-occasion treatment (Honda
et al., 2019).

2. Drug-Related. Elucidation of some mechanisms
involved in cardioprotection induced by ischemic con-
ditioning strategies has identified a number of signal-
ing pathways, many of which have been targeted
by pharmacological agents applied either before the
sustained ischemia (pharmacological PreC) or just at
the onset of reperfusion (pharmacological PostC) to
reduce myocardial IRI (for review see Heusch, 2015,
2020; Calabrese, 2016b; Torregroza et al., 2020).
While results from experimental studies were en-
couraging, translation to the clinical setting again
failed to meet the expectations (for review see
Heusch, 2017; Roth et al., 2021 and Sections III and
V for details).
Apart from ischemic and pharmacological PreC

and PostC, another clinically applicable possibility to
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Fig. 3. This diagram shows that different cardiovascular risk factors and comorbidities as well as their routine medications dramatically alter cardiac
cellular signaling thereby interfering with cardioprotective mechanisms explored in drug-naive young healthy hearts used in the majority of preclini-
cal studies.
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precondition the heart against IRI is exercise (for re-
view see Wojcik et al., 2018). Recent clinical investiga-
tions confirm that exercise may precondition the
human heart (for review see Quindry and Franklin,
2021). Low-load blood flow restricted resistance exer-
cise (Bøtker, Lassen, et al., 2018) improved functional
capacity, quality of life, and muscle mitochondrial func-
tion in patients (Groennebaek et al., 2019). The mecha-
nisms responsible for exercise-induced cardioprotection
include maintenance of endothelial nitric oxide syn-
thase (NOS) coupling (Santana et al., 2018), increased
release of circulating hormones (Lu and Pan, 2017;
Otaka et al., 2018; Bo et al., 2021), as well as extracel-
lular vesicles (G€orgens et al., 2015; Bei et al., 2017), fi-
nally leading to preserved mitochondrial dynamics
(Ghahremani et al., 2018; Yuan et al., 2018) in
cardiomyocytes.

B. Endpoints

As outlined earlier, the heart consists of many different
cell types. Therefore, endogenous protection can be di-
rected not only to cardiomyocytes but also to the coronary
circulation (including effects on endothelial cells, vascular
smooth muscle cells, vessel innervation) (Heusch, 2016,
2019a; Hausenloy, Chilian, et al., 2019) and circulating
blood cells, to name a few.

1. Cardiomyocyte Death. To develop strategies to
protect the heart from IRI, it is important to define
the precise mechanisms by which cardiomyocytes die.
Necrosis is known to play a major role in myocardial
IRI. Apoptosis is a form of programmed cell death me-
diated by caspases and characterized by cell shrink-
age, chromatin condensation, and blebbing (budding)
of the plasma membrane. Despite early studies show-
ing evidence of apoptosis in the heart following I/R,
its contribution remains controversial. The protein
machinery required for apoptosis is expressed at very
low levels in the healthy adult heart, which suggests
that the signs of apoptosis that can be detected may
be due to cardiac cells other than cardiomyocytes
(e.g., fibroblasts, endothelium, leukocytes) (reviewed
in Davidson et al., 2020).
Mitochondria play a central role in both of these

pathways of cell death, as either a causal mechanism
in the case of mitochondrial permeability transition
pore (mPTP) opening leading to necrosis or as part of
the signaling pathway in mitochondrial cytochrome c
release and apoptosis. Autophagy may impact this pro-
cess by removing dysfunctional proteins or even entire
mitochondria through a process called mitophagy (for
in-depth review see Gatica et al., 2022). More recently,
roles for other programmed mechanisms of cell death
such as necroptosis and pyroptosis have been described
(for review see Davidson et al., 2020).
Necrosis was previously believed to always be an

uncontrolled pathway of cell death. However, it is
now evident that there are controlled forms of

necrosis, of which necroptosis and pyroptosis are of
particular relevance in the heart. Necroptosis in-
volves the recruitment of cytosolic adaptor proteins
to complex I, an increase in plasma membrane per-
meability, re-localization of phosphorylated mixed-
lineage kinase domain-like pseudokinase to the
plasma membrane, and receptor-interacting-protein 3
activation (Zhang et al., 2016). In the heart, receptor-
interacting-protein 3 also causes activation of calmodu-
lin-dependent protein kinase II (Zhang et al., 2016).
Necroptotic proteins are also present in the human
failing heart due to MI (Szobi et al., 2017). Necroptosis
clearly contributes to IRI, because either pharmacolog-
ical inhibition or deletion of key proteins is cardiopro-
tective (Smith et al., 2007; Newton et al., 2016).
Limited evidence suggests that conditioning strategies
can reduce necroptosis. For example, ischemic PreC is
associated with inhibition of translocation of mixed-lin-
eage kinase domain-like pseudokinase within the
plasma membrane, and ischemic PreC is ineffective in
hearts where necroptosis is already inhibited (Szobi
et al., 2018).
Pyroptosis is a type of programmed necrosis that can be

activated in the heart in response to injury. One major dif-
ference between pyroptosis and other forms of necrosis is
that the proteins involved in pyroptosis are expressed at
low levels in the healthy heart, and, as such, in healthy
hearts, the contribution of pyroptosis to infarction occur-
ring in the first few hours of reperfusion following ischemia
may be limited. However, damage-associated molecular
patterns such as interleukin (IL)-1b increase the expres-
sion of proteins of the inflammatory and innate immune
systems including nucleotide-binding and oligomeriza-
tion domain-like receptor domain-containing protein 3
(NLRP3), apoptosis-associated speck-like protein con-
taining caspase recruitment domains, and caspase-1,
which make up a complex called the NLRP3 inflamma-
some (Kawaguchi et al., 2011). Following this “priming”
stimulus, a stress such as I/R causes rapid assembly
and activation of the NLRP3 inflammasome, leading to
cleavage and activation of IL-1b and IL-18. Activated
caspase-1 also cleaves the protein gasdermin D, which
forms cytosolic membrane pores, the lethal and defining
feature of pyroptotic cell death (Shi et al., 2015).
Most acute I/R experiments use IS (relative to ischemic

area at risk) as a hard endpoint, measured using either
tetrazolium staining (postmortem) or late gadolinium car-
diac magnetic resonance imaging (MRI) (Bøtker, Hausen-
loy, et al., 2018). The levels of cardiac proteins such as
troponin released by necrotic cells into the blood or per-
fusate may be used as a supporting measurement. Car-
diac contractile function is sometimes used as endpoint
but is less robust and less meaningful in the acute period
since cardioprotective strategies such as ischemic PreC
may have inconsistent effects on ventricular function
(Kloner and Jennings, 2001; Gelpi et al., 2002). Since
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ventricular fibrillation contributes to deaths following
MI, another relevant endpoint measurement, which is a
target for ischemic PreC, is cardiac arrhythmia (Hagar
et al., 1991).

2. Coronary Microvascular Obstruction. Another
target for cardioprotection that has been somewhat
overlooked in acute myocardial IRI is the coronary
circulation (Heusch, 2016, 2019a; Hausenloy, Chilian,
et al., 2019). The function in health and disease of the
coronary circulation including the microvasculature is
pivotal to our understanding of the complex processes
and interactions among myocardial ischemic injury,
reperfusion injury, and cardioprotection (Kaski et al.,
2018). The putative initiating mechanism in approxi-
mately 97% of patients who experience an acute coro-
nary syndrome is plaque erosion or rupture (type I MI),
and there is abundant evidence that the response of the
microvasculature plays a crucial role in determining
the clinical course and final outcome. Moreover, type II
MI, which results from changes in systemic hemody-
namics and their impact on the matching of coronary
blood flow and myocardial metabolism, occurs usually
in the presence of significant epicardial coronary ath-
erosclerosis (Ibanez et al., 2018; Thygesen et al., 2018).
Finally, MI in the absence of obstructive (<50% diame-
ter reduction on angiography) coronary artery disease
still involves in most cases structural or functional
alterations of the epicardial or more distal coronary
microcirculation (Ibanez et al., 2018; Thygesen et al.,
2018). Whereas obstruction of the coronary circulation
and reduction of coronary blood flow causes myocardial
ischemia (Heusch, 2019b), it is the reopening of the
coronary circulation and restoration of coronary blood
flow that induces reperfusion and salvages the depen-
dent myocardium from infarction, but this comes at
the price of reperfusion injury (Heusch and Gersh,
2017). Type IV MI is defined as any infarction related
to interventional reperfusion (Thygesen et al., 2018)
including notably microembolization (Heusch, 2016;
Kleinbongard and Heusch, 2022). Thus, the coronary
circulation in one form or the other is an integral com-
ponent of the process of myocardial ischemia, micro-
vascular dysfunction, reperfusion, reperfusion injury,
and healing.
The coronary microcirculation is as much a victim

of myocardial IRI as the cardiomyocytes. The most ex-
treme form of coronary vascular injury following myo-
cardial I/R is no-reflow as recognized in dogs more
than 5 decades ago (Krug et al., 1966; Kloner et al.,
1974). Such no-reflow, more specifically microvascular
obstruction (MVO) (de Waha et al., 2017) and intra-
myocardial hemorrhage (Reinstadler et al., 2019), de-
termines the prognosis of patients with reperfused
AMI independently of IS (Stone et al., 2016). Because
morphologic alterations of the coronary microvascula-
ture are difficult to assess in the absence of reperfusion,

it is not clear to what extent MVO is a direct conse-
quence of ischemic injury or is caused by the process of
reperfusion. Furthermore, since regions of coronary
vascular injury typically occur within the infarcted
myocardium, the causal relationship and relative con-
tribution of cardiomyocyte and coronary microvascular
injury from I/R is not clear. However, multiple mecha-
nisms contribute to coronary microvascular injury from
myocardial I/R: endothelial and interstitial edema (Garcia-
Dorado et al., 2012; Fern�andez-Jim�enez et al., 2015; Zhou
et al., 2017), impaired vasomotion (Ehring et al., 1995;
Kleinbongard et al., 2011), leukocyte adherence (Kupatt
et al., 2002), erythrocyte stasis (Driesen et al., 2012), plate-
let aggregation (Pearson et al., 1990; Folts, 1999), extra-
vascular compression by the interstitial edema (Manciet
et al., 1994), and ultimately capillary destruction with con-
sequent intramyocardial hemorrhage (Kloner et al., 1974;
Higginson et al., 1982; Bulluck et al., 2016). Clinically, cor-
onary microvascular injury is assessed using various imag-
ing modalities, notably in angiography by decreased
thrombolysis in MI (TIMI) flow grade and myocardial
blush grade, and in cardiac MRI as edema by T2 weighted
mapping and lack of contrast medium in gadolinium-hy-
percontrasted infarcted myocardium or intramyocardial
hemorrhage (Heusch, 2016, 2019a; Hausenloy, Chilian,
et al., 2019).
What is fortunate is that coronary microvascular in-

jury is not an all-or-none phenomenon but a process sub-
ject to modification and damage limitation (Hausenloy,
Chilian, et al., 2019; Heusch, 2019a). In the experimen-
tal model, mechanical interventions of ischemic condi-
tioning reduced not only IS but also the area of no-
reflow (Skyschally et al., 2017). Ischemic PreC reduced
endothelial dysfunction (DeFily and Chilian, 1993; Kaeffer
et al., 1996), leukocyte adherence (Kurzelewski et al.,
1999), edema formation (Zhao et al., 2003), and MVO
(Posa et al., 2010) and improved coronary vasodilator re-
sponses to adenosine, nitric oxide (NO), and reactive hy-
peremia (Gattullo et al., 1999), although not all studies
have been consistent in demonstrating such benefit (Bauer
et al., 1993). Moreover, delayed ischemic PreC provided
endothelial protection and improved coronary vasodilation
24 hours later (Kaeffer et al., 1997; Kim et al., 2007).
Ischemic PostC improved endothelial function and vasodi-
lator response to acetylcholine and reduced leukocyte ad-
herence, edema, and no-reflow in dogs and pigs (Zhao
et al., 2003; Zhao et al., 2007), but again not all studies
were positive (Bodi et al., 2014). RIC reduced IS and area
of no-reflow in pigs (Skyschally et al., 2017), again with
some studies lacking such effects (Baranyai et al., 2017).
Hypothermia in rabbits reduced IS and area of no-reflow,
and no-reflow was even reduced when hypothermia was
delayed later into reperfusion (Hale et al., 2013). Some
drugs, when given at reperfusion, reduced IS and no-
reflow [e.g., cyclosporine A (CsA)] (Zalewski et al., 2015)
and angiopoietin-like peptide 4 (Galaup et al., 2012).
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Nitroglycerine can protect both the myocardium and the
coronary vasculature but also interferes with RIC (Heusch,
2001; Hauerslev et al., 2018).
The experimental agenda surrounding the reduction

of reperfusion injury in the microvasculature has been
extensive, but for reasons not clearly understood much
has been “lost in clinical translation,” and definitive
clinical trials demonstrating benefit are conspicuous
by their absence (Heusch, 2017; Heusch and Gersh,
2020). More specifically, there is still debate on the role
of coronary microvascular dysfunction as cause or con-
sequence of MI and reperfusion injury (Lerman et al.,
2007; Heusch, 2019a). Clinical studies evaluating is-
chemic PreC’s effect on coronary MVO do not exist.
However, several clinical studies notably using MRI
looked not only at IS but also at coronary microvascu-
lar injury, including edema, MVO, and intramyocardial
hemorrhage, in patients with acute STEMI undergoing
either ischemic PostC (Thuny et al., 2012; Dwyer
et al., 2013; Mewton et al., 2013; Bodi et al., 2014;
Eitel et al., 2015; Kim et al., 2015; Traverse et al.,
2019), RIC (Crimi et al., 2013; White et al., 2015; Liu
et al., 2016), or both in combination (Eitel et al., 2015).
The effects on IS and MVO differed and were partly
concordantbut partly not, leaving the issue of causality
between the 2 manifestations of myocardial IRI open
and a challenge for further studies (Heusch, 2019a).
The effects of hypothermia on IS and MVO in patients
demonstrated modest benefits at best, and the most re-
cent trial actually pointed in the wrong direction in
terms of safety signals (Noc et al., 2021). Metoprolol is
1 exception and demonstrated a modest benefit on the
reduction of both IS and MVO in patients with AMI
(Garc�ıa-Prieto et al., 2017).
In conclusion, the coronary circulation is both a culprit

and a victim of myocardial IRI. Cardioprotection notably
reduces cardiomyocyte injury, as reflected by IS, but also
coronary microvascular injury, as reflected by the area of
no-reflow. The targets are clear, but identifying clinical
approaches that favorably influence coronary microvas-
cular obstruction and thereby induce cardioprotection
have been difficult and remain the “last frontier” of re-
perfusion therapy (Heusch, 2019a).

C. Chronic Endpoints

Importantly, the primary endpoints in experimen-
tal and clinical studies differ (Bochaton et al., 2019).
The most robust primary endpoint in experimental
studies on cardioprotection is IS (Bøtker, Hausenloy,
et al., 2018), and coronary microvascular injury is
also increasingly recognized as a manifestation of
IRI and thus a target of cardioprotection (Heusch,
2016, 2019a; Hausenloy, Chilian, et al., 2019) (see
previous discussion). However, in clinical studies IS
and coronary MVO are major determinants of LV re-
modeling and prognosis (Stone et al., 2016; de Waha
et al., 2017; van der Bijl et al., 2020) but still only

surrogate endpoints whereas the primary clinical
endpoint is mortality and/or hospitalization for HF
(Bøtker, Hausenloy, et al., 2018). In smaller clinical
trials, however, adverse LV remodeling, as charac-
terized by an increase in LV end-diastolic volume of
15% to 20% between baseline and follow-up meas-
ures, or circulating levels of NH2-terminal pro-B-
type natriuretic peptide, have been used as clinical
endpoints (Pryds et al., 2017; Ikonomidis et al.,
2021). Thus, when comparing experimental and clin-
ical studies, not only the endpoints per se but also
the time frame over which these endpoints are as-
sessed differ (Heusch, 2018; Lecour et al., 2021).

D. Signaling Mechanisms Involved in Cardioprotection

1. Classic Pathways. Timewise, there are 3 key steps
in the mechanism of cardioprotection: the trigger step,
the mediator step, and the end-effector step, which may
or may not involve different signaling pathways. These
steps can be clearly distinguished only in ischemic PreC
but are more difficult to discern in ischemic PostC and
RIC (Heusch, 2015; 2020) (Fig. 2). These have been exten-
sively characterized over the past 35 years and are well
established, although some controversies still remain (re-
viewed in Heusch, 2015; Hausenloy et al., 2016). More-
over, given the fact that none of these pathways have
resulted in clinically validated cardioprotective drug tar-
gets in the last 30 years suggests the possibility that
more systematic research approaches will uncover novel,
more druggable targets (Varga et al., 2015; Hausenloy
et al., 2017; Perrino et al., 2017). Ischemic PreC causes a
localized increase in the extracellular concentration of the
autacoid mediators adenosine (Liu et al., 1991), bradyki-
nin (Schulz et al., 1998), opioids (Schulz et al., 2001), and
sphingosine (Keul et al., 2016), which bind to receptors on
the cardiomyocyte plasma membrane and act additively
to initiate the trigger pathway. Ligand-receptor signaling
leads to the activation of a sequence of cytosolic kinase
pathways that ultimately cause opening of mitochondrial
ATP-sensitive potassium channels (KATP) and allow potas-
sium entry into mitochondria (Liu et al., 1996). Connexin
43 located at the inner mitochondrial membrane forms
hemichannels that are also believed to be involved in the
passage of potassium into mitochondria and required for
cardioprotection by ischemic PreC (Boengler et al., 2005;
Heinzel et al., 2005; Miro-Casas et al., 2009; Boengler,
Ungefug, Heusch, Leybaert, et al., 2013; Gadicherla et al.,
2017; Hirschh€auser et al., 2021). The reperfusion phase of
ischemic PreC is crucial for the trigger pathway of cardio-
protection, because reoxygenation allows mitochondrial
respiration to recommence, which is associated with a
small burst of reactive oxygen species (ROS) that acti-
vates protein kinase C (PKC) (Liu et al., 1994); the role of
PKC in ischemic PreC of larger mammals such as the pig
is still contentious (Vahlhaus et al., 1996).
The reperfusion injury salvage kinase (RISK) pathway

describes a group of prosurvival kinases that must be
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activated at the time of reperfusion for ischemic PreC to
protect against IRI (Schulman et al., 2002). The relative
importance of different signaling pathways appears to vary
between species. In rodents, the ischemic PreC signaling
pathway is dependent on both the phosphoinositide-3-
kinase (PI3K)a/protein kinase B (Akt) 1 and mitogen-
activated protein kinase/extracellular signal related kinase
(ERK)1/2 signaling pathways (Hausenloy and Yellon,
2004; Kunuthur et al., 2012; Rossello et al., 2017). In
pigs and humans, the salvage activating factor enhance-
ment (SAFE) pathway, consisting of gp 130/tumor necro-
sis factor (TNF) receptor-mediated activation of janus
kinase/signal transducers and activators of transcription
(STAT) factors, appears to play a more important role
(Lecour, 2009; Heusch et al., 2012; Kleinbongard, Sky-
schally, Heusch., 2017; Hadebe et al., 2018). Evidence sug-
gests that the RISK and/or SAFE pathways are also
involved in ischemic PostC and RIC, although the RISK
pathway might not be essential to achieve cardioprotec-
tion (Skyschally et al., 2009; Inserte et al., 2013). Simi-
larly, ischemic PreC may activate the RISK and SAFE
pathways to limit mPTP opening and reduce IS (Davidson
et al., 2006; Hausenloy et al., 2004; Lecour, 2009), but it
remains unclear whether cardioprotective kinases protect
directly via phosphorylation of end-effector proteins, or in-
directly via improved mitochondrial respiration, suppres-
sion of mitochondrial calcium overload and oxidative
stress (Clarke et al., 2008; Heusch et al., 2011; Skyschally
et al., 2018). The NOS/NO-cyclic guanosine monophos-
phate signaling pathway is also necessary for ischemic
PreC (Talukder et al., 2010). NO, being a gaseous mole-
cule, can diffuse between organelles and cells to pro-
tect mitochondria from I/R by nitrosylating and inhibit
mitochondrial complex I, suppressing the production of
damaging ROS during early reperfusion (Chouchani
et al., 2013; Rassaf et al., 2014).
Since ischemic PostC is applied at reperfusion, the

trigger step is obviously different from ischemic PreC
and may or may not involve different signaling path-
ways. By preventing complete reperfusion, ischemic
PostC is believed to maintain an acidic myocardial pH,
thereby acting at several cell targets involved in cardi-
oprotection (i.e., preventing hypercontraction, calpain-
mediated proteolysis, mPTP opening, and gap junc-
tion-mediated spread of injury during the first minutes
of reflow) (Cohen et al., 2008; Inserte et al., 2011).
However, aspects of the signal transduction and end-
effector appear to be similar between ischemic PostC
and ischemic PreC (e.g., protein kinases and ROS)
(Penna et al., 2006; Barsukevich et al., 2015).
The signaling mechanism for RIC necessitates an

additional step to enable communication between the
triggering pathway in the remote organ and the end-
effector pathway in the heart. A wide range of hu-
moral factors have been proposed to mediate this
communication, but there is no consensus on the

critical molecule/s, and there may be multiple redun-
dant factors (for review see Kleinbongard, Skyschally
A, Gent, et al., 2017; Tsibulnikov et al., 2019). The
parasympathetic nervous system is also required for
transmission of the cardioprotective signal (Donato
et al., 2013), meaning that both neural and hormonal
signals are required (Lim et al., 2010). The spleen is
an important relay organ between the neuronal and
humoral signals of RIC (Lieder, Kleinbongard, et al.,
2018; Heusch, 2019c). Interestingly, the various forms
of ischemic conditioning (ischemic PreC, ischemic
PostC, RIC) may all lead ultimately to the same cellu-
lar end-effectors to mediate cardioprotection (Heusch,
2015, 2020; Wolfrum et al., 2002). In this respect, the
reduction in myocardial IS by RIC also involves acti-
vation of the PI3K/Akt pathway (thereby enhancing au-
tophagy) (Gao et al., 2022), activation of STAT3
(Kleinbongard et al., 2018), and adenosine 50-monophos-
phate activated protein kinase (Xu et al., 2022).

2. Mitochondria. Mitochondria are at the crossroads
of cell death and survival through a plethora of functions
that make them not only triggers but also mediators and
end-effectors of cardioprotection due to their multifaceted
participation in the pathophysiology of IRI, as extensively
reviewed elsewhere (Davidson, Ferdinandy, et al., 2019).
During ischemia, the interruption in the generation of
mitochondrial adenosine triphosphate by oxidative phos-
phorylation is the triggering mechanism for the profound
ionic and biochemical disturbances of cardiomyocytes (see
previous discussion), the duration of which determines
the fate of the cells (Piper et al., 1998). Upon reperfusion,
the abnormal resumption of mitochondrial respiration
(leading to an excessive and unregulated ROS production)
and mitochondrial matrix calcium accumulation can syn-
ergistically exacerbate energy collapse through the activa-
tion of irreversible mPTP, a pathologic disruption of the
inner membrane that induces massive matrix swelling
and culminates in cell death (Halestrap and Richardson,
2015). In support of this, mice in which mitochondrial
calcium overload was inhibited by cardiomyocyte-specific
deletion of the mitochondrial calcium uniporter were pro-
tected against IRI (Luongo et al., 2015).
However, despite the enormous interest aroused by

mPTP as a therapeutic target to prevent mitochondrial
failure, its molecular entity remains controversial. Either
a change in the dimerization of the FoF1-ATP synthase
or a structural alteration within the enzyme holocomplex
constitute some of the proposed models of the energy-
dissipating channel that have received the most experi-
mental support (Giorgio et al., 2013; Alavian et al., 2014;
Bonora et al., 2017). Nevertheless, attempts to prevent
mPTP by pharmacological inhibition of cyclophilin D
(a regulatory protein known to interact with FoF1-ATP
synthase; Giorgio et al., 2013) to desensitize mPTP against
calcium resulted in inconsistent effects on cardiomyocyte
survival during I/R and failed to confer clinical benefit in
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patients (Lim et al., 2012; Cung et al., 2015; Rahman
et al., 2018). Of note, the failure of clinical trials to demon-
strate cardioprotection using mPTP inhibitors does not ne-
gate its role in human heart but is more likely due to
incomplete understanding of required dose/target in hu-
mans (Shanmuganathan et al., 2005; see Section IIIa3).
In contrast, the attenuation of the complex 1-mediated mi-
tochondrial ROS generation by different interventions, in-
cluding either pharmacological or genetic inhibition of the
reverse electron transport from complex II to complex I re-
duces mPTP opening and limits IS in mice (Chouchani
et al., 2014; Valls-Lacalle et al., 2016; Yin et al., 2021)
and in the in vivo pig model (Valls-Lacalle et al., 2018).
Malonate—as one example—only reduced infarct size in
the isolated mouse heart when administered at reperfu-
sion, whereas an acidic malonate formulation was re-
quired to affect infarct size with administration before
ischemia (Prag et al., 2022; Schulz and Heusch, 2022).
However, malonate turned out not to have additive cardio-
protective effects on IS reduction in pigs when combined
with RIC (Consegal et al., 2021), despite the fact that con-
ditioning strategies had been previously shown to modu-
late mPTP susceptibility (Heusch et al., 2011).
In a pig model of IRI with or without ischemic PostC,

mitochondrial proteome analysis revealed a dual role for
ischemic PostC promoting metabolic reprogramming of
the myocardium and a protective response mediated by
the voltage-dependent anion channel 2 and DJ-1 in the
mitochondria (Gallinat et al., 2022). Cardiac mitochondria
are dynamic organelles and organize into differentiated
populations. As a general rule, interventions capable of
decreasing mitochondrial fission (or increasing mitochon-
drial fusion) reduce IRI (Hernandez-Resendiz et al., 2020).
Hence, genetic or pharmacological inhibition of the fission
protein dynamin-related protein 1 mitigated cardiac in-
jury in murine models of I/R, although this treatment
failed to protect the heart in the more clinically relevant
closed-chest pig model of AMI (Ong et al., 2019). Similarly,
the beneficial effects of both aerobic exercise conditioning
(Ghahremani et al., 2018) and RIC (Cellier et al., 2016) on
IS have been attributed to a better maintenance of the
elongated mitochondrial morphology in rat models of
in vivo I/R. As for their subcellular location, subsarcolem-
mal mitochondria have a greater contribution to ROS pro-
duction (Crochemore et al., 2015) and IRI (Lesnefsky
et al., 1997) and are more sensitive toward pharmacologi-
cal and ischemic conditioning than interfibrillar mitochon-
dria (Holmuhamedov et al., 2012; Sun et al., 2015).
Moreover, only subsarcolemmal mitochondria contain con-
nexin 43 at their inner membrane (Boengler, Stahlhofen,
et al., 2009), a protein involved in the ischemic PreC car-
dioprotection (Rodriguez-Sinovas et al., 2006; Ruiz-Meana
et al., 2014) that has recently been identified as one of the
interactors of the FoF1-ATP synthase (Boengler et al.,
2018). Also, STAT 3 activation impacts on mitochondrial
function; it increases respiration, ATP formation, and

calcium retention capacity and decreases ROS formation
in rat and mouse mitochondria of myocardium undergo-
ing IRI with ischemic PreC or PostC (Boengler et al.,
2008; Boengler et al., 2010; Heusch et al., 2011; Boengler,
Ungefug, Heusch, and Schulz, 2013; Skyschally et al.,
2018). Taken together, there are multiple available lines
of evidence that link the cardioprotective effect of condi-
tioning strategies with better mitochondrial function and
integrity, yet the causality between both phenomena is
difficult to establish. In part, a more preserved mitochon-
drial function and network could simply be the conse-
quence of the otherwise well-known beneficial effects of
these maneuvers on cellular ionic homeostasis (Inserte
et al., 2014; Hausenloy et al., 2016). Furthermore, the ef-
fects on mitochondria can vary depending on the condi-
tioning algorithm, the animal species, and the subtype of
mitochondria.

3. Metabolism and Metabolomics. It has long been
known that cardiac substrate metabolism is a main de-
terminant of the severity of IRI. This is not surprising
considering that I/R is in principle a metabolic pathology,
with abruptly altered metabolism and thus energy pro-
duction during the nonhomeostatic transitions from nor-
moxia to ischemia and from ischemia to reperfusion
(Guth et al., 1987). One of the first cardioprotective
strategies examined against IRI was a metabolic treat-
ment, employing glucose-insulin-potassium infusions to
attenuate electrographic disturbances during MI (Sodi-
Pallares et al., 1962). It is now known that almost every
specific metabolic substrate pathway can affect cardiac
IRI (Zuurbier et al., 2020). However, the complex inter-
actions between these metabolic pathways have likely
hindered the development of a singular metabolic treat-
ment providing robust cardioprotection against IRI in
the clinical condition. Nevertheless, in terms of metabolic
approaches, it seems that activation of glycolysis, glu-
cose, and ketone oxidation and inhibition of fatty acid
metabolism and oxygen consumption holds the most
promise for protecting the heart against IRI (Zuurbier
et al., 2020).
Increases in glucose uptake and glycolysis in rodent

hearts are mandatory for protecting the heart during
low-flow ischemia (Lochner et al., 1996) and for various
cardioprotective interventions such as ischemic PreC
(Ji et al., 2013), ischemic PostC (Correa et al., 2008),
and nicotinamide adenine dinucleotide (NAD) supple-
mentation (Nadtochiy et al., 2018) to be effective.
The coenzyme NAD1 is critical for many biochemical

pathways and the cellular stress response, and it is de-
creased in aging and many pathologies including car-
diovascular diseases (Fang et al., 2017). During cardiac
I/R, NAD1 is acutely decreased in rat heart (Di Lisa
et al., 2001), partly due to mPTP opening. NAD1 is also
used by sirtuins, a group of lysine de-acetylation en-
zymes controlling metabolism (Anderson et al., 2014).
Metabolic overloading such as that present in the
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metabolic syndrome results in increased acetylation
(due to increases in acetyl-coenzyme A) and thereby in-
hibition of, for example, glucose uptake pathways in rat
hearts (Renguet et al., 2017), interfering with cardio-
protection. Sirtuins can de-acetylate these pathways
and restore cardioprotection. In several studies NAD
precursors protected against cardiac IRI (Yamamoto
et al., 2014; Nadtochiy et al., 2018; Xiao et al., 2021).
That an activated glucose metabolism is needed for

protection is commensurate with the finding that many
of the critical signaling molecules (ROS, NO, PKC) trig-
gering and mediating protection (see Fig. 2) are also
know activators of glucose metabolism (Tada et al.,
2000; Nishino et al., 2004). Metabolomic studies in rat
hearts also indicated that protection through PKCe is
associated with changes in glucose metabolism (Mayr
et al., 2009). It seems that ischemic PreC-activated glu-
cose metabolism (e.g., glycolysis) slows down mitochon-
drial reactivation following reperfusion (Zuurbier and
Ince, 2002), possibly through increased binding of the
glycolytic enzyme hexokinase II to mitochondria (Gurel
et al., 2009; Nederlof et al., 2017). Glucose and mito-
chondrially bound hexokinase II are both needed for ef-
fective ischemic PreC and reductions in IS and cell
death in rodent hearts (Pasdois et al., 2012; Smeele
et al., 2011; Sun et al., 2008). Slowing down mitochon-
drial activity results in decreased oxygen consumption
during reperfusion, which has been suggested to contri-
bute to cardioprotection (Burwell et al., 2009). However,
the role of mitochondrial function for cardioprotection
during reperfusion is somewhat contentious, since STAT3
activation has been shown to mediate cardioprotection by
ischemic PostC and RIC through improved mitochondrial
function (see previous discussion).
Increased fatty acid uptake and incomplete fatty acid

metabolism during ischemia aggravate IRI through the
build-up of long-chain acylcarnitines within the mito-
chondria, resulting in an increase of mitochondrial ROS
production (Dambrova et al., 2021). However, although
ischemic PreC efficacy is often decreased in conditions
of elevated fatty acid metabolism, this is not always ob-
served (Dalgas et al., 2012). Metabolomics studies have
suggested that (i) exercise-induced cardioprotection is
associated with changes in rat heart ammonia recy-
cling, protein biosynthesis, and pantothenate and coen-
zyme A biosynthesis (Parry et al., 2018) and (ii) RIC in
rats and humans with decreases in plasma ornithine
and increases in kynurenine and glycine (Chao de la
Barca et al., 2016; Kouassi Nzoughet et al., 2017;
Bakhta et al., 2020). Previous work in murine hearts
had already indicated the possible important role of
alpha-ketoglutarate induced kynurenic acid synthesis
in mediating RIC (Olenchock et al., 2016).
Oeing et al. (2021) recently confirmed the impor-

tance of glucose metabolism in cardioprotection and is-
chemic PreC by demonstrating that mechanistic target

of rapamycin c1-activated glycolysis at the expense of
fatty acid oxidation offers protection of the murine
heart against IRI and mediated ischemic PreC protec-
tive effects. Lochner et al. (2020) confirmed the manda-
tory role of glucose in ischemic PreC and that high
fatty acid levels prevented ischemic PreC in rat heart.

4. Circulating Cells. Circulating cells can strongly
impact on IRI through various mechanisms (for a re-
view, see Davidson, Andreadou, et al., 2019). Among
the different circulatory cells, platelets play an impor-
tant role in myocardial I/R. Platelets, beyond hemo-
stasis and thrombosis, are characterized as versatile
cells directly involved in various physiologic and path-
ophysiological processes (Russo et al., 2017). Several
imaging studies have provided evidence that platelets
contribute to IRI in in vivo rodent models of cardiac
IRI; they are activated early during reperfusion and
localized within the ischemic and necrotic areas (von
Elverfeldt et al., 2014; Ziegler et al., 2016; Ziegler
et al., 2019). Additionally, circulating platelets change
their characteristics due to IRI (Eicher et al., 2016;
Kaudewitz et al., 2016) as has been shown by proteo-
mic studies in STEMI patients (Ruggeri, 2002).
Platelets also carry and release multiple factors

with the potential to reduce IRI (Hjortbak et al.,
2021; Kleinbongard et al., 2021), although the role of
circulating platelets as signal mediators of cardiopro-
tection is far from being understood. In recent studies,
RIC exerted its cardioprotective effect through modulat-
ing platelet function by reducing the formation of mono-
cyte-platelet conjugates and thrombus formation (Lanza
et al., 2016) and was associated with a reduction in
platelet reactivity within the first 48-hour post STEMI
(Gorog et al., 2021) (for review see Kleinbongard et al.,
2021). More studies are necessary to understand the
role of platelets in IRI and their importance for condi-
tioning strategies.
Erythrocyte dysfunction contributes to a reduced NO

bioavailability and thereby to increased IS and mortal-
ity from IRI in mice (Wischmann et al., 2020); also,
erythrocyte stasis contributes to the no-reflow phenom-
enon (Kyrou et al., 2011).
Neutrophil (polymorphonuclear leukocyte) recruitment

to ischemic, and more particularly reperfused, myocar-
dium has been recognized as a pathologic hallmark of
AMI for nearly a century. As described earlier, neutrophil
adherence and plugging may play a key role in MVO
supply and no-reflow. However, a direct causal role of
neutrophils in the evolution of myocyte death, at least in
the early stages of AMI, has been contentious (Baxter,
2002; Lefer, 2002). There is evidence that effective IS-
limiting interventions including ischemic PreC and ische-
mic PostC result in reduced neutrophil accumulation.
One study suggests that neutrophil inhibition is causally
related to IS limitation by ischemic PostC (Granfeldt
et al., 2012). There is also limited evidence from human
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RIC studies to suggest that rapid and long-lasting sys-
temic neutrophil inhibition occurs in response to the RIC
stimulus (Kharbanda et al., 2001; Shimizu et al., 2010;
Saxena et al., 2013). The extent to which these observa-
tions are mechanistically important in cardioprotection is
unknown.

5. Innate Immunity and the NLRP3 Inflammasome.
Neither circulating monocytes nor cardiac-resident

macrophages contribute to acute IRI, although they are
crucial for longer term infarct and LV remodeling (Baj-
pai et al., 2019).
During I/R, resident cardiac mast cells degranulate,

releasing their proteolytic and damaging contents.
Consequently, mast cell stabilizing compounds are
cardioprotective (Wang et al., 1996; Rork et al., 2008;
Bajpai et al., 2019). However, mast cell degranulation
does not appear to contribute to ischemic PreC (Wang
et al., 1996).
Necrosis or pyroptosis of cardiac cells during I/R re-

leases their contents into the extracellular milieu, where
they are recognized by the innate immune system as
damage-associated molecular patterns. Some damage-as-
sociated molecular patterns particularly relevant to car-
diac I/R injury include proteins of the extracellular
matrix, heat shock proteins, S100 proteins, ATP, histo-
nes, high-mobility group box 1 (HMGB1), IL-1a, and mi-
tochondrial deoxyribonucleic acid (Vilahur and Badimon,
2014). For example, heat shock protein 60 can induce ap-
optosis in cardiomyocytes (Kim et al., 2009). Damage-as-
sociated molecular patterns are recognized by toll-like
receptors, particularly toll-like receptors 2 and 4, and
are targets for reducing IRI. Histones released during I/
R damage cardiomyocytes by toll-like receptor 4 related
mechanism (Shah et al., 2022). Inhibition of toll-like re-
ceptor 2 reduces IS in both mouse and pig models (Ar-
slan et al., 2010; Arslan et al., 2012). Knockout of toll-
like receptor 3 (Lu et al., 2014) or 4 (Oyama et al., 2004)
reduces IS in mice after I/R. Mitochondria are funda-
mentally involved in innate immunity and sterile in-
flammation. After exposure to NLRP3 activators, damaged
mitochondria accumulate, leading to increased production
of oxidized mtDNA fragments. These associate with the
NLRP3 inflammasome in the cytosol and are required for
its activation (Zhou et al., 2011; Zhong et al., 2018).
The complement system forms an important aspect of
the innate immune system. Blocking of either the classic,
antibody-activated, complement pathway with a C1 esterase
inhibitor or of complement factor C5a in the alternative
pathway reduces IS in animals subject to I/R (Buerke et al.,
1995; van der Pals et al., 2010) (reviewed in Yasuda et al.,
1990).
The NLRP3 inflammasome and innate immunity are

potential targets for acute cardioprotection. However,
Zuurbier et al. showed that NLRP3 is barely expressed
in healthy murine hearts, and deletion of NLRP3 had
no effect on IS following I/R either in perfused mouse

hearts or in vivo (Zuurbier et al., 2012; Jong et al.,
2014). In contrast, Sandanger et al. (2013) reported that
isolated mouse hearts lacking NLRP3 had smaller IS
following global I/R. Generally, it seems that approxi-
mately 24 hours reperfusion time is required for priming
(expression) of the NLRP3 inflammasome for pyroptosis
to make a significant contribution to IS in wildtype
hearts (Merkle et al., 2007; Kawaguchi et al., 2011;
Sandanger et al., 2013; Jong et al., 2014; Sandanger
et al., 2016). In line with this, an NLRP3 inflamma-
some inhibitor was able to reduce IS even when ad-
ministered to mice after 1 hour of reperfusion but only
when IS was measured 24 hours following infarction
(and not after only 3 hours) (Toldo et al., 2016). The se-
lective NLRP3-inflammasome inhibitor MCC950 re-
duced IS measured 7 days following I/R in pigs (van
Hout et al., 2017). A recent study has implicated an
NLRP3-independent, oxidative stress-dependent path-
way of caspase-11 mediated cleavage of gasdermin D
within cardiomyocytes, and release of Il-18 in IRI, and
showed that IS was reduced in gasdermin D knockout
mice 24 hours after I/R (Shi et al., 2021).
There is some evidence that the NLRP3 inflammasome

may be involved in ischemic PreC, although more studies
are required to investigate the role of priming. The bene-
fit of ischemic PreC was lost in NLRP3 knockout but not
apoptosis-associated speck-like protein containing caspase
recruitment domains knockout hearts in the ex vivo Lan-
gendorff model (Zuurbier et al., 2012). Pharmacological
preconditioning with a toll-like receptor 2 agonist was
also lost in NLRP3 knockout hearts (Sandanger et al.,
2016). There is limited evidence that RIC might also af-
fect innate inflammation, as recently reviewed (Pearce
et al., 2021). Notably, it has been reported that expres-
sion of the NLRP3 inflammasome is higher in infiltrat-
ing inflammatory cells and murine cardiac fibroblasts
(Kawaguchi et al., 2011; Sandanger et al., 2013), so
these may be a target for cardioprotection in addition to
cardiomyocytes. An important question remains whether
comorbidities can prime expression of NLRP3 inflamma-
some and gasdermin D, which would increase their rele-
vance to the I/R process in diseased hearts.
Indeed, sterile inflammation has been described in other

inflammatory conditions such as gout, pseudogout, type 2
diabetes mellitus, metabolic syndrome, atherosclerosis, as-
bestosis, silicosis, and Alzheimer’s disease (for review see
Algoet et al., 2022). There is a growing understanding that
these disorders are pathophysiologically linked to and can
modulate the course of IRI and its response to treatment.
The term “metaflammation” describes ametabolically trig-
gered chronic enhanced systemic inflammatory status
that is associated with these conditions (Itoh et al., 2022),
and such a chronic inflammatory status is also observed
in the elderly population without comorbidities (termed
“inflammaging”) (Liberale et al., 2022).
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6. Exosomes. Since our last substantial review of
this topic, there has been an explosion of interest in
cell-derived nanoparticles called exosomes (Prakash
et al., 2020). These extracellular vesicles are released
from all types of cells and are found in the blood of all
species. Although they are derived mainly from eryth-
rocytes and platelets, some are derived from the vascu-
lature and some from cardiomyocytes (Hegyesi et al.,
2022), and they play a role in cardioprotection (Sluijter
et al., 2018). Ischemic PreC increases the release of
exosomes from endothelial cells or from the heart, and
these exosomes are cardioprotective via a signaling
pathway involving ERK1/2 (Davidson, Riquelme, et al.,
2018). The potential for exosomes to be involved in RIC
was first suggested in 2014 (Yellon and Davidson,
2014), and at the same time the first evidence for this
was provided by the demonstration that exosomes could
transfer cardioprotection from 1 isolated heart to an-
other (Giricz et al., 2014). RIC was shown in both hu-
mans and rats to increase the number of exosomes in
the blood, although in this study no additional protec-
tion was seen with exosomes after RIC (Vicencio et al.,
2015). Another study measured elevated levels of micro-
RNA (miR)144 in the blood of mice and humans follow-
ing RIC, which they proposed was circulated via
exosomes to the heart to induce cardioprotection in
mice (Li et al., 2014). In patients undergoing coronary
artery bypass grafting (CABG), prior RIC increased the
number of circulating exosomes and notably their miR
20 content along with reduced postoperative troponin
release (Frey et al., 2019). It was recently proposed that
IPost increases the release of miR 423-3p-containing
exosomes from cardiac fibroblasts and that these partic-
ipate in the cardioprotective effects of ischemic PostC,
via the downstream effector RAP2C (member of RAS
oncogene family) (Luo et al., 2019). In healthy volun-
teers undergoing RIC, protection was transferred to iso-
lated rat hearts and mediated by extracellular vesicles
and their miR cargo of miR 16-5p, 144-3p and 451a
(Lassen, Just, et al., 2021). It remains unclear how
miRs are able to act rapidly enough on their target
transcripts to affect a rapidly developing AMI. Interest-
ingly, diabetes impairs cardioprotection by exosomes
(Davidson, Andreadou, et al., 2018; Wider et al., 2018).

7. Cardiac Transcriptome. Rapid development of
‘omics technologies in the last 2 decades especially with
transcriptomics have enabled the measurement of ex-
pression of all known coding and noncoding RNAs.
Noncoding RNAs exhibit highly organized spatial and
temporal expression patterns and are emerging as criti-
cal regulators of differentiation, homeostasis, and path-
ologic states, including in the cardiovascular system
(Abbas et al., 2020; Shah et al., 2022). Unbiased bioin-
formatics evaluation of such data has led to the discov-
ery of novel mechanisms and promising drug targets
for cardioprotection (for reviews see Perrino et al.,
2017; Parini et al., 2020). It was shown in the early

2000s that ischemic PreC dramatically altered cardiac
gene expression pattern at the mRNA level in rats
(Onody et al., 2003) (for review see Perrino et al., 2017).
Global cardiac miR expression changes are also ob-
served in pig models of ischemic PreC and ischemic
PostC (Spannbauer et al., 2019). In 2013, the first
evidence was provided that the expression profile of
noncoding miR (fine-tune regulators of mRNA expre-
ssion) in preconditioned and postconditioned hearts are
also altered and several miRs expression changes are
associated with cardioprotection—these miRs have been
termed protectomiRs (Varga et al., 2014). In particular, a
mimic of miR 125b has been shown by several groups to
play an important role in ischemic PreC in different
models (Wang et al., 2014; Bayoumi et al., 2018; Varga
et al., 2018). To date, several miRs have been proposed
to be involved in cardioprotective signaling, such as
miR 1, miR 144, and miR 221. By unbiased molecular
network analysis of miR-mRNA interactions, novel gene
targets can be explored (for review see Makkos et al.,
2021). Other noncoding RNAs such as circular and long-
noncoding are also involved in cardioprotective signaling;
however, little is known about their function and possible
therapeutic relevance (Wu et al., 2017; Cai et al., 2019;
Jusic et al., 2020; Lou et al., 2021).

III. Clinical Approaches to Cardioprotection

A large number of clinical studies have evaluated the
cardioprotective effects of ischemic PreC, ischemic PostC,
and RIC in patients experiencing acute myocardial IRI
during AMI or in cardiac surgery patients. Unfortunately,
the results have been variable and overall disappointing
(Heusch and Rassaf, 2016) with large multicenter phase 3
studies failing to show any benefit on “hard” clinical out-
comes with these cardioprotective interventions and treat-
ments in AMI or cardiac surgery patients (Hausenloy
et al., 2015; Meybohm et al., 2015; Hausenloy, Kharbanda,
et al., 2019) (see Tables 1 and 2). Apart from providing an
overview of recent clinical cardioprotection studies, the
challenges facing the translation of cardioprotection for
patient benefit will be discussed (Heusch, 2017, 2020),
and future opportunities for realizing the clinical potential
of cardioprotection will be highlighted.

A. Cardioprotective Strategies

Cardioprotective strategies include mechanical in-
terventions to change blood flow with different clini-
cally approved or novel medical devices as well as
with repositioning of drugs on the market and novel
drug candidates (Fig. 1). Regulatory and ethical re-
quirements for such clinical studies are not covered in
this review.

1. Ischemic Preconditioning and Postconditioning.
Clinically, the use of ischemic PreC has been largely
restricted to patients undergoing cardiac surgery (for
review see Buja, 2022). In this setting, early studies
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demonstrated that intermittent cross-clamping of the
aorta reduced myocardial injury (assessed by serum
cardiac biomarkers such as creatine kinase-MB or tro-
ponin T) (Jenkins et al., 1997), and a meta-analysis
found potential benefits with RIC with reduced ar-
rhythmias, less inotrope support requirement, and re-
duced intensive care unit stay (Walsh et al., 2008).
However, given the invasive nature of the ischemic
PreC stimulus and the potential risk of cerebral throm-
boembolism from cross-clamping of an atherosclerotic
aorta, ischemic PreC has been largely abandoned in
cardiac surgery.
In contrast to ischemic PreC, ischemic PostC could be

applied at the time of reperfusion in AMI patients un-
dergoing balloon angioplasty at the time of PPCI (Staat
et al., 2005). Although shown to be initially promising,
with ischemic PostC reducing myocardial IS and pre-
serving cardiac function in a number of small clinical
studies (Staat et al., 2005; Thibault et al., 2008), these
were followed by several neutral and even negative
studies (Freixa et al., 2012; Heusch, 2012; Tarantini
et al., 2012). Unfortunately, the large DANAMI-3 trial,
which evaluated the effects of ischemic PostC in 1234
STEMI patients undergoing PPCI, failed to report any
beneficial effects on clinical outcomes (Engstrøm et al.,
2017). The reasons for this failure are not clear but
may relate to the ischemic PostC protocol used in the
study with the ischemic PostC protocol being delivered
within the stent and/or the low-risk patient population
(making the study underpowered). Of note, in a post
hoc study patients without thrombectomy had reduced
risk of all-cause mortality and hospitalization for HF
with ischemic PostC (Nepper-Christensen et al., 2020).
Ischemic PostC has also been shown to reduce perioper-
ative myocardial injury in the setting of CABG using
intermittent cross-clamping of the aorta once the pa-
tient has come off cardiopulmonary bypass (Luo et al.,
2008; Candilio and Hausenloy, 2017), but, as for ische-
mic PreC, the invasiveness of the procedure has limited
its application. In a recent multicenter trial, ischemic
PostC by 3 cycles of normothermic antegrade blood car-
dioplegia before release of the aortic clamp did not
improve cardiac index (primary endpoint) or reduce
troponin T or creatine kinase release but reduced a
combined secondary endpoint of intraoperative ventric-
ular fibrillation and postoperative atrial fibrillation
and suggested hemodynamic differences in the response
to PostC between male and female patients undergoing
aortic valve replacement (see Kaljusto et al., 2022 and
accompanying editorial Podesser and Kiss, 2022). Both
ischemic PreC and ischemic PostC require the cardio-
protective intervention to be applied directly to the
heart, making the procedure invasive and more chal-
lenging to apply in the clinical setting. In this regard,
RIC, which allows the cardioprotective stimulus to be
applied to an organ or tissue away from the heart, has

been intensively investigated as a cardioprotective in-
tervention in the clinical setting.

2. Remote Ischemic Conditioning. The ability to ap-
ply the cardioprotective stimulus to the arm or leg by
simply inflating and deflating a pneumatic cuff on the
upper arm/leg or thigh to induce brief nonlethal episodes
of I/R, has greatly facilitated the testing of limb RIC in
patients at risk of acute myocardial IRI (Heusch et al.,
2015). Single-occasion RIC reduces arterial stiffness and
LV remodeling after AMI (Ikonomidis et al., 2021) be-
yond IS reduction alone, but the effect does not unequiv-
ocally translate into a reduction of HF admission in
patients (Sloth et al., 2014). Several smaller clinical stud-
ies have demonstrated that limb RIC (applying 3 to 4
5-minute cycles of cuff inflation and deflation) prior to
CABG surgery reduced perioperative myocardial injury
(quantified by serum troponin levels) (Hausenloy et al.,
2007; Thielmann et al., 2013), although not all studies
have been positive (Rahman et al., 2010). Unfortunately,
3 large, multicenter studies in cardiac surgery patients
failed to show any improvement in clinical outcomes
with limb RIC applied to cardiac surgery patients (Hong
et al., 2014; Hausenloy et al., 2015; Meybohm et al.,
2015). The reasons for this failure are not clear but have
been attributed to the potential confounding effects of
certain comedications such as propofol anesthesia (Kot-
tenberg et al., 2012), nitrates (Candilio et al., 2015), or
beta-blockers (Cho et al., 2019) (see Section V). Further-
more, the causes of myocardial injury during CABG are
not only due to acute myocardial IRI as coronary emboli-
zation, direct handling of the heart, and inflammatory
injury associated with cardiopulmonary bypass may be
etiological and not amenable to RIC cardioprotection. In
contrast, an acute STEMI patient treated by reperfusion
using PPCI represents a “purer” setting of acute myocar-
dial IRI, which should be more amenable to the cardio-
protective effects of limb RIC.
The first study to demonstrate this in STEMI pa-

tients was by Bøtker et al. (2010), who showed apply-
ing limb RIC patients in the ambulance on the way to
the PPCI center, improved myocardial salvage (as-
sessed by myocardial single-photon-emissions-tomog-
raphy imaging) but did not reduce myocardial IS.
Subsequent studies confirmed the cardioprotective ef-
fect of limb RIC administered on arrival at the hospi-
tal quantified by cardiac MRI (White et al., 2015) and
even at the onset of reperfusion (Crimi et al., 2013),
although not all studies have been positive (Verouhis
et al., 2016). One large clinical study did demonstrate
improved clinical outcomes with less HF hospitaliza-
tion and cardiac death (Gaspar et al., 2018). In addi-
tion, follow-up studies of RIC-treated STEMI patients
suggested an improvement in major adverse cardiac
events at follow-up (Sloth et al., 2014; Stiermaier
et al., 2019). However, despite these promising stud-
ies, the large, multicenter CONDI-2/ERIC-PPCI trial
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of 5401 STEMI patients failed to find any improve-
ment in rates of HF hospitalization and cardiac death
at 12 months (Hausenloy, Kharbanda, et al., 2019).
The reasons for this failure to translate limb RIC for
patient benefit are not clear but may relate to the
low-risk population recruited in this trial (Heusch
and Gersh, 2020) (see Section IIIa3.).
Most clinical cardioprotective studies with limb RIC

have applied 1 stimulus at the time of cardiac surgery
or STEMI, but animal studies have suggested that
cardioreparative effects of RIC may be induced by re-
peated daily episodes of limb RIC (Wei et al., 2011).
Extended exposure to RIC may add further modula-
tion of myocardial remodeling. Repeated RIC modifies
the human inflammatory response and leukocyte ad-
hesion (Shimizu et al., 2010) and improves coronary
microcirculation in healthy volunteers and patients
with HF (Jones et al., 2014). In contrast to single-
occasion RIC, repeated RIC reduces blood pressure
(Baffour-Awuah et al., 2021), allowing afterload re-
duction to modulate myocardial remodeling favorably.
Nonetheless, the Daily REmote Ischemic Condition-
ing Following Acute Myocardial Infarction (DREAM)
study demonstrated no effect of 4 weeks of daily RIC-
treatment initiated 3 days after PPCI on ventricular
function in 73 patients with reduced LV function after
the acute coronary event (Vanezis et al., 2018). In pi-
lot studies, repeated RIC as add-on to standard anti-
congestive treatment in patients with stable chronic
HF did not improve LV ejection fraction but decreased
circulating NH2-terminal pro-B-type natriuretic pep-
tide and skeletal muscle function after 28 days of RIC
treatment once daily (Pryds et al., 2017), whereas ex-
ercise capacity was not different (McDonald et al.,
2014). However, prolonged periods of daily limb RIC
have been reported to be beneficial in patients with
intracranial stenosis at risk of stroke (Meng et al.,
2012). Despite the failure to translate the cardiopro-
tective effects of limb RIC into a clinical benefit in
cardiac surgery or STEMI patients, it may still have
potential in STEMI patients at elevated risk of com-
promised outcome (Cheskes et al., 2020; Hausenloy
et al., 2020) and other settings of acute IRI, such as
kidney transplantation (MacAllister et al., 2015).

3. Pharmacological Cardioprotection. A detailed
description of comedication administered to treat pa-
tients’ comorbidities and its impact on IRI as well as
cardioprotective interventions will be discussed exten-
sively in Section V. However, some pharmacological
approaches derived from a better understanding of
the signaling cascades involved in endogenous cardio-
protection have also been evaluated in clinical trials
(Table 2).
The most promising of these was CsA, a mPTP in-

hibitor that had been shown in small and large animal
studies to reduce IS (Hausenloy et al., 2002; Argaud

et al., 2005; Skyschally et al., 2010), although not all
studies had been positive (Karlsson et al., 2010; Lim
et al., 2012). While initial phase 2 clinical studies with
CsA reported reducing myocardial injury in cardiac
surgery patients (Chiari et al., 2014; Hausenloy et al.,
2014) and smaller IS in STEMI patients (Piot et al.,
2008), 1 study did not show cardioprotection with CsA
in STEMI patients (Ghaffari et al., 2013). Unfortu-
nately, 2 large, multicenter clinical studies (CIRCUS
and CYCLE) (Cung et al., 2015; Ottani et al., 2016)
failed to demonstrate improved clinical outcomes with
CsA administered prior to reperfusion in STEMI pa-
tients. Why these larger clinical trials failed to confirm
the benefit of CsA on either reducing IS or clinical out-
comes is unclear but may have been due to a type I er-
ror, insufficient dosing, the low-risk population, and
the presence of P2Y12 (chemoreceptor for adenosine di-
phosphate) inhibitors (see Section V).
Other mitochondrial targeting agents such as MTP-

131 (which optimizes mitochondrial energetics and at-
tenuates the production of ROS by selectively targeting
cardiolipin in the inner mitochondrial membrane) failed
to reduce IS in a phase 2 trial in a carefully selected
group of anterior STEMI patients (Gibson et al., 2016).
The mitochondrial protective agent, TRO40303, (which
binds to the translocator protein in the outer mitochon-
drial membrane) reduced IS in small animals (Schaller
et al., 2010) but not in large animals (Hansson et al.,
2015) and did not reduce IS when administered to
STEMI patients prior to PPCI (Atar et al., 2015).
While some experimental studies demonstrated car-

dioprotection with intravenous nitrite administered
at the onset of reperfusion (Duranski et al., 2005), the
National Heart Lung and Blood Institute Consortium
for preclinicAl assESsment of cARdioprotective thera-
pies (CAESAR) Network failed to show IS reduction
with nitrite using a multicenter approach in small
and large animal I/R models (Lefer and Bolli, 2011;
Jones, Tang, et al., 2015; Bolli, 2021). Also, 2 clinical
studies failed to demonstrate a significant IS reduc-
tion with nitrite administered by either the intrave-
nous (Siddiqi et al., 2014) or intracoronary (Jones,
Pellaton, et al., 2015) route in PPCI-treated STEMI
patients. The study by Janssens et al. also failed to re-
port any cardioprotective effects with inhaled NO as an
adjunct to PPCI in STEMI patients (Janssens et al.,
2018), although some benefit was seen in nitrate-naıve
patients.
More recently, studies have investigated the cardio-

protective effects of targeting interleukin-6 (IL-6), as
this cytokine has been shown to contribute to inflamma-
tion in coronary artery disease and acute myocardial IRI
(Sawa et al., 1998; Interleukin-6 Receptor Mendelian
Randomization Analysis Consortium et al., 2012;
Ritschel et al., 2013). An initial clinical study in
non-ST elevation myocardial infarction patients
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reported that pretreatment with a single intrave-
nous 60-minute infusion of tocilizumab (an IL-6 re-
ceptor antibody) prior to PCI reduced inflammation
and PCI-related myocardial injury when compared
with placebo (Kleveland et al., 2016). The recently
published ASSAIL-MI study in STEMI patients
demonstrated that the same treatment regimen ini-
tiated during PCI improved myocardial salvage but
did not significantly reduce MI size assessed by car-
diac MRI performed on day 3 to 7 post-admission,
when compared with placebo (Broch et al., 2021).
The importance of NLRP3 inflammasome-driven

IL-1b for cardiovascular events was studied in some
clinical trials with anakinra (a recombinant IL-1 re-
ceptor antibody) in patients with previous MI (VCU-
ART and VCUART2; MRC-ILA-Heart Study). These
trials were performed in a relatively small number of
patients, and the reported results are contentious.
The CANTOS trial, which evaluated the long-term ef-
fect of canakinumab (a humanized monoclonal IL-1b
antibody) in 10061 MI patients, showed a significant
15% reduction in major adverse coronary events
(MACE) compared with the placebo group; however,
all-cause mortality did not differ between the canaki-
numab and placebo groups. Recently, the Colchicine
Cardiovascular Outcome Trial using low-dose colchi-
cine in 4745 MI patients as well as the subsequently
conducted low-dose colchicine 2 trial in 5522 patients
with chronic coronary artery disease confirmed a de-
crease in MACE (including cardiovascular death).
Since colchicine can prevent NLRP3 inflammasome
assembly, the clinical efficiency of colchicine supports
the notion that NLRP3 inflammasome plays a key
role in the pathogenesis of atherosclerosis and subse-
quent atherothrombotic events (for a detailed review
see Takahashi, 2022).

B. Other Mechanical Approaches to Cardioprotection

A number of different mechanical approaches have
recently been evaluated in STEMI patients treated by
PPCI. Acute ventricular unloading prior to reperfusion
has been shown in animal studies to reduce myocardial
IS by decreasing myocardial workload (for review see
Curran et al., 2019) (Table 1). A recent clinical study
has tested the safety and feasibility of unloading the
LV for 30 minutes before reperfusion using the percuta-
neous left ventricular support device, Impella CP, in an-
terior STEMI patients treated by PPCI. Interestingly,
delaying reperfusion by 30 minutes did not increase IS
when compared with applying the Impella CP device at
the immediate onset of reperfusion (Kapur et al., 2019).
The ongoing STEMI-DTU Trial is currently testing the
efficacy of this approach on IS assessed by cardiac MRI
in 668 anterior STEMI patients (NCT03947619). Thera-
peutic hypothermia has been reported to reduce IS in
animal studies, but this has to be applied during myo-
cardial ischemia, which might explain the lack of

cardioprotection seen in clinical studies applying thera-
peutic hypothermia at reperfusion in STEMI patients
treated by PPCI, studies that also showed delays in
PPCI and increase adverse events with this interven-
tion (Erlinge et al., 2014; Nichol et al., 2015; Testori
et al., 2019; Noc et al., 2021) (for review also see Testori
et al., 2019). Prior preclinical studies have demon-
strated cardioprotection with intermittent coronary si-
nus occlusion, a technique that increases myocardial
salvage following AMI by improving myocardial perfu-
sion (Guerci et al., 1987; Toggart et al., 1987; Beyar
et al., 1989; Ryd�en et al., 1991). In patients with STEMI,
pressure-controlled intermittent coronary sinus occlusion,
using a balloon-tipped catheter placed in the coronary
sinus that is cyclically inflated and deflated resulting in
an intermittent increase in coronary sinus pressure,
improved myocardial perfusion. In preliminary studies
pressure-controlled intermittent coronary sinus occlusion
reduced IS size in anterior STEMI both acutely and at 6
months (De Maria et al., 2018; Egred et al., 2020), and it
reduced the index of microcirculatory resistance within
48 hours of revascularization (De Maria et al., 2018; Scar-
sini et al., 2022).

C. Potential Opportunities for Improving Clinical
Translation of Cardioprotection

Overall, the results of clinical cardioprotection stud-
ies have been largely disappointing (Heusch, 2017;
2020; Heusch and Rassaf, 2016). In this section we
describe some strategies for potentially improving the
clinical translation of cardioprotection for patient
benefit.

1. Improving Preclinical Assessment of Cardioprotec-
tive Strategies. One key reason for the failure to trans-
late cardioprotection into the clinical arena has been the
lack of rigorous and systematic preclinical testing of novel
cardioprotective therapies, the consequence of which has
been the premature clinical evaluation of treatments with
inconsistent and less than robust cardioprotective effects
(Bolli, 2021). Potential strategies for ensuring that only
the most robust and reproducible novel cardioprotective
therapies are tested in clinical studies include establishing
guidelines and criteria for preclinical evaluation of novel
cardioprotective therapies and establishing multicenter
research networks for testing of novel cardioprotective
therapies. The European Union-CARDIOPROTECTION
Cooperation in Science and Technology Action CA16225,
a pan-European research network of leading experts in
experimental and clinical cardioprotection, aims to ad-
dress some of these issues. It has already published prac-
tical guidelines to ensure rigor and reproducibility in
preclinical cardioprotection studies (Bøtker, Hausenloy,
et al., 2018) and has established the IMproving Precli-
nical Assessment of Cardioprotective Therapies (IMPACT)
criteria for improving the in vivo preclinical evaluation of
the efficacy of novel cardioprotective therapies (Lecour
et al., 2021). Finally, the EU-CARDIOPROTECTION
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TABLE 1
Major clinical cardioprotection studies of mechanical interventions in patients with AMI

Study n Patient criteria Cardioprotection protocol Main outcome Notes

Ischemic postconditioning
Staat et al., 2005 30 LAD/RCA STEMI

#6 h ischemic time
TIMI 0 pre-PPCI

4� 1 min inflations
and deflations of

angioplasty balloon
upstream of stent
Direct stenting

36% reduction in MI
size (72 h AUC CK)

Better myocardial blush
grade

First clinical study
to translate ischemic
PostC into clinical

setting

Staat et al., 2005;
Thibault et al.,
2008

38 LAD/RCA only
#6 h ischemic time
TIMI 0 pre-PPCI

4� 1 min inflations
and deflations of

angioplasty balloon
upstream of stent
Direct stenting

40% and 47%
reductions in MI size
(72 h AUC CK and

troponin I)
39% reduction in MI

size (SPECT at
6 months)

7% increase in LVEF
(echo at 1 year)

First clinical study
to demonstrate long-
term benefit with
ischemic PostC

Freixa et al., 2012;
Heusch, 2012;
Tarantini et al.,
2012
POST-AMI

78 All STEMI
<6 h ischemic time
TIMI 0–1 pre-PPCI

No collaterals

4� 1 min inflations
and deflations of

angioplasty balloon
within the stent

Direct stenting and
no thrombectomy

performed

No difference in MI size
(MRI 30 days)—trend

to increase with
ischemic PostC

First study to
suggest possible

detrimental effects
with ischemic PostC

Freixa et al., 2012;
Heusch, 2012;
Tarantini et al.,
2012

79 All STEMI
TIMI 0–1 pre-PPCI

No collaterals

4� 1 min inflations
and deflations of

angioplasty balloon
within the stent
Direct stenting

No difference in MI size
(MRI at 1 week or

6 months)
Less myocardial

salvage with ischemic
PostC

First study to show
detrimental effect of
ischemic PostC in

terms of less
myocardial salvage

Engstrøm et al.,
2017
DANAMI 3

1,252 All STEMI
TIMI 0–1 pre-PPCI

4� 0.5 min inflations
and deflations of

angioplasty balloon at
site of lesion

No difference in
primary endpoint of all-
cause death and HHF
at median follow up
time of 38 months

Largest outcome
study to date with
no beneficial effects
of ischemic PostC

Remote ischemic conditioning
Bøtker et al., 2010

CONDI
142 All STEMI 4�5 min inflations/

deflations of cuff on
upper arm in the
ambulance before

PPCI

Increase in myocardial
salvage index at

30 days
No difference in MI size

(SPECT or peak
troponin)

First study to show
beneficial effect of
RIC on myocardial

salvage

Crimi et al., 2013 100 Anterior STEMI only 3�5 min inflations/
deflation of cuff on
thigh at onset of

reperfusion

20% reduction in 72 h
AUC CK–MB

First study to show
beneficial effects of
RIC started at onset

of reperfusion
White et al., 2015

ERIC-STEMI
83 All STEMI 4�5 min inflations/

deflations of cuff on
upper arm at the

hospital before PPCI

27% reduction in MI
size by MRI

19% reduction in
myocardial edema by

MRI

First study to show
beneficial effects of
RIC on MI size and
myocardial edema
assessed by MRI

Eitel et al., 2015;
Stiermaier
et al., 2019
LIPSIA
conditioning

333 All STEMI 4�5 min inflations/
deflations of cuff on
upper arm at the

hospital before PPCI
plus ischemic PostC

Increased myocardial
salvage with RIC 1

ischemic PostC versus
control

No difference in MI size
or MVO

Improved myocardial
salvage when
ischemic PostC

combined with RIC,
but effect of RIC
alone not tested

Verouhis et al.,
2016

93 Anterior STEMI
within 6 h chest pain

Variable number of 5
min cycles (7–9) of

inflations/deflations of
cuff on upper arm

No difference in MI size
or myocardial salvage
at MRI scan at day 4–7

First neutral study
with RIC in STEMI

Vanezis et al., 2018
DREAM

73 STEMI with LVEF
<45%

4�5 min inflations/
deflations of cuff on
upper arm in started
day 3 post-PPCI and
continued daily for 28

days

No difference in MI and
LV remodelling at 4
months post-PPCI

First study to test
effects of daily RIC

post-STEMI

Gaspar et al., 2018
RIC STEMI

516 All STEMI 3 � 5 min inflations/
deflations of cuff on
thigh before PPCI

Primary endpoint of
cardiac mortality and
HHF at 12 months
reduced by 35%

Preserved LVEF at
6 months

First prospective
study to show

benefits on clinical
outcomes

Hausenloy,
Kharbanda, et al.,

2019
CONDI-2/ERIC-PPCI

5400 All STEMI 4�5 min inflations/
deflations of cuff on
upper arm before

PPCI

No difference on
primary endpoint of

cardiac death and HHF
at 12 months

Largest clinical
study to investigate
the effects of RIC on
clinical outcomes

(continued)
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Cooperation in Science and Technology Action is cur-
rently establishing a research network for preclinical
multicenter testing of novel cardioprotective therapies.
The IMPACT small-animal research network is cur-
rently being set up to undertake multicenter evaluation
of novel cardioprotective therapies in mice and rat mod-
els of acute myocardial IRI, and validation of the re-
search network will be undertaken using ischemic PreC.
The CIBERCV (the acronym for Spanish Network-Center
for Cardiovascular Biomedical Research) has set up the Car-
dioprotection Large Animal Platform, a Spanish multicenter
network of 5 research centers, to perform experimental
pig acute myocardial IRI studies testing the efficacy and
reproducibility of promising cardioprotective interventions
based on a prespecified design and protocols, centralized
randomization, blinding assessment, core laboratory anal-
yses of cardiac MRI imaging, histopathology, and proteo-
mics (Rossello et al., 2019). The network is currently

being validated using ischemic PreC. Also, it will be nec-
essary in select preclinical studies to perform a more
chronic follow-up and use the same endpoints as used in
clinical trials (i.e., mortality over 6 to 12 months and the
development of HF) (Heusch, 2018).

2. Multitargeted Approaches to Cardioprotection.
One potential strategy for improving the clinical trans-
lation is to use a multitarget approach using either
single agents (that have more than 1 target) or 2 or
more therapies with different targets. The multitar-
geted approach may be a more effective than a single-
targeted approach, especially given the complexity and
different proponents of acute myocardial IRI (e.g., cardio-
myocytes, endothelial cells, immune cells, platelets, micro-
vasculature) (Davidson, Ferdinandy, et al., 2019). The
ongoing PITRI study is testing whether administration of
the intravenous P2Y12 platelet inhibitor, cangrelor, prior
to PPCI can prevent microvascular obstruction and reduce

TABLE 1—Continued

Study n Patient criteria Cardioprotection protocol Main outcome Notes

Cheskes et al.,
2020; Hausenloy
et al., 2020

1726 All STEMI 4�5 min inflations/
deflations of cuff on
upper arm before

PPCI

No difference in MACE
at 90 days although

benefit seen in patients
presenting with

cardiogenic shock or
cardiac arrest

Not RCT but pre-
and post-

implementation
designed study

Therapeutic hypothermia
Erlinge et al., 2014 120 All STEMI within 6 h

chest pain
Therapeutic

hypothermia using IV
infusion of cold saline
to achieve <35�C for

1 h

No difference in
myocardial salvage
Possible benefit in
anterior STEMI

patients

9 min delay to PPCI
with intervention

Nichol et al., 2015
VELOCITY

54 All STEMI Therapeutic
hypothermia using
intraperitoneal

infusion of cold saline
for 3 h post-PPCI

No difference in MI size
at 3–5 post-PPCI and
significant increase in

adverse events at
30 days

15 min delay to
PPCI with
intervention

Noc et al., 2021
COOL AMI EU
Pivotal Trial

111 Anterior STEMI
patients

Therapeutic
hypothermia using IV
infusion of cold saline
to achieve 33�C for

1 h post-PPCI

No difference in MI size
at 4–6 post-PPCI and
significant increase in

adverse events
(cardiogenic shock) at

30 days

Prematurely stopped
due to 44 min delay

to PPCI with
intervention

LV unloading with Impella CP
Kapur et al., 2019

DTU STEMI
pilot

50 Anterior STEMI
patients

LV unloading by
using the Impella CP

No difference in MI size
with 30-min delay to

reperfusion

Feasibility study for
efficacy study; DTU

STEMI

PICSO
De Maria et al.,

2018; Egred
et al., 2020
OXAMI-PICSO

105 Anterior STEMI
patients

PICSO Smaller MI size on MRI
at day 2 and 6 months.

Improved coronary
microvascular perfusion

48 h
De Maria et al.,

2018; Egred
et al., 2020

92 Anterior STEMI
patients

PICSO Smaller MI size on MRI
at day 5

De Maria et al.,
2018; Scarsini
et al., 2022

108 All STEMI patients PICSO Improved coronary
microvascular perfusion

and vasodilatory
activity and less MVO
and smaller MI size at

48 h on MRI

AUC, area under curve; CK, creatine kinase; HHF, hospitalization for heart failure; LAD, left anterior descending artery; LV, left ventricle; LVEF, left ventricular ejec-
tion fraction; MACE, major adverse cardiac events; MI, myocardial infarction; MVO, microvascular obstruction; PISCO, pressure-controlled intermittent coronary sinus
occlusion; PostC, postconditioning; PPCI, primary percutaneous coronary intervention; RCA, right coronary artery; RIC, remote ischemic conditioning; SPECT, single-
photon emission computed tomography; STEMI, ST-segment elevation myocardial infarction; TIMI, thrombosis in myocardial infarction.
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TABLE 2
Major recent clinical cardioprotection studies of pharmacological interventions in patients with AMI

Study n Patient criteria Treatment protocol Main outcome Notes

Cyclosporin-A
Piot et al., 2008 58 All STEMI IV bolus of CsA

administered 10 min
prior to PPCI

Reduce MI size
assessed by AUC CK.

No difference in
troponin I. Subset of
37 patients reduce MI
size on MRI at day 5

post-PPCI

First clinical study
to show

cardioprotection with
CsA

Cung et al., 2015;
Ottani et al.,
2016
CIRCUS

970 Anterior STEMI
Pre-PPCI TIMI 0/1

IV bolus of CsA
administered prior to

PPCI

No difference in
primary outcome

worsening in-pt heart
failure, HHF, or

adverse LV
remodeling at 1 yr

Largest outcome
study with CsA

Cung et al., 2015;
Ottani et al.,
2016
CYCLE

410 All STEMI IV bolus of CsA
administered prior to

PPCI

No difference in
primary endpoint of
$70% ST-segment
resolution 60 min

after TIMI flow grade
3 or MI size (day 4
hs-cTnT) or LV

remodeling at 6 mo.
MTP-131

Gibson et al., 2016
EMBRACE-
STEMI

118 Anterior STEMI
Pre-PPCI TIMI 0/1

IV 60-min infusion of
MTP-131 started
prior to PPCI

No difference in
primary endpoint of
MI size (72 h AUC

CK). No difference in
MI size or LV

remodeling on MRI at
4 and 30 days

TRO40303
Atar et al., 2015

MITOCARE
163 All STEMI within 6 h

chest pain
Pre-PPCI TIMI 0/1

IV bolus of TRO40303
administered prior to

PPCI

No difference in
primary endpoint of
MI size (72 h AUC
CK or hs-cTnI)

There was a
significant increase
in major adverse
events with the

study drug compared
with placebo

Nitrite
Siddiqi et al., 2014

NIAMI
229 All STEMI

TIMI 0/1
IV bolus of nitrite

administered prior to
PPCI

No difference in
primary endpoint of
MI size on MRI at

day 6–8. No
difference in LV

remodeling or MI size
by (72 h AUC CK or

cTnI)
Jones, Pellaton,

et al., 2015
198 All STEMI Intracoronary bolus

of nitrite
administered prior to

PPCI

No difference in
primary endpoint of
MI size (72 h AUC
CK or hs-cTnI)

N-acetylcysteine 1 Nitroglycerin
Hausenloy and

Yellon, 2017;
Pasupathy
et al., 2017
NACIAM

75 All STEMI IV infusion of NAC
for 48 h initiated
prior to PPCI. On
background of IV
GTN infusion

Reduction (by 33%) in
primary endpoint of
MI size by CMR at
day 2–3 post-PPCI

Inhaled nitric oxide
Janssens et al.,

2018
NOMI

250 All STEMI Inhaled oxygen with
NO started 10 min
prior to PPCI and
continued for 4 h

No difference in
primary endpoint of
MI size by MRI at

day 2–3
Tocilizumab (IL-6 receptor antibody)

Kleveland et al.,
2016

117 NSTEMI IV 60-min infusion
started prior to PPCI

Reduced hsCRP
levels. Reduced

median AUC for hs-
cTnT by 30%

Broch et al., 2021
ASSAIL-MI

199 All STEMI IV 60-min infusion
started during PPCI

Increased myocardial
salvage by 5.6% on
CMR (2–7 days) and
less MVO but no

difference in MI size

AUC, area under curve; CMR: cardiac magnetic resonance; CK-MB, creatine kinase MB isoenzyme; GTN, glyceryl trinitrate; hs-cTnT/I, high-sensitive cardiac tropo-
nin T/I; HHF, hospitalization for heart failure; IV, intravenous; LAD, left anterior descending artery; MI, myocardial infarction; MVO, microvascular obstruction; NAC,
N-acetylcysteine; NSTEMI, non-ST-segment elevation myocardial infarction; PPCI, primary percutaneous coronary intervention; STEMI, ST-segment elevation myocar-
dial infarction.
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IS in STEMI patients (Bulluck et al., 2019) (Table 1).
Cangrelor offers complete platelet inhibition with 1 to
2 minutes of administration, thereby potentially reducing
the risk of MVO in STEMI patients, and has also been re-
ported in small and large animal studies to reduce IS
when given at reperfusion (Yang, Cui, et al., 2013; Yang,
Liu, et al., 2013a, 2013b) (Table 2). The NACIAM study
showed that the addition of an intravenous infusion of
N-acetylcysteine on a background of nitroglycerin infusion
reduced IS when compared with nitroglycerin infusion
(Pasupathy et al., 2017) (Table 2).
The combined effects of limb RIC with ischemic

PostC have been tested in a clinical study but were
shown to have no additional cardioprotective effects in
STEMI patients (Prunier et al., 2014). However, the
LIPSIA study did report increased myocardial salvage
and improved outcomes (less cardiac death, reinfarc-
tion, and new congestive HF at 3.6 years) in patients
given both limb RIC and ischemic PostC when com-
pared with control or ischemic PostC alone, although
the effects of limb RIC alone were not tested (Eitel
et al., 2015; Stiermaier et al., 2019). The ongoing CA-
RIOCA (NCT03155022) study is also testing the combi-
nation of limb RIC and ischemic PostC in a large
STEMI trial (Table 1). Based on the premise that limb
RIC and exenatide had different cardioprotective tar-
gets (pig study) (Alburquerque-B�ejar et al., 2015), the
COMBAT MI study recently compared the IS-limiting
effects of combining RIC with exenatide to that of limb
RIC or exenatide alone in PPCI-treated STEMI pa-
tients. Unfortunately, the combination of RIC and exe-
natide did not translate into a reduction of IS and,
more surprisingly, neither limb RIC nor exenatide
alone reduced IS (Garc�ıa Del Blanco et al., 2021) (see
Section V) (Table 1).

3. Targeting High-Risk Patients. One potential rea-
son for the failure of limb RIC to improve clinical out-
comes in STEMI patients in the CONDI2/ERIC-PPCI
trial was the low-risk population recruited: they were
optimally treated by PPCI and had relatively short is-
chemic times (median of 3 hours), and 96% of patients
presented in Killip Class I and cardiac mortality (2.7%)
was low at 12 months (Heusch and Gersh, 2020). RIC
may be more effective in higher risk STEMI patients
such as those presenting in HF or cardiogenic shock or
those who were still treated by thrombolysis (Bøtker,
2020; Heusch and Gersh, 2020). In this regard, the
FIRST study in which RIC was implemented in the clini-
cal setting as part of a pre- and post-implementation
study reported potential beneficial effects on MACE in
those patients with cardiogenic shock or cardiac arrest
(Cheskes et al., 2020). The planned RIC-AFRICA trial
(NCT04813159) will evaluate RIC in higher risk STEMI
patients treated by thrombolysis due to limited availabil-
ity of PPCI (Hausenloy et al., 2020), and the RIP-HIGH
trial will test the combination of RIC and local ischemic

PostC in STEMI patients with heart failure (Killip
class$2) (i.e., those with severe hemodynamic impair-
ment or cardiogenic shock) (NCT 04844931).
In summary, the translation of cardioprotection into

the clinical setting for patient benefit has been largely
disappointing. On the one hand, there is a wealth of pre-
clinical studies unequivocally demonstrating cardiopro-
tection in a variety of species and experimental models
with different endpoints, such as arrhythmias, ventricu-
lar dysfunction, IS, and coronary MVO. On the other
hand, despite several positive proof-of-concept clinical
studies in STEMI patients demonstrating cardioprotec-
tion by mechanical and pharmacological approaches,
there is now an increasing number of recent phase 2
studies showing no benefits on IS and several large
phase 3 studies failing to show benefit on clinical out-
comes despite positive phase 2 studies. This discrepancy
results from the very different approaches inherent to
preclinical research and clinical trials. Preclinical studies
aim for novel knowledge and mechanistic understanding
and therefore regularly use protocols that maximize the
cardioprotective efficacy. In contrast, large clinical trials
aim to identify a cure for disease in as many patients as
possible and therefore regularly use an all-comer ap-
proach that does not consider the need of protection or
potential confounders. The disappointment about the
lack of translation then reflects the very different mutual
expectations and a lack of communication between pre-
clinical researchers and clinicians. The present review
aims to improve such communication, with a particular
focus on confounders.
On the preclinical side, potential reasons for failure

in clinical translation include the lack of rigorous pre-
clinical evaluation of novel cardioprotective therapies.
Therefore, strategies for improving the preclinical as-
sessment of novel cardioprotective therapies with the
introduction of rigorous criteria that need to be ful-
filled before proceeding to clinical studies and the use
of multicenter networks of small and large animal re-
search centers to blindly evaluate novel cardioprotec-
tive therapies are advocated (Lecour et al., 2021;
Kreutzer et al., 2022). On the clinical side, targeting
high-risk patients at risk of acute myocardial IRI
(Heusch and Gersh, 2020) and consideration of con-
founders may improve the chances of successfully
translating cardioprotection for patient benefit. With
respect to our focus on confounders, it is important to
note that most published clinical cardioprotection
studies in AMI patients have not been suitably pow-
ered or specifically designed to test the confounding ef-
fects of comorbidities and comedications discussed in
this article on the efficacy of cardioprotective therapeu-
tic strategies, despite a significant proportion of re-
cruited patients having these potential confounding
factors. In an ideal world, we would propose that only
those cardioprotective interventions that have fulfilled
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stringent criteria and been established in a multicenter
network as robust are taken forward from preclinical
studies to be tested in a clinical trial, whereas less cer-
tain cardioprotective interventions would not even be
tested clinically. Conversely, clinical trials for cardiopro-
tection beyond that by reperfusion would be confined to
those needing adjunct cardioprotection and not in an
all-comer approach; at the least, a prespecified sub-
group analysis for STEMI patients with Killip class $2
(i.e., those with severe hemodynamic impairment or
cardiac shock) would be performed.

IV. Effects of Nonmodifiable Risk Factors and
Comorbidities on Ischemia-Reperfusion Injury and

Cardioprotective Strategies

A. Nonmodifiable Risk Factors

1. Aging.
a. Aging, IRI, and Cardioprotection. Age is, along

with sex, the most prominent disease modifier. Not only
does it increase the vulnerability of the heart to IRI, but
it also hampers the therapeutic efficiency of several is-
chemic and pharmacologic conditioning strategies in
many (but not all) experimental models and in some clin-
ical studies, as recently reviewed (Ruiz-Meana, Boengler,
et al., 2020; Ruiz-Meana, Bou-Teen, et al., 2020). The loss
of cardioprotection during aging can be attributed to dif-
ferent factors, among them: (i) the higher burden of co-
morbidities (e.g., hypertension, metabolic disorders) that
may impose additional damage to the heart (Andreadou
et al., 2021), (ii) the more frequent use of concomitant
medications that can cause therapeutic interferences
(Ferdinandy et al., 2014), (iii) the coexistence of a chronic
and deleterious proinflammatory myocardial environ-
ment (Ramos et al., 2017), (iv) the progressive accumula-
tion of damaged and dysfunctional mitochondria within
cardiomyocytes (Ruiz-Meana et al., 2019; Bou-Teen et al.,
2022), and (v) the attenuation of some signaling path-
ways mechanistically involved in cell survival (Boengler,
Schulz, et al., 2009). The majority of studies have de-
scribed a loss of ischemic PreC-induced cardioprotection
with age, yet some authors reported myocardial protec-
tion by ischemic PreC in old rat hearts (Webster et al.,
2017). The cardioprotection provided by ischemic PostC
has much greater therapeutic applicability than that af-
forded by ischemic PreC, but it is, in general, less robust
and more dependent on the strength of the ischemic
stimulus (Boengler et al., 2008). As in ischemic PreC, ex-
perimental evidence indicates an attenuation of its effec-
tiveness with increasing age (Boengler et al., 2008;
Przyklenk et al., 2008; Perez et al., 2016).
The age-dependent loss of ischemic PostC protection

has also been described for rat hearts and isolated car-
diomyocytes from aged rats (Chen, Gao, et al., 2016)
and has been attributed to a defective autophagic re-
sponse. Moreover, the age-dependent attenuation of

the cardioprotective properties of PostC appears to be
sensitive to sex interaction, as inferred from a recent
study in which a specific modality of PostC protocol in-
duced by alternate atrial/ventricular pacing (pacing
PostC; see Section IVc2), which was shown to be effec-
tive in Langendorff-perfused rat hearts from young an-
imals, remained cardioprotective in the hearts of old
females but had no therapeutic benefit in the hearts of
old males (Babiker et al., 2019). Regarding the human
heart, it seems clear that ischemic PostC can be protec-
tive (Staat et al., 2005), but the influence of age on the
extent of cardioprotection is more confusing. In a small
clinical study of aged patients assigned to receive 2 dif-
ferent ischemic PostC protocols during PPCI (either 4
cycles of 30-second inflation/deflation or 4 cycles of
60-second inflation/deflation), the authors reported a
significant beneficial effect on enzyme release (creatine
kinase-MB and troponin I) in the postconditioned groups
compared with controls, regardless of the ischemic algo-
rithm (Zhang et al., 2018). Although promising, inter-
pretation of clinical data are challenged by substantial
interindividual variation in patients and the lack of
studies in which the cardioprotective effect has been
quantified with hard end-points measurements of IS.
RIC holds the potential of affording simultaneous

protection to the heart and other organs susceptible to
IRI (like the brain), making it particularly appealing
for the systemic protection of elderly patients. Unfortu-
nately, its effectiveness is less consistent than ischemic
PreC and other conditioning strategies in rat hearts ex
vivo (Lassen, Hjortbak, et al., 2021) and decreases even
more with aging, as inferred from preclinical studies in
rats in vivo (Behmenburg et al., 2017).
In a more clinically relevant context of patients under-

going CABG surgery with an average age of 76 years,
RIC consisting of 4 5-minute inflations and deflations of
a standard blood-pressure cuff on the upper arm, prior
to anesthesia, did not result in any improvement in clin-
ical outcomes (incidence of AMI, need of coronary revas-
cularization, stroke, and death) (Hausenloy et al., 2015).
It has been proposed that such an age-related decline in
the ability of RIC to improve clinical outcomes might de-
pend not only on the intrinsic changes developed by the
aged heart but also on the loss of the cardioprotective
properties of the released humoral factor(s) during aging
(Heinen et al., 2018). Moreover, despite the positive re-
sults obtained in preclinical and small proof-of-concept
clinical trials, the evaluation of its cardioprotective po-
tential as adjunctive to PPCI in appropriately powered
randomized controlled (RCT) clinical trials of patients
with STEMI yielded neutral results, and RIC added no
clinical benefit for outcomes when applied alone (Hau-
senloy, Kharbanda, et al., 2019) or in combination with
exenatide (Garc�ıa Del Blanco et al., 2021), regardless of
the subgroup of age.
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b. Aging and Cardioprotective Signaling. Re-
duced expression or altered posttranslational modifi-
cation of proteins involved in protective signaling
cascades, including mitochondrial connexin 43, RISK,
and SAFE pathways as well as changes in their sub-
cellular localization, have been shown to participate
in the loss of cardioprotection during aging, as exten-
sively reviewed (Boengler et al., 2007; Boengler, Schulz,
et al., 2009; Ruiz-Meana, Boengler, et al., 2020;
Ruiz-Meana, Bou-Teen, et al., 2020). In addition to
this, aged cardiomyocytes develop some idiosyncratic
pathophysiological traits that reduce their tolerance to
stress and injury and can outweigh the benefits of the
therapeutic strategies. Among them, changes in cal-
cium handling, excessive intracellular glycoxidative
stress, mitochondrial calcium accumulation, and re-
duced number of healthy and metabolically competent
mitochondria may play a relevant role (Ruiz-Meana
et al., 2019; Bou-Teen et al., 2021). A broad spectrum
of experimental studies suggests that restoration of
the age-dependent loss of cardioprotection is possible
through strategies like exercise protocols, dietary in-
terventions (i.e., caloric restriction), and pharmacologi-
cal agents (Calabrese, 2016a). In agreement with this
concept, cardiac supplementation with a hydrogen sul-
fide donor (a gaseous neurotransmitter) has been re-
cently shown to upregulate the hypoxia-inducible factor-
1a/nuclear factor erythroid 2-related factor 2 signaling
pathway involved in the late phase of cardioprotection in
hearts from aged rats subjected to RIC (left hind limb is-
chemia) and subsequent ex vivo I/R (Wang, Shi, et al.,
2021). In the context of ischemic PostC, exogenous ad-
ministration of hydrogen sulfide in isolated hearts from
aged rats exposed to IRI upregulated the age-dependent
reduction in autophagy via the adenosine 50-monophos-
phate activated protein kinase adenosine 50-monophos-
phate activated protein kinase/mechanistic target of
rapamycin pathway and restored the cardioprotective re-
sponse in the aged hearts (Chen, Gao, et al., 2016). The
same line of evidence led to the hypothesis that aged
hearts might require a stronger conditioning stimulus
(higher number of ischemic cycles or cycles with longer
duration) to counteract the defective cytoprotective re-
sponse. However, the relevance of this approach remains
uncertain, as is the relative contribution of the different
cytoprotective pathways to the therapeutic success of
conditioning during aging.

2. Sex, IRI, and Cardioprotection. Although ische-
mic heart disease is a major cause of mortality and mor-
bidity in both males and females, sex differences exist in
terms of susceptibility, mechanisms, and outcomes to
IRI observed between men and women Confounding fac-
tors (comorbidities, comedications) in ischemic heart dis-
ease may have sex-specific effects, and mechanisms
underlying these differences are multiple and include
gonadal hormones (for review see Perrino et al., 2021).
Despite sex differences in IRI outcome, which occurs in

an age-dependent manner, no clinical studies have yet
been able to highlight sex as a confounding factor in the
cardioprotective strategy of conditioning (Staat et al.,
2005). Although most of the preclinical data exploring
the cardioprotective effect of ischemic conditioning have
been investigated in healthy young male animals, few
studies suggest a sex difference in the cardioprotective
response of conditioning against IRI in structurally nor-
mal myocardium (for review see Querio et al., 2021).
As discussed in Section IVc, notable sex-related dif-
ferences, however, have been noted in hypertrophied
myocardium.
In the preclinical setting, some animal studies suggest

that ischemic PreC may be less cardioprotective in fe-
males than in males, an effect that is also highly depen-
dent on the age of the animals. In mice, ischemic PreC
improved the functional outcome of IRI in both 10- and
18-week-old male mice. In contrast, female mice failed to
be protected at an age of 10 weeks (Song et al., 2003;
Turcato et al., 2006). In Wistar rats, ischemic PreC suc-
cessfully reduced IS in 12- and 18-week-old males and
females but failed to confer an antiarrhythmic effect in
12-week-old females (Ledvenyiova et al., 2013). Whereas
both male and female rats can be preconditioned with en-
dotoxin, the protection in females was only observed with
higher doses of endotoxin, thus suggesting that the condi-
tioning threshold may differ between males and females
(Pitcher et al., 2005). Similarly, delayed pharmacological
PreC with isoflurane protected male but not female rab-
bits (Wang et al., 2006). It is suggested that the apparent
lack of protection with ischemic PreC in young female
animals is due to estrogen-mediated better tolerance
against IRI compared with males (Song et al., 2003).
In contrast, no sex difference in the cardioprotective

effect of ischemic PreC was observed in Lewis rats of
mixed age ranging between 10 and 20 weeks (Lieder
et al., 2019). Also, in anesthetized G€ottinger minipigs,
there was no difference in IS, area of coronary MVO,
and protection by ischemic PreC between young adult
female, castrated male, and male pigs (Kleinbongard,
Lieder, et al., 2022a; Kleinbongard, Lieder, et al.,
2022b).
Similar findings have been reported with ischemic

PostC. Ischemic PostC improved cardiac function and
IS in both female and male rat hearts, but the protec-
tion differed depending on sex and the severity of the
IRI (Crisostomo et al., 2006; Penna et al., 2009). Again,
the increased effectiveness of ischemic PostC in males
versus females is likely a result of overall reduced IRI
(lower IS, less oxidative stress and apoptosis) in fe-
males versus males (Ciocci Pardo et al., 2018).
The protective effect of RIC may or may not be sex de-

pendent. Whereas RIC of either 1 or 2 limbs in Lewis
rats conferred similar protection in both male and female
hearts subjected to I/R (Lieder et al., 2019), plasma iso-
lated from male and female volunteers and perfused into
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isolated rat hearts subjected to I/R protected the heart in
a sex- and age-dependent manner (Heinen et al., 2018).
Male but not female plasma collected after RIC protected
the isolated rat heart against IRI compared with the
non-preconditioned plasma (Heinen et al., 2018).

b. Sex and Cardioprotective Signaling. As ob-
served with aging, differences in the activation of clas-
sic cardioprotective signaling pathways are observed
between males and females (for review see Perrino
et al., 2021). Besides the role of gonadal hormones,
multiple cell survival pathways are regulated differently
in males and females in a sex hormone–dependent or –
independent manner. Increased phosphorylation of pro-
tein kinases B or C in female hearts subjected to IRI
(Bae and Zhang, 2005) together with an increase in NO
and the phosphorylation of aldehyde dehydrogenase and
alpha-ketoglutarate dehydrogenase leading to a decrease
in ROS (Lagranha et al., 2010; Casin and Kohr, 2020),
may be involved in the sex differences in the cardiopro-
tective efficacy of conditioning strategies. Similarly, in-
creased phosphorylation of STAT3 and TNF receptor 2
in females versus males may affect the response to ische-
mic conditioning (Wang et al., 2007; Wang et al., 2008).
Sex-specific downregulation of sirtuins, mitochondrial
antioxidative signaling molecules, and modulation of the
proinflammatory status in the older hearts are other
mechanisms that may influence the outcome of the car-
dioprotective conditioning therapy in males versus fe-
males (Barcena de Arellano et al., 2019).

B. Comorbidities

1. Hypertension.
a. Hypertension and IRI. According to World

Health Organization data, the global prevalence of sys-
temic arterial hypertension was estimated to be approxi-
mately 30% in the adult population (Mills et al., 2016;
Timmis et al., 2022) and ranks first among the leading
causes for disability-adjusted life years (GBD 2019 Risk
Factors Collaborators, 2020). Systemic arterial hyperten-
sion coexists with other major comorbidities discussed
elsewhere in this paper. In the presence of any of these
comorbidities, elevation of blood pressure contributes
powerfully as an additive risk for the development of
atherosclerosis and ischemic heart disease (Forouzanfar
et al., 2017).
Hypertension promotes structural and biochemical

changes in the myocardium. These include the develop-
ment of left ventricular hypertrophy (LVH), alterations
in coronary microvascular perfusion, and myocardial fi-
brosis. Although arguably imprecise as a diagnostic la-
bel, the term “hypertensive heart disease” is applied to
describe the coexistence and consequence of coronary
vascular changes, myocardial structural alterations,
and enhanced risks of morbidity and mortality that oc-
cur in uncontrolled hypertension (Diamond and Phil-
lips, 2005; Nwabuo and Vasan, 2020).

Cardiomyocyte hypertrophy, mediated by hemody-
namic loading and neurohormonal influences, serves to
maintain cardiac output and minimize ventricular wall
stress in the presence of increased afterload. While mus-
cle adaptation occurs, microvascular proliferation is mis-
matched, compounded by interstitial and perivascular
fibrosis driven by oxidative stress and hormonal factors
(Kong et al., 2014). Ultimately, unless therapeutic inter-
vention stabilizes or reverses the hemodynamic and
neurohormonal disturbances, the hypertensive heart is
at risk of diastolic and/or systolic failure, re-entrant elec-
trical disturbances, and ischemic changes. Indeed, even
moderate hypertension is a determinant of congestive
HF, arrhythmias, sudden death, ischemic heart disease,
and acute coronary events including AMI. Critically, the
presence of LVH is an independent predictor of morbidity
and mortality, and LVH regression is a key goal of anti-
hypertensive therapy (Bourdillon and Vasan, 2020).
The response of the hypertrophied myocardium to

acute IRI has been the subject of extensive laboratory
investigation. Previous literature (Ferdinandy et al.,
2007; Pagliaro and Penna, 2017) suggests that hyper-
trophied myocardium displays greater sensitivity and
reduced tolerance to IRI. Various mechanisms have
been proposed, including reduced capillary perfusion,
increased oxygen consumption, altered intracellular
calcium handling, alterations in multiple metabolic
pathways, downregulation of cardioprotective signal-
ing pathways, and increased oxidative stress (for re-
views see Ferdinandy et al., 2007; Suleiman et al.,
2011; Pagliaro and Penna, 2017; Andreadou et al.,
2021). There is persuasive evidence from various ani-
mal models of hypertension that coronary artery oc-
clusion is associated with the development of more
severe arrhythmic disturbances during IRI and that
recovery of contractile function is depressed in reper-
fusion (stunning).
The issue of sensitivity to lethal or irreversible tis-

sue injury (i.e., infarction) has been more contentious.
In many experimental studies, standardized protocols
to produce infarction reveal an inconsistent picture of
IS in hearts with LVH. For example, some rat studies
(Ebrahim et al., 2007a, 2007b; Wagner et al., 2013) re-
port no increased IS in LVH, whereas others (Dai
et al., 2009; Mølgaard et al., 2016; Yano et al., 2011)
reveal moderate to large IS increases. This ambiva-
lence in the experimental literature is not obviously
explained by different hypertension models, hyperten-
sion duration, heart mass, IRI conditions, animal age,
or methods of IS assessment, nNor is there a clear
view from experimental studies of an altered pattern
of cell death in LVH (necrosis, apoptosis, necroptosis,
pyroptosis; see Section II).
In clinical studies, the question of IS in relation to

LVH has been difficult to address, due largely to the
relative imprecision of traditional methods of LVH
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detection (ECG and echocardiography) and IS and
risk zone quantification, as well as inconsistencies in
the definition of normal LV mass thresholds. How-
ever, there are some noteworthy studies that have
used cardiac MRI in STEMI patients. While MRI pre-
sents challenges in terms of standardization of tech-
nique and data interpretation, recent studies support
the view that LVH is associated with increased IS in
human subjects.
Nepper-Christensen et al. (2017) investigated the

relationship between LVH (concentric or eccentric hy-
pertrophy of various causes) and IS in a subgroup of
the DANAMI-3 study in patients with STEMI. De-
spite similar onset-to-reperfusion time and target ves-
sel involvement, patients with LVH showed higher
peak troponin concentrations compared with patients
without LVH. Acute and final IS were larger in pa-
tients with LVH, and the proportion of patients with
MVO was higher. During 48 months of follow-up, the
combined endpoint of all-cause mortality and hospi-
talization for HF was higher in the LVH group (9% vs
4%, P 5 0.003). Similarly, Stiermaier et al. (2018)
studied patients with and without LVH in a substudy
of the AIDA STEMI trial. They applied MRI to assess
IS, LV mass, and other parameters. IS was larger in
patients with LVH compared with those without LVH,
although clinical outcome (all-cause mortality, rein-
farction, or congestive HF) at 12 months was not dif-
ferent between the groups.
Cohort studies are consistent with the broad mes-

sages from epidemiologic studies. They point to LVH
as a useful risk stratification variable in STEMI, al-
though its potential prognostic value as a determinant
of long-term outcome after STEMI remains to be fur-
ther evaluated in larger trials. Such studies are un-
doubtedly warranted, given that patients with LVH
are at greater risk of AMI and other ischemic events.
Moreover, hypertension was found to be an indepen-
dent factor for underprescription of guideline-directed
medical therapy post-AMI in the PROMETHEUS reg-
istry, which could further worsen long-term outcome
for a substantial proportion of hypertensive patients
(Ge et al., 2019).
Considering the increased risk of hypertensive pa-

tients developing ischemic heart disease and the greater
susceptibility to IRI when LVH is present, cardioprotec-
tion of hypertrophied myocardium presents an impor-
tant scientific and clinical challenge. During the past 3
decades, many experimental studies have reported a
number of different approaches with varying degrees of
success. More recent studies used IS as a robust end-
point of cardioprotection and reveal potential mechanis-
tic insights.

b. Hypertension and Cardioprotection. Following
the earliest description of ischemic PreC in LVH
(Speechly-Dick et al., 1994), many further studies

confirmed that ischemic or pharmacological PreC proto-
cols may reduce IS in hypertensive animals with LVH
(Ferdinandy et al., 2007). However, a number of factors
may attenuate the effectiveness of ischemic PreC in
LVH. While these factors are not clearly defined, cardi-
oprotection in LVH may be highly model dependent, in-
fluenced by the nature of the preconditioning stimulus,
modified by hypertension duration, animal sex and age,
and the progression to cardiac decompensation. Ebrahim
et al. (2007b) showed that ex vivo hearts from male normo-
tensive rats and spontaneously hypertensive rat (SHR)
were protected against infarction by 2� 5 minute ische-
mic PreC cycles in 3- to 4-month-old and 7- to 8-
month-old animals. However, this was not the case in
hearts from 12- to 13-month-old animals, either normoten-
sive or SHR. Although the addition of the angiotensin II
converting enzyme (ACE) inhibitor captopril, which
enhances tissue kinin concentration, partially restored
ischemic PreC efficacy in aged normotensive hearts, it
did not do so in aged SHR hearts. In contrast to these
findings, Dai et al. (2009) using an in vivo infarct
model showed that 3� 3 minute ischemic PreC cycles
effectively limited IS in 16-month-old female normo-
tensive rats and SHR. Fantinelli et al. (2013) estab-
lished in an ex vivo infarct model that the threshold
for ischemic PreC efficacy is shifted in SHR hearts. A
single 5-minute ischemic PreC cycle protected SHR
hearts against 35-minute index ischemia but was inef-
fective against 50-minute index ischemia, whereas a
3� 2 minute ischemic PreC protocol was fully effective.
Clearly, there are discrepancies in the key findings
between closely aligned studies, and these may be
related to many factors, including animal sex-related
differences in key molecular components of cardiopro-
tective signaling (see Section IVb), infarct model, and
ischemic PreC protocol. However, it seems likely that,
while key cardioprotective pathways activated by ische-
mic PreC can be recruited in moderate hypertrophy, the
threshold for activation of these mechanisms may require
an ischemic PreC stimulus of greater intensity than in
normotensive hearts, but this is dependent on duration of
hypertension, experimental LVH models, and index ische-
mia conditions.
Other forms of ischemic conditioning in LVH have

received scant attention. Translation of RIC to elec-
tive clinical settings, most notably cardiac surgery,
has been contentious (see Section III and Heusch
et al., 2015; Zaugg and Lucchinetti, 2015). In a small
study of patients with cardiac hypertrophy undergoing
aortic valve replacement surgery, there was no evidence
of benefit (morbidity outcomes, creatine kinase MB re-
lease, or troponin T release) in patients receiving RIC
(upper limb ischemia), even when propofol was ex-
cluded as a confounding factor (Song et al., 2017) (see
Section Vb2 for a discussion of anesthetic effects). Also,
no cardioprotection was seen in patients undergoing
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transcatheter aortic valve implantation for aortic steno-
sis (Kahlert et al., 2017).
Early evaluation of ischemic PostC in hypertrophied

myocardium (Fantinelli and Mosca, 2007) suggested
that ischemic PostC (3� 30 second cycles) was equally
effective in promoting post-ischemic contractile func-
tion in normotensive and SHR hearts ex vivo. How-
ever, Penna et al. (2010) showed that while ischemic
PostC (5� 10 second cycles) limited IS in normotensive
rat hearts, the same protocol was ineffective in SHR
hearts ex vivo. Additionally, 4-week treatment with
captopril, while inducing LVH regression, did not re-
store the ability to postcondition SHR hearts. Similarly,
in an in vivo model of AMI, neither of 2 ischemic PostC
protocols, 3� 30 second or 6� 10 second cycles, con-
ferred protection in young SHR with established LVH,
although both protocols were effective in normotensive
rats (Wagner et al., 2013). Moreover, phosphorylation
(inhibition) of glycogen synthase kinase (GSK)-3b was
observed 5 minutes after ischemic PostC in normoten-
sive hearts but not in SHR hearts.
As noted for ischemic PreC, it is likely that duration of

hypertrophy, animal sex, age, gradual onset of decompen-
sation, and other factors may contribute to discrepant find-
ings for ischemic PostC between laboratories. Hern�andez-
Res�endiz et al. (2013) studied ischemic PostC in rats with
either compensated hypertrophy after 7 days angiotensin
II treatment or dilated cardiomyopathy/decompensated hy-
pertrophy after 14 days angiotensin II treatment. Perhaps
surprisingly, in both groups Ischemic PostC (5� 30 second
cycles) was effective in limiting IS in LVH, comparable to
protection seen in normotensive control rats. However, in-
triguing alterations in phosphorylation of RISK compo-
nents occurred between 7 days and 14 days, suggesting
that hypertrophy-related downregulation of 1 kinase may
be compensated by the parallel upregulation of another
kinase pathway.
Babiker et al. (2019) undertook an extensive series of

experiments using pacing-induced PostC (3� 30 second
cycles of alternate atrial/ventricular pacing) in various
rat models and explored the interactions of sex, age,
and disease states. Interestingly, age and sex were ma-
jor determinants of PostC efficacy. While effective in
young animals of either sex, pacing postconditioning
was ineffective in senescent male hearts yet still effec-
tive in senescent female hearts. Moreover, the effect of
pacing PostC in LVH was preserved in mature female,
but not male, SHR. This work underscores the impor-
tance of key biologic variables, as well as experimental
conditions, which may impede ready interpretation of
findings from different laboratories.

c. Hypertension and Cardioprotective Signaling.
A similarly controversial and unsettled picture has
emerged for a variety of pharmacological precondi-
tioning approaches in LVH. However, many of these
studies provide helpful insights into modifications of

cardioprotective signaling mechanisms in LVH that
may be relevant to our interpretation of contradictory
experimental findings and, perhaps more importantly,
our ability to make translational advances for clinical
cardioprotection in LVH. For example, 10-minute pre-
treatment with bradykinin (an upstream autacoid
trigger of ischemic PreC acting through the G-protein
coupled bradykinin B2 receptor) induced concentra-
tion-dependent IS reduction in normotensive hearts,
but the protective effect in moderate LVH was mark-
edly attenuated (Ebrahim et al., 2007a). Gonz�alez
Arbelaez et al. (2016) showed that CsA when given as
a short pretreatment prior to index ischemia in SHR
hearts was as effective as a single 5-minute cycle of
ischemic PreC in limiting IS. Moreover, the effects of
ischemic PreC and CsA were PKC-dependent and
additive. Yano et al. (2011) investigated the effects of the
d-opioid receptor agonist, (D-Ala2, D-Leu5)-enkephalin,
or erythropoietin pretreatment in 3- to 4-month-old nor-
motensive and hypertensive rats (SHR stroke-prone
strain). While each of the agonists induced modest IS
limitation in normotensive hearts, no protection was ob-
served in hypertrophied hearts, although ischemic PreC
(2� 5 minute) was highly protective in both groups.
Further, they showed that in a different model of pres-
sure-overload hypertrophy (thoracic aorta constriction for
4 weeks), erythropoietin preconditioning was ineffective.
Chen, Wu, et al. (2016) reported that in 9- to 10-

month-old SHR with moderate LVH, pharmacological
PreC with 30-minute pretreatment with isoflurane
was ineffective in limiting IS. Of interest, the efficacy
of isoflurane preconditioning in normotensive ani-
mals was associated with augmentation of manga-
nese-dependent superoxide dismutase activity, a key
mitochondrial antioxidant. Despite higher baseline
manganese-dependent superoxide dismutase activity
in SHR mitochondria, isoflurane preconditioning did
not increase it further.
While delayed ischemic PreC (“second window” pre-

conditioning occurring between 24–72 hours after the
preconditioning stimulus) have not been studied in
LVH, delayed pharmacological PreC 24 hours after
transient (1 hour) exposure to isoflurane (2.1% v/v)
was not observed in LVH induced by thoracic aorta
constriction (Ma et al., 2014). The loss of delayed pro-
tection after isoflurane was associated with a failure
of induction of inducible NOS and cyclooxygenase 2,
which have been previously implicated in the mecha-
nism of delayed ischemic PreC (Baxter and Ferdi-
nandy, 2001).
As discussed in Section Vb2, pharmacological PostC

in LVH has received relatively little attention. Haloge-
nated anesthetic PostC has been shown to be cardiopro-
tective in normal myocardium in many experimental
studies, sharing similar mechanisms of protection as is-
chemic PostC (via the RISK or SAFE pathways and
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mPTP inhibition) (for review see Lemoine et al., 2016).
However, in LVH induced by suprarenal aortic constric-
tion, the IS-limiting effects of sevoflurane PostC and is-
chemic PostC were abolished. This was associated with
abrogation of phosphorylation of the major RISK path-
way components (Ma et al., 2013). The noble gas he-
lium is an interesting and safe conditioning candidate,
capable in normal subjects of inducing cardioprotection
when substituted for nitrogen in room air and adminis-
tered by inhalation, either as a PreC protocol (classic
and delayed) prior to index ischemia or as a PostC pro-
tocol during early reperfusion (Smit et al., 2015). Oei
et al. (2012) showed that helium PostC was ineffective
at limiting IS in 3-month-old male SHR with rather
modest LVH. The combination of delayed helium PreC
(brief exposure 24 hours before ischemia), classic he-
lium PreC (exposure immediately before ischemia), and
helium PostC (exposure in early reperfusion) induced
modest protection in the SHR heart. The loss of protec-
tion in SHR myocardium was not obviously associated
with changes in GSK-3b or protein PKCe phosphoryla-
tion potential.
In summary, the experimental literature reveals an

ambivalent picture of the effectiveness of conditioning
approaches in LVH. While some studies suggest pres-
ervation of PreC and PostC potential in hypertension
models, others suggest abrogation of protection, likely
associated with perturbation of key cardioprotective
signaling pathways. It is reasonable to conclude that
a large number of experimental and biologic variables
contribute to the discrepancies in experimental find-
ings, notably animal sex, age, and stage of hyperten-
sion/hypertrophy. Nevertheless, given the equivocal
nature of the experimental literature and the limited
number of clinical studies in LVH, conditioning proto-
cols cannot be assumed to be robustly effective in hy-
pertensive patients with LVH (or possibly in patients
with other forms of cardiac remodeling where similar
structural and molecular maladaptations occur). The
clinical picture may be further complicated by the
chronic application of antihypertensive agents, barely
modeled in experimental studies, which could induce
regression of hypertrophy and/or potentiate endoge-
nous cardioprotective mechanisms, independently of
conditioning protocols (see Section V). Unfortunately,
resolution of the experimental controversies is unlikely
to be achieved through further experimental studies.
Rather, the imperative is that the design of cardioprotec-
tion trials will control rigorously for LV mass, among
many other clinical variables, as a key determinant of
any measured outcomes. Given the prevalence of hyper-
tension and LVH in the population eligible for cardiopro-
tective intervention, such a cohort could represent a
significant number of higher risk subjects in any future
trial.

2. Hyperlipidemia.
a. Hyperlipidemia and IRI. Among the different

comorbidities that are related to cardiovascular dis-
ease, dyslipidemias are present in 40% of patients
with ischemic heart disease (Mazo et al., 2019). Hy-
perlipidemia shows the strongest association with
AMI with an odds ratio of 8.39 (95% CI: 8.21–8.58)
(Andreadou et al., 2021). The majority of preclinical
studies and some small-scale clinical studies have
shown that hyperlipidemia per se leads to a signifi-
cant exacerbation of myocardial IRI. Hyperlipidemia,
independently from the development of atherosclero-
sis, exerts direct myocardial effects such as impaired
cardiac performance and diminished adaptation to is-
chemic stress (for review see Mazo et al., 2019). More
recent studies confirm that besides elevated low-density
lipoprotein cholesterol (LDL-C), triglycerides and propro-
tein convertase subtilisin/kexin type 9 (PCSK9) may in-
dependently modulate cardiovascular risk. In particular,
PSCK9 indirectly affects cardiomyocytes by monitoring
the plasma concentration of LDL-C and oxidized low-den-
sity lipoprotein (for a review, see Andreadou, Tsoumani,
et al., 2020). PCSK9 is also expressed in the myocardium
(Wolf et al., 2020) and impacts on IS development and
cardiac function as well as on autophagy (Ding et al.,
2018). Moreover, hyperlipidemia induces microvascular
dysfunction mainly through oxidative stress and inflam-
mation, mechanisms that may also explain the increased
susceptibility of the myocardium to I/R (for a review, see
Andreadou, Iliodromitis, et al., 2017).

b. Hyperlipidemia and Cardioprotection. The first
evidence that comorbidities may hamper the cardiopro-
tective effect of preconditioning maneuvers was published
in hypercholesterolemic rodent models in the mid-1990s.
Since then, the majority of studies have confirmed these
original observations including some small-scale clinical
trials (Ferdinandy et al., 2014; Andreadou, Iliodromitis,
et al., 2017). Although the loss of the IS-limiting effect of
ischemic PreC has been shown in different models of
diet-induced hyperlipidemia in rats (for a review, see
Ferdinandy et al., 2014), other studies have shown that
ischemic PreC (2� 5 minute) significantly decreased IS
in vivo (Iliodromitis et al., 2006) or in isolated hearts of
hypercholesterolemic rabbits (D’Annunzio et al., 2012)
(for a review, see Mazo et al., 2019). The divergence in
the results could be attributed to different experimental
models involving different animal species and different
types and duration of diets. Although various animal
models of different types of hyperlipidemia exist, only a
few of them have been employed and published for study-
ing myocardial IRI and cardioprotection (Andreadou,
Schulz, et al., 2020).
A loss of the IS-limiting effect of ischemic PostC

has been confirmed by several studies in different ani-
mal species such as hypercholesterolemic rats (Kupai
et al., 2009; Wu et al., 2014) and rabbits (Iliodromitis
et al., 2010; Andreadou et al., 2012).
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Preclinical studies have investigated the effects of
hyperlipidemia on RIC. Ma et al. demonstrated that
RIC failed to reduce myocardial necrosis and apopto-
sis in hypercholesterolemic rat hearts undergoing I/R
(Ma et al., 2017). RIC attenuated IS, delayed cardio-
myocyte apoptosis, and improved cardiac systolic
function in nonhypercholesterolemic mice, but these
beneficial effects were not evident in hypercholester-
olemic mice (Hong et al., 2019). In low-density lipo-
protein receptor knockout mice with high-fat diet
induced atherosclerosis and subjected to I/R with or
without anesthesia-induced preconditioning or RIC,
IS was reduced (Petermichl et al., 2021); however,
lipid levels were not measured.
In summary, further studies are required to investi-

gate at which stage of hyperlipidemia, atherosclerosis,
and endothelial dysfunction of the coronary arteries,
RIC, and pharmacological conditioning strategies may
exert cardioprotective effects.

c. Hyperlipidemia and Cardioprotective Signaling.
Explanations for the mechanisms by which hyperlipid-
emia may interfere with conditioning mechanisms in-
clude dysregulation of cardioprotective cascades such as
lack of activation or inactivation of the RISK pathway,
failure to modulate the KATP channels activity, impaired
NO availability, and a redistribution of the intracellular
localization of connexin 43 in cardiomyocytes (reviewed
in Andreadou, Iliodromitis, et al., 2017). The dysregula-
tion of the RISK pathway has been recently confirmed,
since RIC failed to reduce myocardial necrosis and apo-
ptosis due to a failure of an increase of Akt and GSK-3b
phosphorylation in hypercholesterolemic rat myocardium
(Ma et al., 2017). Similarly, cardioprotection induced by
RIC was lost in cholesterol-fed mice exposed to I/R by al-
teration of the phosphatase and tensin homolog/Akt sig-
naling pathway that inhibits GSK-3b (Hong et al., 2019).
The aforementioned studies suggest that GSK-3b inhibi-
tion may be a novel therapeutic strategy for hypercholes-
terolemic subjects. The activation of the RISK pathway
in hypercholesterolemic rat myocardium was restored
when lycopene, a type of carotenoid, was given in combi-
nation with ischemic PostC, and this led to reduced IS
and decreased cardiomyocyte apoptosis by increasing the
phosphorylation levels of Akt, ERK1/2, and GSK-3b
(Duan et al., 2019). However, in another study, post-
translational activation of ERK, rather than PI3K/Akt,
participated in the cardioprotective effect of ischemic
PreC and atorvastatin in hyperlipidemia (Sun et al.,
2017).
Apart from dysregulation of the RISK pathway, inhi-

bition of myocardial matrix metalloproteinases (MMP),
and especially MMP-2, is involved in ischemic PreC-
induced cardioprotection. MMP-2 inhibition by ischemic
PreC was absent in hyperlipidemia (Giricz et al., 2006),
and moderate inhibition of MMP-2 by ilomastat still
provided cardioprotection in hyperlipidemia (Bencsik

et al., 2018). Although novel inhibitors of MMP-2 dose-
dependently reduced IS in an in vivo rat AMI model,
their cardioprotective effects at the most effective doses
in normal animals were abolished by hypercholesterol-
emia (G€om€ori et al., 2020). Hypercholesterolemia has
been shown to alter cardiac gene expression profile in-
cluding of miRs as demonstrated by a downregulation
of cardiac miR 25 in hypercholesterolemic rats (Varga
et al., 2013). The attenuated cardioprotective effect of
ischemic PreC in hypercholesterolemia correlated to a
diminished miR 125b-1-3p induction, indicating that
diet-induced hypercholesterolemia blunts the cardiac
overexpression of miR 125b-1-3p triggered by ischemic
PreC (Szab�o et al., 2020). Therefore, modulation of car-
diac miR 125b-1-3p could be a feasible target for cardio-
protection also in hypercholesterolemia (Varga et al.,
2018).
The impact of hypercholesterolemia on mitochon-

drial membrane fluidity, mitochondrial energetics, and
related pathophysiological changes in myocardial in-
jury and function has been investigated in a type 1 di-
abetes rat model fed with a high fat-cholesterol diet.
The authors concluded that the cholesterol enriched
diet induced adverse remodeling, which negatively af-
fected mitochondrial function, relating to distortion of
the mitochondrial membrane protein lipid interactions,
which led to inhibition of endogenously initiated cardi-
oprotective mechanisms (Ferko et al., 2018).
Additional mechanisms refer to the observation that

hypercholesterolemia attenuates cardiac autophagy in
parallel with the activation of the mechanistic target of
rapamycin pathway and an activation of apoptosis, dem-
onstrating a strong relationship between increased car-
diac apoptosis and hypercholesterolemia (Giricz et al.,
2017). Therefore, the imbalance between prosurvival and
death pathways might play a role in the abolishment of
cardioprotection in hypercholesterolemia (Giricz et al.,
2017).
Some cardioprotective interventions have been stud-

ied for their potential to provide cardioprotection or
to reestablish cardioprotection in the presence of hy-
perlipidemia. Zinc supplementation during hyperlipid-
emia reestablished ischemic PreC (4� 5 minute) in
rats (Kansal et al., 2015). Pioglitazone restored the
cardioprotective effect of ischemic PreC (4� 5 minute)
in hyperlipidemic rat heart, an effect that may be
via PI3K and mechanistic target of rapamycin (Mittal
et al., 2016). Preconditioning by dopamine (Gupta
et al., 2015) or PreC and PostC by nicorandil (Li et al.,
2015) exerted cardioprotection in the presence of hy-
perlipidemia in rats.
In summary, beyond the known molecular mecha-

nisms that blunt the cardioprotective signaling of con-
ditioning interventions in hyperlipidemia, recent
evidence suggests that GSK-3b inhibition, modulation
of cardiac miR 125b-1-3p, moderate MMP inhibition,
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and cardiac autophagy may represent novel cardio-
protective therapeutic interventions for hypercholes-
terolemic subjects. Whether molecular and metabolic
rearrangements in hyperlipidemia may modify the re-
sponse of cardioprotective maneuvers in the clinic re-
mains to be established.

3. Diabetes.
a. Diabetes and Cardioprotection. According to

World Health Organization data, the global prevalence
of diabetes mellitus in 2014 was estimated to be 9%
(https://www.who.int/nmh/publications/ncd-status-report-
2014/en/), with a variation from #4% (e.g., in the United
Kingdom) to $10% (e.g., in Germany) in 2019 (Timmis
et al., 2022). High fasting blood glucose ranks third
among the leading risk factors for disability-adjusted life
years (years lived with severe illness) based on the global
burden of disease data for 2019 (GBD 2019 Risk Factors
Collaborators, 2020), and patients’ mortality increase
with the duration of type 2 diabetes depending on the
level of glycated hemoglobin achieved (37% increase
over 11 years with glycated hemoglobin exceeding 7%)
(Joseph et al., 2022).
Protection by ischemic PreC is lost in diabetes when

the heart has become insulin resistant, and ischemic
PreC cannot further increase glucose uptake (Ji et al.,
2013), thereby reinforcing the importance of glucose
metabolism for efficient conditioning interventions (see
Section II). Several but not all studies reported that
the cardioprotective effect of ischemic PreC is reduced
in animal models of type 2 diabetes. Ischemic PreC
(3� 2 minute) failed to protect rat hearts with diabetic
cardiomyopathy from IRI probably due to deteriorated
mitochondrial function (Ansari and Kurian, 2020a).
Pharmacological PreC with inhaled sevoflurane, how-
ever, remained cardioprotective during diabetes in
mice, via adenosine 50-monophosphate activated pro-
tein kinase-independent activation of a prosurvival
mitogen-activated protein kinase member (Xie et al.,
2020). In contrast, isoflurane pharmacological PreC
failed to induce cardioprotection in obese type 2 dia-
betic (db/db) mice, and this effect was associated
mainly with abnormal regulation of eNOS and mito-
chondrial respiratory complex I (Ge et al., 2018). Phar-
macological PreC with hydrogen sulfide attenuated
myocardial injury in diabetic rat hearts via an alterna-
tive to the PI3K pathway, although hydrogen sulfide
PreC could not attenuate I/R-induced oxidative stress
(Ansari and Kurian, 2020b). Hydrogen sulfide PreC
also reduced IS in isolated rat hearts with diabetes
and with diabetic cardiomyopathy (Ansari and Kurian,
2019). Recent studies have investigated the influence
of the duration of type 2 diabetes on the cardioprotec-
tive effects of ischemic PreC. The metabolic and endo-
crine disruption in type 2 diabetes was associated with
ischemic intolerance and inhibition of ischemic PreC’s
cardioprotective effects (Russell et al., 2019). The

duration of diabetes may influence the response to cardi-
oprotective maneuvers because early-onset type 2 diabe-
tes is associated with an endogenous cardioprotection
characterized by underlying mechanisms distinct from
those involved in exogenously induced cardioprotection
by conditioning modalities (Povlsen et al., 2013; Kris-
tiansen et al., 2019). However, when male Zucker dia-
betic fatty rats in different stages of diabetes were
subjected to IRI in the Langendorff model and random-
ized to ischemic PreC stimulus (2� 5 minute) or control,
ischemic PreC reduced IS in all groups irrespective of
the presence of diabetes and its duration (Hjortbak
et al., 2018). This cardioprotective effect was associated
with an adaptation to myocardial glucose oxidation ca-
pacity (Hjortbak et al., 2018).
Hyperglycemia also blunts IS reduction by ischemic

PostC (Przyklenk et al., 2011; Chen et al., 2016c) and
RIC (Kiss et al., 2014; Baranyai et al., 2015; Tyagi
et al., 2019). While alpha-lipoic acid PreC and ischemic
PostC did not protect isolated hearts from diabetic
rats, adding both interventions reduced IS (Mokhtari
et al., 2022). Similarly to alpha-lipoic acid, hydrogen
sulfide PostC reduced IS in isolated hearts taken from
diabetic rats (Ansari et al., 2022); minocycline given at
reperfusion protected isolated hearts from diabetic rats
(Sobot et al., 2022).
More recent studies indicate that fluctuations in

circulating glucose levels influence the response to
cardioprotective maneuvers more in nondiabetic than
in diabetic models (Saito et al., 2016; Pælestik et al.,
2017; Kristiansen et al., 2019). The clinical implica-
tions of these findings remain to be clarified. While
clinical studies of ischemic PostC in STEMI patients
have yielded mixed results in terms of limiting IS,
most studies applying RIC demonstrated such reduc-
tion as measured by nuclear imaging or MRI techni-
ques or myocardial biomarker release (Heusch, 2020).
Data relying on post hoc analyses indicate that RIC
protocols used in clinical settings also yield cardiopro-
tection in patients with type 2 diabetes undergoing
PPCI (Sloth et al., 2015). In patients with diabetes
undergoing CABG surgery, RIC also induced cardio-
protection, but the use of sulfonylureas abrogated
protection (Kottenberg et al., 2014). However, it re-
mains to be investigated whether any variation in IS
reduction relates to hyperglycemia. Regardless of per-
turbations in circulating glucose levels, experimental
studies indicate that type 2 diabetes blunt the cardio-
protective response to ischemic PostC and RIC stimuli
by impairing activation of the cardioprotective RISK
and SAFE pathways.
In summary, type 2 diabetes appears to abolish the

cardioprotective efficacy of both ischemic PreC and
PostC, whereas some but not all pharmacological con-
ditioning interventions seem to reduce IS in diabetic
animals. Whether the confounding effects of diabetes
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on cardioprotection observed in the experimental set-
tings translate into the clinical setting remains to be
settled (Kleinbongard et al., 2020). The number of pa-
tients that have been enrolled in currently available
clinical studies are low, and the methods used to as-
sess IS vary, so further studies are required to define
the efficacy of conditioning strategies in humans with
diabetes (Reinstadler et al., 2017).

b. Diabetes and Cardioprotective Signaling.
Among the underlying mechanisms that may attenu-
ate the effect of cardioprotective maneuvers in diabetic
subjects are failure to phosphorylate ERK, PI3K, and
Akt (Tsang et al., 2005; Whittington et al., 2013), the
maintenance of hexokinase II at the mitochondria (Gurel
et al., 2013) and the cytoprotective regulation of the
mPTP (Itoh et al., 2012), along with dysfunction of sarco-
lemma and mitochondrial KATP channels (Kersten et al.,
2001; del Valle et al., 2003), upregulation of mechanistic
target of rapamycin (Baranyai et al., 2015), and a de-
crease in autophagy (Qian et al., 2009; Kobayashi et al.,
2012). Many studies have demonstrated that the attenu-
ated response to ischemic PreC may be overcome by an
intensified stimulus when a critical level of Akt phos-
phorylation is achieved to confer protection (Tsang et al.,
2005; Hausenloy et al., 2013; Hjortbak et al., 2018;
Kristiansen et al., 2019).
Additionally, cardioprotective interventions may also

become inefficient when examined in the prediabetic
state, knowing that in the early stage of diabetes the
heart is often already in a protective state (Zuurbier
et al., 2014). This may have implications for clinical
studies, where patients are frequently in a nondiag-
nosed prediabetic state. Impairment in O-linked b-N-
acetylglucosamine signaling (Jensen et al., 2013) and
release of cardioprotective humoral factors, which de-
pends on intact neural function, may contribute to at-
tenuating RIC-induced cardioprotection (Jensen et al.,
2012). Diabetes may increase ROS production (Ansley
and Wang, 2013; Su et al., 2013; Baranyai et al., 2015)
and inhibit autophagy to attenuate RIC-induced cardi-
oprotection (Baranyai et al., 2015). Diabetes-induced
reduction in NO bioavailability may also contribute to
decreasing remote RIC-induced cardioprotection (Kiss
et al., 2014). Finally, diabetes may reduce the phos-
phorylation of adenosine 50-monophosphate activated
protein kinase a (Han et al., 2014), with a possible role
for elevated adipocyte-released microvessels containing
miR 130b-3p for adenosine 50-monophosphate activated
protein kinase downregulation (Gan et al., 2020), and
increase the phosphorylation of mechanistic target of
rapamycin to attenuate cardioprotection of remote
postconditioning (Tyagi et al., 2019). A recent study in
Ossabaw minipigs which are prone to develop a full
metabolic syndrome, including insulin resistance with
progression to type 2 diabetes, hyperlipidemia, obesity,
and hypertension with the subsequent development of

coronary atherosclerosis and occasional spontaneous
myocardial infarction, demonstrated loss of protection
by ischemic PreC in these pigs even before they had
developed the diseased phenotype; the loss of protec-
tion was associated with lack of activation of STAT3
and a primordial genetic difference in mitochondrial
function and STAT signaling from other pig strains.
Thus, lack of cardioprotection can even become mani-
fest before a metabolic syndrome has developed (Klein-
bongard et al., 2022).
In summary, hyperglycemia and diabetes mellitus ap-

pear to attenuate the cardioprotective efficacy of me-
chanical conditioning strategies in experimental animal
and human ex vivo heart tissue studies. Underlying
mechanisms involve interference with the cardioprotec-
tive signaling pathways. The confounding effects of hy-
perglycemia and diabetes mellitus on cardioprotection
can be overcome by increasing the conditioning stimu-
lus. Evidence for these phenomena is not yet available
from clinical studies.

4. InterimCoronary Events, IRI, andCardioprotection.
There are 2 principal pathways by which coronary
events could interfere with cardioprotection. A coro-
nary event could induce cardioprotection per se and
then either be additive to a cardioprotective interven-
tion or limit the potential for a further cardioprotective
intervention. Alternatively, a coronary event could atten-
uate the effect of a cardioprotective intervention by in-
terfering with its mechanisms. Indeed, there is evidence
for both these types of interference. In animal experi-
ments, coronary microembolization, which mimics a mi-
nor acute coronary syndrome after plaque rupture or
erosion, shortly before a sustained myocardial I/R nei-
ther induced (Skyschally et al., 2004) nor interfered with
ischemic PreC protection in reducing IS (Skyschally
et al., 2005); however, the coronary microembolization
per se slightly increased IS.
In patients, pre-infarction angina is a prototypic

event that is protective per se in that 1 or several
episodes of myocardial ischemia in the presence of epi-
cardial coronary atherosclerosis are precipitated by
sympathetic activation such as stress or exercise and
then exert an ischemic PreC effect on the myocardium
for a limited period of time (Heusch, 2001; Rezkalla
and Kloner, 2004). Pre-infarction angina in patients
decreases IS (Andreotti et al., 1996; Iglesias-Garriz
et al., 2001; Kloner et al., 1998; Lønborg, Kelbæk,
Vejlstrup, Bøtker, Kim, Holmvang, Jørgensen, Helqvist,
Saunam€aki, Thuesen, et al., 2012; Reiter et al., 2013)
and no-reflow (Karila-Cohen et al., 1999; Colonna et al.,
2002; Niccoli et al., 2014), and it improves patients’
prognosis (Lorgis et al., 2012; Herrett et al., 2014;
Schmidt et al., 2015). However, the protection by pre-in-
farction angina is attenuated by nonmodifiable risk fac-
tors, such as age (Ishihara et al., 2000); modifiable risk
factors, such as smoking; and comorbidities, such as
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dyslipidemia (Niccoli et al., 2014). Also, the time inter-
val between the prodromal angina and the onset of
AMI is decisive and was between 1 (Kloner et al., 1998;
Ishihara et al., 2000; Iglesias-Garriz et al., 2001; Reiter
et al., 2013) and 7 (Karila-Cohen et al., 1999; Colonna
et al., 2002; Lønborg Kelbæk, Vejlstrup, Bøtker, Kim,
Holmvang, Jørgensen, Helqvist, Saunam€aki, Thuesen,
et al., 2012; Herrett et al., 2014) or 14 days (Schmidt
et al., 2015) when resulting in a clinical benefit. Prodro-
mal peripheral ischemia in the presence of peripheral
artery disease can also elicit a RIC-form of cardioprotec-
tion in patients with AMI (Herrett et al., 2014; Schmidt
et al., 2015), whereas the presence of a nonculprit ste-
nosis with a significantly reduced fractional flow reserve
as such (no evidence for ischemia in this territory was
provided) was not associated with better salvage in a
larger cohort of STEMI patients (Ekstr€om et al., 2021).
Mechanistically, in experiments in pigs, coronary micro-
embolization preceding a sustained myocardial I/R up-
regulated myocardial TNFa which then reduced IS
(Skyschally et al., 2007). Patients with prodromal an-
gina have reduced platelet reactivity (Scalone et al.,
2013) and better thrombolysis (Andreotti et al., 1996),
suggesting a role for platelet function and coagulation
in the protective effects of pre-infarction angina. The
clinical observations on the benefits of pre-infarction an-
gina and of prodromal peripheral ischemia underpin
the concept of (remote) ischemic PreC as a tool to in-
duce cardioprotection.
Interventional reperfusion obviously involves manipu-

lation of the culprit atherosclerotic lesion and also entails
the risk of further release and embolization of athero-
thrombotic debris into the coronary microcirculation,
which there acts to extend the infarct (Heusch and
Gersh, 2017). Direct stenting can attenuate the micro-
vascular injury as measured by TIMI flow and ECG res-
olution (Loubeyre et al., 2002), but thromboaspiration
did not reduce IS or microvascular obstruction, as mea-
sured by MRI (Desch et al., 2016). Ischemic PreC is not
feasible in AMI since the time of its occurrence is not
known. Manipulation of the culprit lesion by an ischemic
PostC protocol of repeated balloon occlusion/reperfusion
entails a further risk for embolization of atherothrom-
botic debris. In a pig model of reperfused AMI, ischemic
PostC reduced IS, but in combination with induced
coronary microembolization the IS was larger than
without microembolization, reflecting the interference of
mechanically induced microembolization with cardiopro-
tection (Skyschally et al., 2013).
In summary, a preceding coronary event characterized

by ischemia may induce a degree of cardioprotection,
and there are several clinical series to substantiate this.
It has yet not been possible to exactly identify the molec-
ular mechanisms of benefit and to harness these into a
therapeutic strategy. In contrast, a coronary event

characterized by necrosis and microvascular obstruction
appears to be universally detrimental.

5. Atrial Fibrillation.
a. Atrial Fibrillation and IRI. Atrial fibrillation

(AF) and coronary artery disease frequently coincide,
particularly with advanced age. Up to 47% of patients
exhibiting any form of AF also present with coronary ar-
tery disease, while among patients with coronary artery
disease, up to 5% manifest with AF (Lieder, Breithardt,
et al., 2018). Many established and emerging risk factors
for AF are also fundamental for the development of coro-
nary artery disease and IRI (Kirchhof et al., 2012; An-
drade et al., 2014) and the 2 disease entities appear to
share a common mechanistic basis that goes both ways
(Vermond et al., 2015; Lieder, Breithardt, et al., 2018).
Accordingly, the risk factor clusters encompassed by the
CHADS2 and CHA2DS2-VASc scores for risk of ischemic
stroke in nonvalvular AF also predict fatal ischemic
heart disease in these patients (Kim et al., 2011). Sym-
pathetic drive is seen as 1 culprit link between AF and
IRI (Lieder, Breithardt, et al., 2018), and these 2 dis-
eases are likely to interact at both cellular and molecu-
lar levels. A recent study dissecting the differentially
expressed genes concurrently associated with coronary
artery disease and AF identified 3 highly enriched genes
coding for proteins that contribute to the development of
both diseases: membrane metalloendopeptidase (neprily-
sin), transferrin receptor-1, and lysosome-associated
membrane glycoprotein-1 (Zheng and He, 2021).
The existence of coronary artery disease and a prior

MI are accepted drivers of AF risk. A recently published
Mendelian randomization study (Kwok and Schooling,
2021) that aimed to assess the bidirectional causal rela-
tionship between AF and major cardiovascular diseases,
revealed that genetically predicted ischemic heart dis-
ease is positively associated with AF. Two recent Chinese
studies further support a causal link between prior IRI
and subsequent AF, particularly when associated with
concomitant renal dysfunction, higher resting heart rate,
and increased left atrial size (Luo et al., 2020; Luo et al.,
2021), with each incremental millimeter increase in
atrial size raising the risk of AF by 7%. However, the
retrospective study design and the lack of clarity of
whether AF was truly a first-onset phenomenon or sim-
ply the first diagnosis of previously unrecognized AF
should be considered when interpreting the outcome of
these studies. Conceptually, events occurring during IRI
provide putative mechanistic determinants for the onset
and perpetuation of AF. Reduced blood flow through the
circumflex coronary artery as a result of stenotic or
thrombotic occlusion will also cause hypoperfusion and
impaired metabolism of the atria. Such punctual altera-
tions may alter impulse conduction and drive electrical
and structural remodeling, a constellation that will pro-
mote AF and increase its complexity (Opacic et al., 2016;
Opacic et al., 2016; Dudink et al., 2021; Van Wagoner,
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2021). Chronic atrial ischemia/infarction creates sub-
strates for both spontaneous calcium driven atrial ectopy
and sustained reentry due to conduction abnormalities
(Nishida et al., 2011). Increased atrial cardiomyocyte ex-
citability along with heterogeneity in atrial conduction
could create reentry that could be further amplified by
increases in atrial stretch due to the higher atrial pres-
sure secondary to ischemia or ventricular dysfunction
and by fibrotic remodeling of the infarcted myocardium
(Lieder, Breithardt, et al., 2018; Liang and Wang, 2021).
Even subclinical atherosclerosis, defined on the basis of
increased intima-media thickness or coronary calcium
scores, is significantly associated with incident AF (Willeit
and Kiechl, 2014; Kristensen et al., 2020), and the extent
of coronary artery disease has been linked to the degree
of complexity of induced AF (Dudink et al., 2021).
Conversely, AF may also be seen as prognostic indica-

tor with an increased risk for coronary artery disease
and MI (Liang and Wang, 2021), although interpreta-
tion of data relating the contribution of AF to coronary
artery disease and MI is somewhat hampered by the
definition of coronary artery disease. This does not al-
ways differentiate clearly between atherosclerotic vessel
disease and actual MI. One of the first prospective stud-
ies to examine the risk of incident MI in patients with
AF and no coronary artery disease at baseline [Reasons
for Geographic and Racial Differences in Stroke (RE-
GARD) cohort; Soliman et al., 2014] highlighted AF as
an independent risk factor for incident MI, raising the
risk by approximately 2-fold even after adjustment for
confounders. The Atherosclerosis Risk in Communities
study subsequently reported that after multivariate
analysis AF diagnosis was associated with a higher
(80%) risk of non-ST elevation myocardial infarction
but not STEMI (Soliman et al., 2015). More recent sys-
tematic reviews and meta-analyses (He and Chu, 2017;
Ruddox et al., 2017) further underscore AF as a driver
of subsequent MI in patients, although the direct causal
relationship is more pronounced in patients who are
free of coronary artery disease at baseline. Mendelian
randomization did not associate genetically predicted
AF with subsequent ischemic heart disease (Kwok and
Schooling, 2021), indicating that exposure to environ-
mental risks, lifestyle, and concomitant diseases may
be more relevant for the 2-way interaction between AF
and cardiac ischemia than random genetic variants
at conception. Paroxysmal AF episodes often elicit an-
gina-like symptoms, with mildly elevated troponin,
even though no significant coronary artery disease is
detected on angiography. Experimental evidence from a
porcine model of AF induced by rapid atrial tachypac-
ing implies acute impairment of microcirculatory blood
flow in the ventricle as the potential culprit event
(Goette et al., 2009). Mechanistically, this can be attrib-
uted to oxidative stress induced via the angiotensin II/
nicotinamide adenine dinucleotide phosphate oxidase

axis, leading to a reduction in coronary flow reserve
with subsequent releases of troponin I (Goette et al.,
2009). AF fulfills Virchow’s Triad of hypercoagulability,
hemodynamic perturbation, and endothelial dysfunc-
tion and is associated with a chronic state of low-grade
inflammation that can be seen as both cause and conse-
quence of AF (Boos et al., 2006; Kallergis et al., 2008).
Thus, episodes of uncontrolled AF punctually increase
myocardial oxygen consumption while lowering diastolic
coronary perfusion (Bertero et al., 2021). Coronary throm-
boembolism, although a relatively rare cause of myocar-
dial infarction, is, when it occurs, predominantly driven
by AF-associated hypercoagulation (Shibata et al., 2015;
Borschel and Schnabel, 2019). Concurrent atherosclerotic
stenosis of the coronary arteries, driven by AF-associated
increases in sympathetic nerve activity, inflammatory sig-
naling, oxidative stress, and endothelial dysfunction, will
further exhaust coronary dilator reserve. The additional
constellation of burdens that accompany the progression
of AF—calcium overload, energy depletion and increased
sympathetic drive—promotes a vicious cycle of global car-
diac impairment (Korantzopoulos et al., 2018; Borschel
and Schnabel, 2019) that will clearly sensitize the myo-
cardium for IRI.
At the cellular and molecular level, priming for IRI

in the setting of AF may be seen to encompass, among
others, (i) the manifestation of a calmodulin-dependent
protein kinase II/NLRP3 inflammasome nexus that in-
duces calcium-handling dysfunction and disseminated
inflammatory states (Yao et al., 2018; Liu et al., 2019;
Heijman et al., 2020; Nattel et al., 2020; Wang, Chen,
et al., 2021), (ii) local injury through increased calpain-
mediated proteolysis (Letavernier et al., 2012; Li and
Brundel, 2020), (iii) release of mitochondrial deoxyribo-
nucleic acid from cardiomyocytes to the surrounding
tissue and the circulation (Wiersma et al., 2020), and
(iv) increased local and systemic ROS production (Kim
et al., 2005; Reilly et al., 2011).

b. Atrial Fibrillation and Cardioprotection. Data
on how AF impacts on cardiac conditioning and cardi-
oprotection are sparse. One RCT examined patients
with drug-refractory paroxysmal AF undergoing ra-
diofrequency catheter ablation who received RIC by
intermittent arm ischemia prior to ablation. Ablation-
stimulated rises in troponin I, high-sensitive-C-
reactive protein and IL-6 were notably attenuated by
RIC, while early recurrence rates were modestly low-
ered (Han et al., 2016). These findings were verified
in the recent RIPPAF-RTC, which additionally noted
lower serum levels of MMP 9 and von Willebrand fac-
tor, markers for atrial remodeling and endothelial
damage, respectively, in the cohort receiving RIC
prior to ablation for paroxysmal AF (Han et al., 2018).
Patients undergoing cardiac surgery frequently develop
post-surgery AF, the major form of secondary AF. The
conceptual model of post-surgery AF encompasses the
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presence of a vulnerable substrate provided by an un-
derlying atrial cardiomyopathy created by genetics,
risk factors, and comorbidities such as heart failure, di-
abetes, or hypertension (Goette et al., 2017). Periopera-
tive triggers such as surgery-induced hypoxia, trauma,
inflammation, and oxidative stress provide an impetus
above a critical threshold that then precipitates post-
surgery AF (Dobrev et al., 2019). The incidence of post-
surgery AF in patients undergoing CABG is reportedly
reduced from 50% to 14% if arm-pressure cuff RIC is
applied prior to surgery (Slagsvold et al., 2014). Atrial
appendage biopsies collected prior to and after cross-
clamping showed that RIC preserved mitochondrial re-
spiratory capacity and prevented the induction of miR
1, while miR 338-3p was upregulated compared with
non-RIC samples (Kim et al., 2020). However, a more
recent meta-analysis of RCT did not support the notion
that RIC protects against post-surgery AF development
(Kumar et al., 2019). Whether the cardioprotective win-
dow provided by RIC is sufficient to limit future IRI in
patients with AF requires further systematic study.

c. Atrial Fibrillation and Cardioprotective Signal-
ing. Little data are available regarding the impact
of AF on cardioprotective mediators and pathways.
Patients with AF have been noted to show dynamic
alterations in critical determinants of NO production
and metabolism, specifically arginine, homoarginine
asymmetric dimethylarginine, and symmetric dime-
thylarginine, the levels of which were strictly depen-
dent on acute heart rhythm at blood sampling, the
degree of AF progression, and the success rate of sinus
rhythm restoration (B€uttner et al., 2020). Thus, NO-
dependent pathways of cardioprotection will therefore
be difficult to predict in patients with AF. Likewise,
adenosine represents an important adaptive mediator
protecting against myocardial IRI, yet in the context of
AF, adenosine, and its receptors promote AF develop-
ment and its perpetuation (Guieu et al., 2020; Soattin
et al., 2020). Adenosine levels in atria and the circula-
tion are elevated in AF, predominantly associated with
peripheral blood monocytes (Godoy-Mar�ın et al., 2021),
but how this could influence ischemic injury and cardi-
oprotection remains unclear.
Although there are accumulating evidence to sup-

port a bidirectional causal relationship between AF
and IRI, many aspects remain unclear and require
further clarification and verification. The impact of
AF on (i) the risk that a myocardial ischemic event
will occur in the first place, (ii) the extent of IRI and
infarct progression, and (iii) the endogenous cardio-
protective pathways that counteract IRI acutely and
in the long term all need to be directly addressed in
future work.

6. Kidney Failure/Uremia. Kidney failure and ure-
mia are important comorbidities for ischemic heart dis-
ease (as reviewed earlier; Ferdinandy et al., 2014).

Patients with a chronic kidney disease (CKD) have an
increased in-hospital mortality after AMI compared
with patients with normal renal function (Gansevoort
et al., 2013). Experimentally, hearts from animals with
CKD (5/6 nephrectomy) (Guo et al., 2018) or uremia
(Dikow et al., 2004) had an increased susceptibility to
IRI, even when hypertension was treated pharmacologi-
cally (Dikow et al., 2004). The mechanisms behind the
increase in irreversible injury following I/R in CKD
may be related to mitochondrial uncoupling (Taylor
et al., 2015) and/or increased endoplasmic reticulum
stress (Guo et al., 2018). Uremic rats also exhibited
progressive impairment of LV function following MI
(Dikow et al., 2010).
Since sex is an independent nonmodifiable risk fac-

tor (see previous discussion), more recently the impor-
tance of CKD for myocardial IRI and cardioprotective
interventions was compared in males and females.
While the severity of CKD was similar in males and
females following 5/6 nephrectomy, only CKD males
developed more severe LV hypertrophy and increased
fibrosis. In both sexes, however, ischemic PreC de-
creased IS in sham and CKD animals. Interestingly,
ischemic PreC increased the phospho-STAT3/STAT3
ratio in sham-operated but not CKD animals in
both sexes, while no differences in phospho-AKT/AKT
and phospho-ERK/ERK ratios existed (S�ark€ozy et al.,
2021). Thus, the underlying signaling events might
differ between sham (SAFE-pathway-dependent) and
CKD animals (SAFE- and RISK-pathway indepen-
dent). Surprisingly, the effect of kidney failure on RIC
has not been studied yet.
In conclusion, although CKD increases myocardial

IRI, ischemic PreC still reduces IS in both female and
male hearts; protection in males occurs despite the
presence of LV hypertrophy and fibrosis. The underly-
ing signaling events might involve endoplasmic reticu-
lum stress as well as mitochondrial function. Other
cardioprotective intervention (PostC or RIC) have not
yet been studied in CKD and/or uremic animals. There
are no data from humans on CKD and cardioprotective
intervention available yet. Therefore, further preclini-
cal studies in long-term experimental uremia models,
as well as clinical studies, will be necessary to show if
mechanical or pharmacological conditioning can still
protect the heart in uremic patients.

V. Effects of Pharmacological Treatment of
Comorbidities on Cardioprotection

Previous sections have shown how risk factors and co-
morbidities can reduce the effectiveness of cardioprotec-
tive strategies. However, many patients with risk factors
as well as comorbidities will already be receiving multi-
ple medications to treat these comorbidities, even before
they experience a MI. Therefore, an additional impor-
tant consideration is the effect that these comedications
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might have on IRI per se and/or cardioprotective inter-
ventions. These effects may include attenuation of IRI
that may leave less more room to further cardioprotec-
tion; however, some medications may negatively affect
cardiomyocyte survival in hearts exposed to I/R or atten-
uate cardioprotective signaling, a phenomenon referred
to as “hidden cardiotoxicity” (Ferdinandy et al., 2019).
Finally, patients who undergo PPCI or CABG for MI
will be administered a number of different analgesics
and anesthetics, and these “background drugs” can also
potentially affect the response of the heart to I/R and
the efficacy of cardioprotective strategies (He et al.,
2020; Kleinbongard et al., 2020). The following sections
will summarize the current knowledge on different co-
medications for cardioprotective interventions.

A. Antihypertensive Drugs (Also Used in Part to Treat
Heart Failure With Reduced Ejection Fraction)

Effective treatment of hypertension to reduce arterial
pressure below guideline thresholds reduces cardiovas-
cular risk, notably from stroke, ischemic events, sudden
death, and congestive HF (Soliman et al., 2017; Whelton
et al., 2018). Beyond MACE reduction, a number of anti-
hypertensive agents induce regression of LVH. Although
blood pressure reduction is a primary determinant of
LVH regression, the extent of LV mass reduction by dif-
ferent drug classes may not correlate well with the level
of blood pressure reduction, suggesting that hemody-
namic effects alone may be insufficient to explain LVH
regression. For example, with L-type calcium channel
blockers, ACE inhibitors, and angiotensin receptor block-
ers, LV mass reduction is generally superior to that seen
with direct vasodilator agents (Soliman and Prineas,
2017). The question of whether LV mass regression per
se, beyond blood pressure lowering, is associated with re-
duced susceptibility to cardiovascular risk including IRI
is unresolved (Soliman et al., 2017).
There is conflicting and inconsistent evidence from

experimental and clinical studies suggesting that some
antihypertensives either exert direct cardioprotective
effects by recruiting cardioprotective signaling path-
ways or enhance protective conditioning responses, or
even attenuate these responses. This may be especially
relevant, not only in the context of hypertension being
a frequent comorbidity but also because of the use of
b-adrenoceptor antagonists and ACE inhibitors as ad-
juncts in the early management of STEMI and for sec-
ondary prevention.

1. b-Adrenoceptor Antagonists. b-adrenoceptor an-
tagonists form a heterogeneous group of drugs, widely
applied as antihypertensive agents since the 1960s and
thus, with diuretics, the oldest group of antihypertensive
agents in current use. A systematic review has sug-
gested inferiority of first-line hypertension management
with b-blockers (mainly atenolol or propranolol) on mor-
tality compared with renin-angiotensin system inhibitors
(Wiysonge et al., 2017), although hemodynamic benefits

of b-blockers are, at least in part, associated with sup-
pression of the renin-angiotensin cascade. They are also
used in the management of patients with established
coronary artery disease (e.g., as anti-anginal agents)
(Bertero et al., 2021). Although under review, US and
European guidelines have advocated the use of particu-
lar antagonists in early management of acute coronary
syndrome in hemodynamically stable patients (Gianna-
kopoulos and Noble, 2021).
There is a wealth of preclinical data on IS reduction

by b-blockers in animal studies of I/R, although, as noted
later, none have been successfully and reproducibly
translated to humans. Studies in pigs have shown MRI-
based evidence for cardioprotection by metoprolol (Iba-
nez et al., 2007; Ibanez et al., 2011; Garc�ıa-Ruiz et al.,
2016; Heusch and Kleinbongard, 2020; Lobo-Gonzalez
et al., 2020), and histology-based evidence for cardiopro-
tection by carvedilol (Bril et al., 1992; Feuerstein and
Ruffolo, 1995), atenolol, and the short-acting b-blocker
landiolol (Park et al., 2011). Carvedilol also reduced the
area of no-reflow in pigs following I/R, assessed by myo-
cardial contrast echocardiography (Zhao et al., 2008).
There are mixed data suggesting that b3 adrenergic
receptor stimulation may be cardioprotective. The b3
adrenergic receptor agonist BRL37344 reduces IS in
mice and pigs (Aragon et al., 2011; Garc�ıa-Prieto et al.,
2014), but mirabegron, a b3-agonist approved for human
use, was not cardioprotective in pigs (Rossello et al.,
2018).
Clinical studies conducted in the 1980s provided evi-

dence that b-receptor blockade could reduce IS when
given within 4 to 7 hours of symptom onset (Peter
et al., 1978; Yusuf et al., 1983; International Collabora-
tive Study Group, 1984; MIAMI Trial Research Group
1985); however, this was in the “pre-reperfusion era”
before the use even of thrombolysis. A 2020 patient-
pooled meta-analysis of randomized clinical trials test-
ing early intravenous b-blockers in patients undergo-
ing PPCI for STEMI, which included 4 trials and 1150
patients, found no difference in the main outcome of
1-year death or biomarker-based IS (Hoedemaker et al.,
2020). Although initial studies reported reduced IS with
intravenous metoprolol administered prior to reperfusion
(Ibanez et al., 2013; Pizarro et al., 2014; Podlesnikar
et al., 2020), the larger EARLY BAMI study of 683
STEMI patients failed to report a reduction in myocar-
dial IS (Garcia-Ruiz et al., 2016; Roolvink et al., 2016;
Fabris et al., 2020).
A role of endogenous catecholamines in eliciting ische-

mic PreC has long been recognized in several species,
with contributions from a1-adrenoceptor being initially
characterized in rabbit and rat heart (Tsuchida et al.,
1994; Mitchell et al., 1995). Transient a1-adrenoceptor
stimulation induces pharmacological PreC (Bankwala
et al., 1994), and transient b1- or b2-adrenoceptor stimu-
lation also induces pharmacological PreC in rat isolated
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heart (Salie et al., 2011), with recruitment of similar
mechanisms to ischemic PreC. However, the effects of
b-blockade on cardioprotective and conditioning responses
have been shown in experimental studies to be complex
and inconsistent with some but not all studies suggesting
a loss of ischemic PreC and ischemic PostC protection, vo-
latile anesthetic PreC, or PostC or RIC in the presence of
b-adrenoceptor antagonists (Ferdinandy et al., 2014).
There is no obvious or consistent explanation based
on the diverse pharmacodynamic profiles of different
b-blockers (e.g., lipophilicity, b1 receptor selectivity/cardio-
selectivity, a receptor antagonism, duration of action, or
intrinsic sympathomimetic activity). However, limited evi-
dence from experimental studies suggests that pharmaco-
logical PreC or PostC by volatile anesthetic involve
recruitment of b-adrenergic signaling (Lange et al., 2009).
In more recent clinical studies of conditioning-induced
cardioprotection, concomitant b-blockade may be a sub-
stantial confounding factor. Cho et al. (2019) examined
the effects of limb RIC in healthy human subjects.
Plasma dialysate obtained from RIC-treated subjects re-
duced IS in isolated rat hearts perfused with human RIC
dialysate prior to coronary artery occlusion. However,
this transfer of protection, likely by some humoral factor
in the RIC plasma was abolished if the subjects received
RIC in the presence of carvedilol, a b-adrenoreceptor an-
tagonist with ROS-scavenging properties (Feuerstein and
Ruffolo, 1995). In a retrospective analysis of a small sin-
gle-center RCT assessing RIC in patients undergoing
CABG surgery, prior use of b-adrenoreceptor antagonists
was not found to correlate with troponin I release, a
marker of intraoperative IRI (Kleinbongard et al., 2016).

2. ACE Inhibitors and Angiotensin II Receptor
Blocker. Inhibitors of the renin-angiotensin system are
first-line antihypertensive treatments but are also widely
used in the management of established ischemic heart
disease and chronic HF. While transient exposure to an-
giotensin II is known to induce pharmacological PreC
via activation of angiotensin II type 1 receptors, and PKC
(Liu et al., 1995), several experimental studies have
shown ACE inhibitors and angiotensin II receptor block-
ers (sartans) to be protective in IRI models and to enhance
the protective effects of endogenous cardioprotective inter-
ventions (ischemic PreC and Ischemic PostC) (Ferdinandy
et al., 2014). The mechanisms underlying this beneficial
effect are likely to include the potentiation of the produc-
tion or reduced catabolism of autocrine/paracrine media-
tors such as bradykinin, prostacyclin, and NO. In pigs
with IRI, candesartan pretreatment reduced IS through
activation of the angiotensin II type 2 receptor, bradyki-
nin, and prostaglandins, and icatibant or indomethacin
abrogated this protection (Jalowy et al., 1998). Sgarra
et al. (Sgarra et al., 2014) described differential effects of
pharmacological PostC with losartan and irbesartan in a
rat isolated heart model of IRI. Losartan given as inter-
mittent pulses during early reperfusion reduced IS

whereas continuous losartan perfusion, or intermittent ir-
besartan treatment, did not. This protective effect was
abolished by icatibant (Hoe140), a bradykinin B2 receptor
antagonist.
In SHR rats treated with olmesartan for 4 weeks,

blood pressure and LV mass were significantly re-
duced and IS was markedly attenuated after coro-
nary artery occlusion in vivo (Lu, Bi, Chen, and
Wang, 2015). In a subsequent study the same group
showed that RIC (3� 5 minute hind limb ischemia
during coronary artery occlusion) was absent in SHR
but was restored in animals treated with olmesartan
for 4 weeks prior to myocardial ischemia (Lu, Bi, and
Chen, 2015).
In a model of rapid pacing-induced PostC in rat iso-

lated heart, the IS limiting effect of PostC was abol-
ished in the presence of irbesartan, an angiotensin II
type 1 receptor antagonist, suggesting that activation of
the angiotensin II type 1 receptor and signaling via the
RISK pathway may be involved in this form of condi-
tioning (Babiker et al., 2016). However, both captopril
and chymostatin, which inhibit angiotensin II produc-
tion by ACE-dependent and ACE-independent path-
ways, respectively, were protective when administered
at reperfusion but did not enhance or abolish the effects
of superimposed PostC. Thus, the role of locally pro-
duced angiotensin II in mediating IRI and conditioning
protection are unclear from this study, and the likeli-
hood is that other peptide mediators are modulated by
these drugs.
Acute administration of azilsartan during reperfusion

was observed to protect isolated rat hearts against IRI,
similarly to ischemic PostC. Whereas the effects of is-
chemic PostC were abrogated in hypercholesterolemic
hearts, azilsartan restored the protective effect, likely
through upregulation of eNOS activity (Li et al., 2017).
Clinical studies are limited, but given the wide-

spread guideline-directed use of ACE inhibitors and
angiotensin II receptor blocker in the management
and prevention of multiple cardiovascular diseases,
the drugs are frequently present in patients included
in clinical cardioprotection trials. The experimental
evidence broadly suggests that these drugs can exert
independent cardioprotective effects or augment is-
chemic PreC and PostC responses and could therefore
modify responses in trials of conditioning interven-
tions in a variety of settings. Kleinbongard et al.
(Kleinbongard et al., 2016), in further analyzing data
from their trial of RIC in CABG patients, concluded
that neither ACE inhibitors nor angiotensin II recep-
tor blockers were determinants of the major endpoint
of protection (plasma troponin I concentration). How-
ever, it seems plausible that further analysis of the
use of these pleiotropic drugs as potential confounders
in larger trials of conditioning interventions, espe-
cially in STEMI patients, is warranted.
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More recently, neprilysin inhibitors in particular
are gaining recognition as a candidate approach for
multitarget cardioprotection, given the spectrum of
neprilysin substrates that elicit additive or even syn-
ergistic cardioprotective signals, including natriuretic
peptides, bradykinin, and apelins, among others (Bellis
et al., 2020).

3. L-Type Calcium Channel Blockers. L-type cal-
cium channel blockers are a chemically diverse class of
agents used in the management of hypertension, cer-
tain arrhythmias, and ischemic heart disease. In the
context of cardioprotection, extensive experimental evi-
dence points to the IS-limiting potential of all classes of
calcium channel blocker when administered prior to the
onset of myocardial ischemia, probably by slowing in-
tracellular calcium overload during ischemia. However,
there is no benefit if the drugs are administered imme-
diately prior to or during reperfusion. Thus, there is lit-
tle rationale for their use as adjuncts to reperfusion in
STEMI. However, the question of their potential to in-
terfere with conditioning protocols or to confound inter-
pretation of clinical conditioning interventions remains
open. There is a paucity of experimental evidence, but
nisoldipine did not interfere with ischemic PreC in pig
heart (Wallbridge et al., 1996). However, it is plausible
that chronic treatment of patients with calcium channel
blocker might confer a reduction in susceptibility to IRI,
making it difficult to reveal additive benefits of condition-
ing interventions. Again, further analysis of data from
large trials might be helpful in elucidating ideal protocols
and patient populations for targeted cardioprotection.

4. Nitrates (and Nitrate Tolerance). Organic ni-
trates have been widely used for many decades as one
of the main drugs for coronary artery disease treat-
ment. Glyceryl trinitrate (nitroglycerine) is a potent
vasodilator that has been used in clinical practice
for over a century (Nunez et al., 2005); however, the
main constraint of nitrate chronic therapy is the de-
velopment of rapid tolerance, mainly vascular toler-
ance, which leads to the loss of clinical efficacy (Csont
and Ferdinandy, 2005; Bibli et al., 2019).
Meta-analysis of many experimental studies sug-

gests that IS was limited compared with controls
when nitrates were administered through different
routes, during ischemia, and/or reperfusion and in dif-
ferent animal species (reviewed in Bice et al., 2016).
For example, application of a nitroglycerine patch (de-
signed to deliver 5 mg/d) reduced myocardial IS when
applied to mice prior to reperfusion (Yellon et al.,
2018). Similarly, low-dose nitroglycerine reduced IS
when administered during ischemia both in normal
and in animals exhibiting endothelial dysfunction,
mainly through the S-nitrosylation and inhibition of
cyclophilin D, a component of the mPTP (Bibli et al.,
2019). Very recently, administration of a nitrate-func-
tionalized cardiac patch with site-specific delivery of

NO directly into the infarcted myocardium demon-
strated in a rat model of MI reduced injury at an
early stage and suppressed adverse cardiac remodel-
ing, with these results further confirmed in a more
clinically relevant porcine model (Zhu et al., 2021).
Clinical trials have provided no consistent evidence

of IS limitation associated with nitrate treatment as
an adjunct to reperfusion (Bice et al., 2016). However,
nitroglycerine showed cardioprotective effects when
administered 24 hours before coronary angioplasty
compared with patients who received saline (Heusch,
2001; Leesar et al., 2001). This was supported by
a study indicating that intracoronary but not intrave-
nous infusion of nitrites reduced IS in STEMI patients
with completely occluded arteries (Jones, Pellaton,
et al., 2015) and by a recent study indicating that long-
term nitrate treatment is cardioprotective, although
the mechanism is not fully elucidated (Hauerslev
et al., 2018). Additionally, the acute administration of
nitrates does not seem to interfere with RIC in pa-
tients undergoing CABG surgery under isoflurane an-
esthesia (Kleinbongard et al., 2013). Interestingly,
inhaled NO was able to reduce IS only in a subgroup
of nitroglycerine naive STEMI patients (Janssens et al.,
2018). This suggests that these patients might be in a
nitroglycerine tolerant state that might impair cardio-
protection (i.e., an indirect evidence for the hidden
cardiotoxic effect of nitroglycerine) (Ferdinandy et al.,
2019).
Thus, although tolerance represents a major limitation

of the organic nitrates used in the clinic, acute adminis-
tration and/or site-specific delivery of NO into the myo-
cardium seems to be cardioprotective and may support
the translational potential of the use of nitrates as ad-
junct to reperfusion therapy for IS limitation.

B. Analgesics and Anesthetics

1. Cyclooxygenase Inhibitors. Aspirin may interfere
with protection by some forms of ischemic conditioning
in experimental studies (Birnbaum et al., 2021). Indo-
methacin pretreatment abrogates protection from IRI
by ACE inhibition and angiotensin II type 1 receptor
blockade (Ehring et al., 1994; Jalowy et al., 1998).
Thus, cyclooxygenase inhibition can, in principle, inter-
fere with cardioprotection. The cardiac safety of cycloox-
ygenase 2 inhibitors is still an area of investigation and
controversy despite the withdrawal from the market
due to increased occurrence of MI (Dubreuil et al.,
2018; Abdellatif et al., 2021). Indeed, cyclooxygenase 2
inhibition seems to be cardioprotective in preclinical
models; however, its potential hidden cardiotoxic effect
has been recently shown in preclinical models of I/R
and MI that may hinder their development and indi-
cates safety problems of some cyclooxygenase inhibitors
(Brenner et al., 2020).

2. Morphine and Anesthetics. Certain anesthetics
are inhibitors of mitochondrial activity (Hanley and
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Loiselle, 1998; Chen et al., 2018), and some anesthetics
are also strong ROS scavengers (Murphy et al., 1992).
Cardiac I/R and protection from it are critically depen-
dent on the presence and type of anesthesia (Zaugg
et al., 2014). Anesthesia is likely one of the critical fac-
tors hampering successful translation in large clinical
trials, considering the often large discrepancies be-
tween anesthetic regimen in preclinical models (often
pentobarbital, ketamine-xylazine) versus the clinical
arena (fentanyl, morphine, volatile anesthetics, benzo-
diazepines, propofol).
The abrogation by propofol of protection by RIC in pa-

tients undergoing CABG surgery was first reported by
Kottenberg et al. (Kottenberg et al., 2012). The use of
propofol may have interfered with cardioprotection by
RIC in the larger phase III trials in CABG patients.
Also, RIC was beneficial in rats administered pentobar-
bital and sevoflurane but not in rats receiving propofol
(Behmenburg et al., 2018). Subsequently, the effect of
anesthesia using sevoflurane or propofol was studied by
perfusing plasma dialysates from patients undergoing
CABG into isolated rat hearts with I/R. Here, RIC was
only protective when no anesthesia was used, whereas
both sevoflurane and propofol abolished RIC protection
(Cho et al., 2019). Propofol abrogates not only ischemic
conditioning but also various pharmacological types of
conditioning (Zuurbier et al., 2014; Lucchinetti et al.,
2018; Xiao et al., 2021). It thus seems that analgesic and
anesthetic agents used in the clinic (opioids, volatile
anesthetics, propofol) can interfere with cardioprotective
interventions, mandating the incorporation of these
agents in preclinical models to improve translation. Such
models were recently developed in rats, 1 showing pro-
tection by a caspase inhibitor, but not RIC, on a back-
ground of heparin, an opioid agonist, and a platelet-
inhibitor (He et al., 2020), and another 1 showing protec-
tion by a NAD precursor, but not fingolimod, melatonin,
or empagliflozin, on a background of fentanyl, benzodiaz-
epine, and a platelet inhibitor (Xiao et al., 2021).
The opioid receptor system has been shown to repre-

sent an important candidate for clinical cardioprotec-
tion since it beneficially impacts all major determinants
of IRI outcome (infarction/apoptosis, arrhythmogenesis,
inflammation). A small number of clinical trials have
provided evidence of cardiac benefit from morphine or
remifentanil in CABG or coronary angioplasty patients
(Headrick et al., 2015). Morphine (Stiermaier et al.,
2021) and volatile anesthetics can reduce IS following
PPCI or CABG procedures (Zaugg et al., 2014) and
thus limit the potential for further protective interven-
tions. However, diabetes mellitus mitigates cardiopro-
tective effects of remifentanil PreC in I/R rat heart in
association with antiapoptotic pathways of survival
(Kim et al., 2010), and hypertrophy (Weil et al., 2006)
may influence opioid receptor responses.

C. Antiplatelets and Anticoagulants

1. Antiplatelets. For use of aspirin see Section Vb1.
Clopidrogel, the first P2Y12 inhibitor developed and

examined, is now slowly being replaced by the faster-
acting prasugrel or ticagrelor. Experimental studies
have established that P2Y12 receptor blockers reduce
IS during cardiac IRI (Yang, Liu, et al., 2013a, 2013b).
Cardioprotective signaling by cangrelor and ticagrelor
overlap with the signaling pathways used by condition-
ing strategies such as ischemic PostC (Yang, Liu,
et al., 2013a) and RIC (Cohen and Downey, 2017; He
et al., 2020; Hjortbak et al., 2021). However, ischemic
PreC remained effective in the presence of the P2Y12

antagonist ticagrelor (Hjortbak et al., 2021). Pharma-
cological conditioning has been found to remain effec-
tive in the presence of P2Y12 agents for the sodium/
hydrogen-exchanger inhibitor cariporide (Yang, Cui,
et al., 2013), caspase inhibitors (Audia et al., 2018; He
et al., 2020), and the NAD1 precursor nicotinamide ri-
boside (Xiao et al., 2021) but not for NLRP3 inhibitors
(Penna et al., 2020).
In patients undergoing PPCI for STEMI, platelet

reactivity in response to dual antiplatelet therapy is a
key predictor of the extent of both myocardial and mi-
crovascular damage (Massalha et al., 2022). Whether
P2Y12 inhibitors indeed possess direct cardioprotec-
tive actions against AMI has not been demonstrated
in large prospective clinical trials. However, there is
some circumstantial evidence from small clinical or
large retrospective studies. A recent study showed re-
duced IS with ticagrelor versus clopidogrel as indirect
evidence that P2Y12 agents can reduce IS indepen-
dent of their platelet inhibitory action (Kim et al.,
2017), a finding supported by recent retrospective
studies (Hjortbak et al., 2021; Sabbah et al., 2020).

2. Anticoagulants. For decades now, the anticoagu-
lant heparin has been part of the standard of periopera-
tive care during PPCI and cardiac surgical procedures.
Experimental studies have established that heparin re-
duces IS during cardiac IRI (Black et al., 1995; Huang
et al., 2017; He et al., 2020). Since 2005, platelet recep-
tor antagonists were added to this standard of care for
acute MI patients treated by PCI, and both heparin
and P2Y12 antagonists possess cardioprotective actions
(Roubille et al., 2012; Kleinbongard et al., 2021). Given
their protective potential, both heparin and P2Y12 an-
tagonists should therefore become part of preclinical
models testing for cardioprotection, where these agents
have been mostly missing (Cohen and Downey, 2017;
He et al., 2020).
While oral anticoagulation is obligatory for thrombo-

embolism prophylaxis in AF and for prevention of deep
vein thrombosis and pulmonary embolism, current
guidelines also recommend oral anticoagulation with
the coumarin-derivative warfarin to prevent LV throm-
bosis in the 3 to 6 months after AMI (Levine et al.,
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2016; Ibanez et al., 2018; Valgimigli et al., 2018). In-
creasingly, the direct oral anticoagulants (DOAC) are
used off-label in this context (Iqbal et al., 2020). Cur-
rently available DOAC include the thrombin inhibitor
dabigatran; inhibitors of activated coagulation factor X
(FXa) are represented by rivaroxaban, apixaban, edox-
aban, and betrixaban. A recently published observa-
tional study in patients with AMI who received either
warfarin or 1 of rivaroxaban, apixaban, or edoxaban
(Jones et al., 2021) showed earlier and greater LV
thrombus resolution with the FXa inhibitors compared
with warfarin, together with lower bleeding rates but
comparable systemic thromboembolic events.
The influence of the activated coagulation system on

cardiovascular biology and pathophysiology goes beyond
thrombosis. The cardioprotection afforded by antithrom-
bin in murine IRI is independent of its hemostatic effect
(Wang et al., 2013). Similarly, the beneficial impact of
RIC applied pre- and post-off-pump CABG also appears
to be unrelated to perioperative improvement in platelet
reactivity to adenosine diphosphate or coagulability sta-
tus (Kim et al., 2020), pointing to existence of coagula-
tion-independent actions. Thrombin and FXa directly
promote endothelial dysfunction, oxidative stress, im-
mune cell activation, cell growth and differentiation, as
well as inflammation (Fender et al., 2017; Fender et al.,
2020; Ten Cate et al., 2021) through cellular protease-
activated receptors and thus need to be considered in
the context of IRI and cardioprotection.
Regarding the candidate role of DOAC as cardiopro-

tective agents, no benefit could be noted with dabiga-
tran in a rabbit model of no-reflow after myocardial
IRI (Hale and Kloner, 2015). In rodent models of car-
diac IRI, application of the FXa inhibitor 1 hour prior
to occlusion decreased IS by 21% (Guillou et al.,
2020). A PostC benefit of rivaroxaban has also been
observed in mice subjected to permanent ligation.
Here, the cardioprotective window appeared to persist
for 24 hours after ischemia; delaying treatment until
day 3 after IRI abolished the observed benefits (Bode
et al., 2018). If commenced immediately after surgery
or up to 24 hours thereafter, rivaroxaban applied in
chow prevents intravascular thrombosis, improved
cardiac systolic function, and decreased IS and in-
flammatory markers to variable extents. Within the
infarct zone, levels of TNFa, tissue growth factor b,
and both protease-activated receptors 1 and 2 are re-
portedly suppressed, while noninfarcted areas exhibit
lower levels of atrial natriuretic peptide and NH2-ter-
minal pro-B-type natriuretic peptide, activated ERK,
and cardiomyocyte hypertrophy (Bode et al., 2018;
Nakanishi et al., 2020). Rivaroxaban also improved
cardiac function and survival and suppressed tran-
scription of IL-6 and collagens in a mouse model of
secondary IRI prevention. Here, rivaroxaban treat-
ment was commenced after IRI evoked by temporary

occlusion and continued over 14 days; a second ische-
mic event was triggered on day 7 with the application
of tissue factor (Goto et al., 2016). Mechanistically, the
cardioprotective effects afforded by rivaroxaban could
be largely attributed to a blunted signaling though
FXa/protease-activated receptors 2 (Bode et al., 2018),
and given that apixaban could also blunt post-IRI fi-
brosis in mice (Shi et al., 2018), it is likely that cardio-
protection is a class effect of the FXa blockers rather
than a phenomenon specific for rivaroxaban.
A recent study in mice with cardiac IRI elegantly

demonstrates the apparent superiority of FXa inhibi-
tion versus thrombin inhibition (Gadi et al., 2021). In-
hibition of thrombin or FXa was commenced 1 week
prior to IRI and reinitiated 2 hours post-surgery and
continued for 24 hours or 28 days to examine acute
and chronic effects. The dose was adjusted to achieve
equivalent anticoagulation. IS was markedly and com-
parably reduced by both interventions. Remarkable
differences between the 2 pharmacological strategies
were noted in terms of IRI-triggered inflammation.
RNA sequencing analysis showed that approximately
75% of genes aberrantly up- or downregulated by IRI
were restored by FXa blockade, while thrombin inhibi-
tion reversed only one-third of IRI-regulated genes.
The most prominently affected pathways included
those related to the NLRP3 inflammasome and fibro-
inflammatory stress, with thrombin inhibition tending
to increase, while FXa blockade tending to decrease,
expression of IL-1b, IL-6, TNFa, and inflammasome
components. The authors proposed that the difference
might be related to the unique ability of thrombin to
induce the activated protein C pathway, which has pre-
viously been shown to protect against myocardial IRI
(Wildhagen et al., 2014).
Rivaroxaban exerts a direct cytoprotective action in

cardiomyocytes subjected to hypoxia/reoxygenation (Guil-
lou et al., 2020). Possible contributing mechanisms in-
clude the preservation of mitochondrial function and
metabolism through regulation of key mitophagy pro-
teins including mitochondrial dynamin-related protein 1
and Parkin (L�opez-Farr�e et al., 2014; Zamorano-Leon
et al., 2020). Classic cardioprotective cascades such as
the RISK and SAFE pathways do not appear to be mod-
ulated by FXa blockers; instead, positive regulation of
the Wingless and Int-1b-induced PI3K/AKT-activated
protein C system may contribute to the cardioprotective
benefits of these agents, as was recently reported for
edoxaban (Shan et al., 2019). Additional cardioprotection
may arise through upregulation of vascular endothelial
NOS (Pham et al., 2019) and suppression of angiotensin
II-stimulated inflammatory and fibrotic responses in car-
diac fibroblasts. Rivaroxaban attenuated angiotensin II-
stimulated signaling through nuclear factor kB and mito-
gen-activated protein kinase/activator protein 1 path-
ways in mouse cardiac fibroblasts lowered expression of
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inflammatory proteins and concentration-dependently
blunted fibroblast migration and proliferation (Hashikata
et al., 2015). Potentially, FXa blockade could help to limit
IRI-driven fibrosis and remodeling. In line with this con-
cept, apixaban attenuated fibrosis in mouse hearts sub-
jected to permanent ligation (Shi et al., 2018). The
underlying mechanism was shown to depend on inhibi-
tion of thrombin formation and suppressed signaling
through protease-activated receptors 1/Gq/PKC in car-
diac fibroblasts. Data related to the effects of the throm-
bin inhibitor dabigatran are more limited. At the cellular
level, dabigatran counterbalances thrombin-stimulated
oxidative stress, inflammatory cytokine expression, and
sirtuins-driven autophagy in cardiomyocytes in vitro
(Wang, Xu, et al., 2021). More recently, an elegant in sil-
ico docking study revealed that dabigatran may be a
novel candidate inhibitor of c-jun-N terminal kinase
(Zulfiqar et al., 2020).
In patients, data on DOAC and myocardial IRI and

protection from it are sparse. The main patient popu-
lation studied are those with AF. However, in anticoa-
gulated patients with AF, the incidence of AMI is
relatively low (Connolly et al., 2009). Thus, one could
speculate that oral anticoagulation use goes in hand
with a generally low risk of AMI. Early studies exam-
ining DOAC added to standard antiplatelet therapy
include the Anti-Xa Therapy to Lower Cardiovascular
Events in Addition to Standard Therapy in Subjects
with Acute Coronary Syndrome 2–Thrombolysis in
Myocardial Infarction 51 (ATLAS ACS 2–TIMI 51) trial.
Addition of rivaroxaban (2.5 and 5 mg) reported an ap-
proximately 9% reduction in subsequent MI in patients
with AMI, albeit at the cost of increased major bleeding,
but not fatal cerebral bleeds (Mega et al., 2012). The
subsequent Cardiovascular Outcomes for People Using
Anticoagulation Strategies (COMPASS) trial (Eikel-
boom et al., 2017), which added very low-dose rivaroxa-
ban to aspirin in patients with chronic coronary and
peripheral artery disease, reported a favorable outcome
in terms of thrombotic event reduction but no reduction
of MI. Standard-dose rivaroxaban alone showed no ben-
efit regarding primary cardiovascular outcomes but in-
creased bleeding rates compared with aspirin alone.
The subsequent A Study to Assess the Effectiveness
and Safety of Rivaroxaban in Reducing the Risk of
Death, Myocardial Infarction, or Stroke in Participants
with Heart Failure and Coronary Artery Disease Fol-
lowing an Episode of Decompensated Heart Failure
(COMMANDER-HF) trial corroborated that addition of
low-dose rivaroxaban on top of standard antiplatelet
therapy lowers the rate of ischemic stroke but does not
impact beneficially on MACE endpoints including MI
(Zannad et al., 2018). Similarly, the Apixaban for Pre-
vention of Acute Ischemic Events 2 (APPRAISE-2)
trial, which examined apixaban added to standard
antiplatelet therapy in patients with recent AMI and

at least 2 additional ischemic risk factors, was termi-
nated early because of increased major bleeding with
no evident reduction in cardiovascular events includ-
ing MI (Alexander et al., 2011).
Thus, appropriate use of triple therapy remains chal-

lenging. FXa blockers on top of standard antiplatelet
therapy consistently increase bleeding risk, with no coun-
terbenefit in terms of reduced MI (Khan et al., 2018). At
least this is the case if substantial coronary artery dis-
ease and prior AMI are already evident. It remains to be
determined whether DOAC can modulate either the pro-
pensity for a first myocardial event to occur, by influenc-
ing the underlying coronary artery disease as indicated
by some experimental studies (Hara et al., 2015; van
Gorp et al., 2021) or, alternatively, whether DOAC im-
pact on the extent of injury and expansion in the after-
math of the infarct (see previous discussion). Thrombin
and FXa are also linked to processes pertaining to post-
IRI inflammation and remodeling (Raivio et al., 2009;
Fender et al., 2019). The thrombin burst that occurs in
the context of IRI despite heparinization (Raivio et al.,
2006; Raivio et al., 2009) may therefore contribute ad-
versely and in a long-lasting manner to IRI and its
sequelae.

D. Antidiabetic Therapy

The burden of myocardial IRI may be higher in dia-
betic patients (see Section IVe); therefore, pharmacologi-
cal therapy to protect the diabetic heart is of significant
clinical importance. Experimental and clinical data sug-
gest that antidiabetic therapy may either confer cardio-
protection or interfere with cardioprotection elicited by
conditioning maneuvers.

1. Sulfonylureas. Preclinical and clinical studies
have shown that some sulfonylureas inhibit myocardial
protection by conditioning strategies since these drugs
have high affinity to myocardial SUR2A/Kir6.2 and
smooth muscle SUR2B/Kir6.2 receptors and inhibit the
activation of KATP channels (Gribble and Ashcroft, 1999).
The cardiovascular effect of sulfonylureas in humans is
inhibition of the cardioprotective effects of RIC (Louko-
georgakis et al., 2007; Kottenberg et al., 2014). At pre-
sent, there is no evidence that these effects have clinical
consequences. Cross-reactivity between pancreatic and
cardiac KATP channels varies with the individual sulfonylur-
eas, and in general the later generation sulphonylureas are
more specific for the pancreas and therefore bind less to the
cardiac KATP channels (Gribble and Ashcroft, 1999). The in-
teraction of glimepiride or gliclazide with SUR2 is less than
that of glibenclamide, and therefore they do not seem to
blunt the cardioprotective effects of ischemic PreC, diazoxide,
and nicorandil in isolated rat hearts with I/R (Mocanu et al.,
2001; Maddock et al., 2004).

2. Metformin. Pre- and/or post-treatment with met-
formin protects the heart against IRI and reduces myo-
cardial IS (reviewed in Ye et al., 2011). Metformin
PostC reduced IS, attenuated apoptosis, and inhibited
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myocardial fibrosis, which was largely dependent on
the suppression of NLRP3 inflammasome activation in
rat hearts and cardiomyocytes (Zhang et al., 2020). Al-
though meta-analyses have supported the cardiovascu-
lar safety of metformin in patients with coronary artery
disease and chronic HF independent of its glucose-
lowering effects (Varjabedian et al., 2018), no acute pro-
tection by metformin during CABG was observed (El
Messaoudi et al., 2015), questioning the translatability
of metformin for protection against acute I/R settings in
the clinical situation. Indeed, in contrast to rodent
hearts, PostC with high-dose metformin when adminis-
tered before reperfusion did not reduce myocardial IS
or improve LV function in swine (Techiryan et al.,
2018), highlighting the importance of rigorously testing
therapies in large animal models to facilitate clinical
translation of novel cardioprotective therapies.

3. Thiazolidinediones. The effect of thiazolidine-
diones on IRI is controversial (Riess et al., 2020). Pre-
clinical studies in small animals have shown that
these drugs administered either as PreC or PostC
agents protect against IRI and limit myocardial IS.
Pioglitazone in nondiabetic and diabetic rats reduced
IS (Khodeer et al., 2016) and did so, too, in isolated
rat hearts when administered prior to I/R (Wynne
et al., 2005). Rosiglitazone, however, was associated
with enhanced cardiac injury in a similar model
(Riess et al., 2020). Rosiglitazone is associated with
increased adverse cardiovascular events in diabetic
patients (Lincoff et al., 2007).

4. Glucagon-Like Peptide-1 Receptor Agonists. Glu-
cagon-like peptide 1 (GLP-1) receptor agonists exert
diverse actions on distinct target tissues, which lead
to reduction of blood glucose level and body weight,
and they are approved drugs for consideration as
monotherapy or in combination with other oral anti-
hyperglycemics (Peng et al., 2016). GLP-1 receptor
agonists administered either as PreC or PostC agents
limit myocardial IS in small and large animal models
(Bose et al., 2005; Sonne et al., 2008; Timmers et al.,
2009). A recent meta-analysis indicated that GLP-1
receptor agonists reduced the incidence of MACE and
MI in type 2 diabetes patients and attenuated cardio-
vascular mortality (Sattar et al., 2021 #3585). In rats
with I/R, GLP-1 functions as a humoral factor of RIC,
involving activation of vagal nerves and M3-muscarinic
receptors (Basalay et al., 2016). In the clinical setting, an
intravenous infusion of exenatide initiated prior to PPCI
reduced myocardial IS in STEMI patients, especially in
those patients presenting with short ischemic times from
symptom onset (<132 minutes) (Lønborg, Kelbæk,
Vejlstrup, Bøtker, Kim, Holmvang, Jørgensen, Helqvist,
Saunam€aki, Terkelsen, et al., 2012; Lønborg, Vejlstrup,
et al., 2012; Woo et al., 2013). Another GLP-1 analog, lir-
aglutide, when administered prior to PPCI and contin-
ued for 7 days, improved LV systolic function (Chen

et al., 2015). Exenatide activated cardioprotective path-
ways different from those of RIC and possessed additive
effects with RIC on IS reduction in a pig model of I/R (Al-
burquerque-B�ejar et al., 2015). However, in a 2� 2 facto-
rial follow-up study, neither RIC nor exenatide, nor its
combination, reduced IS in STEMI patients when admin-
istered as an adjunct to PPCI (Garc�ıa Del Blanco et al.,
2021), indicating that, although GLP-1 agonists were
promising in preclinical models of MI, they failed in
RCTs in humans.

5. Dipeptidyl Peptidase-IV Inhibitors. GLP-1 is en-
zymatically cleaved and inactivated by dipeptidyl pep-
tidase IV (DPP-IV), leading to the development of
DPP-IV inhibitors as potential therapeutics. In rodents
and pigs, DPP-IV inhibitors (especially sitagliptin and
vildagliptin) limited IS when administered either be-
fore or after ischemia. Vildagliptin restored the cardio-
protective effects of ischemic PostC on diabetic hearts
but did not reduce IS per se (Bayrami et al., 2018).
A prospective clinical study assessed the effect of repa-
glinide and vildagliptin on ischemic PreC in patients
with type 2 diabetes and coronary artery disease. Al-
though repaglinide eliminated ischemic PreC, probably
due to its effect on the KATP channel, vildagliptin did
not cause any impairment of ischemic PreC, suggest-
ing a good alternative treatment in these patients
(Rahmi et al., 2013). Clinical trials have shown that
hospitalization for HF was increased in saxagliptin-
treated patients (Scirica et al., 2013), whereas major
adverse cardiovascular events were not increased
with alogliptin and sitagliptin as compared with pla-
cebo (White et al., 2013; Green et al., 2015). A recent
Cochrane analysis did not show any beneficial effect
of DPP-IV inhibitors on MACE, MI, or cardiovascu-
lar mortality (Kanie et al., 2021). In summary, fur-
ther preclinical studies especially in large animals
with diabetes and clinical trials will be warranted
to confirm the myocardial protection afforded by
DPP-IV inhibitors.

6. Sodium Glucose Cotransporter 2 Inhibitors. So-
dium glucose cotransporter 2 (SGLT2) inhibitors are
the newest class of antidiabetic drugs. They markedly
reduce MACE in large clinical trials in HF patients
(Andreadou, Bell, et al., 2020). SGLT2 inhibitors exert
cardioprotective effects in animal models of AMI through
reduction of IS (Andreadou, Efentakis, et al., 2017;
Tanajak et al., 2018; Lim et al., 2019; Sayour et al.,
2019; Uthman et al., 2019; Lahnwong et al., 2020;
Nikolaou et al., 2021; Seefeldt et al., 2021) and a sub-
sequent attenuation of HF development (Habibi et al.,
2017; Yurista et al., 2019; Connelly et al., 2020). Multi-
ple, parallel protective mechanisms of SGLT2 inhibi-
tors have been proposed, such as the attenuation of
cardiac and endothelial inflammation or an inhibition
of oxidative stress improving cardiac structure and
function (Lee et al., 2017; Ye et al., 2017; Andreadou,
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Bell, et al., 2020). The effect of SGLT2 inhibitors on
conditioning mechanisms has not yet been evaluated.
Clinical trials examining a potential SGLT2 inhibitory
effect on cardiac IRI during cardiac surgery or PPCI
procedures are currently missing.

E. Statins and Antihyperlipidemic Medications

Statins decrease cardiovascular morbidity and mortal-
ity, since apart from their effect on cholesterol levels,
they also have pleiotropic effects, which may provide ad-
ditional benefits (Andreadou, Iliodromitis, et al., 2017;
Mendieta et al., 2019). Hyperlipidemia is strongly corre-
lated with increased oxidative stress and interferes with
the conditioning cardioprotective mechanisms. There-
fore, statins that modulate NO bioavailability and pos-
sess antioxidant properties may be beneficial in the
hyperlipidemic myocardium (Andreadou et al., 2021).
Recently, the pharmacological inhibition of PCSK9 has
led to unquestionable benefits in terms of lowering car-
diovascular risks, since low LDL-C levels are directly
correlated with reduced risk of atherosclerotic cardiovas-
cular disease (Andreadou, Tsoumani, et al., 2020).
Statins protect the heart against I/R but may inter-

fere with the IS-limiting effect of conditioning strate-
gies and, as such, display hidden cardiotoxic effects
(Ferdinandy et al., 2014; Brenner et al., 2020). The
combined effect of rosuvastatin and ischemic PreC or
PostC synergistically protected the in vivo rat heart
from IRI (Kelle et al., 2015). Sevoflurane postcondi-
tioning that was lost in the diabetic state was rescued
by simvastatin through increasing NO levels (Griev-
ink et al., 2019). Intravenous atorvastatin during MI
limited cardiac damage, improved cardiac function,
and alleviated remodeling to a larger extent than oral
administration in a hypercholesterolemic pig model
(Mendieta et al., 2020). To the best of our knowledge,
the effect of statin treatment on RIC has not been
tested yet in preclinical models. Very few studies so
far have investigated the role of PCSK9 on myocar-
dial IS in experimental animal models. The PCSK9
inhibitor, Pep2-8 trifluoroacetate, when administered
15 minutes before the onset of ischemia significantly
reduced IS and improved LV function mainly due to
attenuation of cardiac mitochondrial dysfunction and
fission and decrease of the apoptotic process in the is-
chemic myocardium of rats (Palee et al., 2019). The
effect of PSCK9 inhibitors on conditioning strategies
has not been evaluated yet.
Statin pretreatment before elective PCI attenuates

myocardial injury, as assessed by biomarker release
(Herrmann et al., 2002; Patti et al., 2006). Acute statin
loading in patients with an acute coronary syndrome
before PPCI improves their outcome (Patti et al., 2007).
First-time atorvastatin administration in 118 STEMI
patients before PPCI prevented the occurrence of post-
operative no-reflow and reduced the incidence of MACE
(Li et al., 2018). The effect of long-term statin therapy

on IS, myocardial salvage index, and microvascular
obstruction in consecutive patients with STEMI who
underwent PPCI demonstrated that long-term statin
therapy was associated with smaller IS and higher
myocardial salvage index (Marenzi et al., 2015).
Meta-analyses showed an increased effect of RIC in
statin users (Sloth et al., 2015), whereas in a retrospec-
tive analysis of a randomized, double-blind trial of pa-
tients undergoing elective CABG with/without RIC prior
to ischemic cardioplegic arrest, statins had no significant
impact on RIC-induced cardioprotection (Kleinbongard
et al., 2016). Although limited clinical data exist, there
is evidence that PCSK9 inhibition is associated with a
reduced incidence of MI in patients with increased car-
diovascular risk (Andreadou, Tsoumani, et al., 2020).
PCSK9 inhibitors have different effects on type and size
of myocardial infarcts, since evolocumab had no effect
on type 2 events (Wiviott et al., 2020) whereas alirocu-
mab when added to intensive statin therapy attenuated
the risk of type 2 MI events (White et al., 2019). A re-
cent meta-analysis of 67 RCTs indicated that PCSK9 in-
hibitors plus statin treatment significantly reduced the
risk of nonfatal MI (Chaiyasothi et al., 2019). Whether
PCSK9 inhibitors interfere with conditioning strategies
has not been evaluated yet.

F. Antiarrhythmic Drugs

A diverse range of drugs are used in the manage-
ment of cardiac rhythm disturbances that occur either
as a consequence of chronic cardiovascular disease
(e.g., hypertensive heart disease, ischemic cardiomy-
opathy, or HF of any origin) or that present in acute
IR settings such as AMI. It is important to consider
possible effects of these agents in the context of cardi-
oprotection, specifically IS limitation, since several
may have inherent cardioprotective properties or can
modify endogenous cardioprotective mechanisms re-
cruited through conditioning interventions. In either
case, the use of antiarrhythmic drugs may be a con-
founding factor in the design and interpretation of
clinical cardioprotection trials.
Some agents used for their antiarrhythmic proper-

ties may be inherently cardioprotective and limit IS in
IRI models. For example, intravenous adenosine or the
L-type calcium channel blocker verapamil are used
acutely in paroxysmal supraventricular tachycardia.
Given the transient nature of paroxysmal supraven-
tricular tachycardia, acute use of adenosine or verapa-
mil is unlikely to present an issue in relation to IRI
and cardioprotection. However, recurrent of paroxys-
mal supraventricular tachycardia and other arrhyth-
mias may require chronic preventative treatment with
heart rate-limiting calcium channel blocker (verapamil
or diltiazem), which, as described earlier, show cardio-
protective effects when given prior to the onset of myo-
cardial ischemia.
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Although its efficacy is controversial, the sodium chan-
nel blocker lidocaine has been used in the management
of malignant ventricular arrhythmias in AMI. Some ex-
perimental studies suggest that lidocaine blunts or abro-
gates conditioning responses. For example, in the rat
isolated heart, ischemic PreC (2� 5 minute) in the pres-
ence of lidocaine was blunted but only at concentrations
that could be regarded as beyond the normal therapeutic
range (Barthel et al., 2004). It is possible that this effect
is related to inhibition of KATP channels with higher
concentrations of the drug (Olschewski et al., 1996). Sim-
ilarly, in the rat isolated heart, anesthetic PostC (sevo-
flurane 1.5 MAC for 15 minutes at reperfusion) was
abrogated by coadministration with lidocaine at high but
not at low concentration (Yan et al., 2008).
Amiodarone is used for a variety of ventricular and

supraventricular arrhythmias and has a complex mode
of action involving multiple ion channel targets and anti-
adrenergic activity (Mujovi�c et al., 2020). Amiodarone
was shown to improve functional recovery during reper-
fusion of rat heart subjected to low-flow ischemia (Roche-
taing et al., 2001). In a rat isolated working heart
preparation, subjected to low-flow ischemia, amiodarone
treatment during low-flow ischemia was protective, with
IS limitation and reduced arrhythmia severity. However,
the protective effects of ischemic PreC (3� 5 minute
global ischemia) against IS were not enhanced in the
presence of amiodarone, and the antiarrhythmic action
seen with ischemic PreC and amiodarone individually
was lost (Koo et al., 2006). Dronedarone is a structural
analog of amiodarone, used primarily for ventricular
rate control in paroxysmal or persistent atrial fibrilla-
tion and sharing a similarly complex multiple-target
mode of action. Dronedarone exerts direct cardioprotec-
tive effects. In anesthetized pigs subjected to low-flow
ischemia, dronedarone infusion during early ischemia
markedly limited IS, although a specific mechanism ex-
plaining this powerful effect has not been determined
(Skyschally and Heusch, 2011). Whether dronedarone
augments or abrogates cardioprotection induced by con-
ditioning protocols is unknown.
Although not a first-line antiarrythmic drug, digoxin

may be used in the management of atrial fibrillation
and atrial flutter, particularly when congestive HF is
present. Several experimental reports suggest that so-
dium/potassium-ATPase inhibition exerts effects in IRI
that impact on cardioprotection. Nawada et al. (Nawada
et al., 1997) observed that digoxin blunted the IS-limit-
ing effect of ischemic PreC in rabbit hearts. They pro-
posed that ischemic PreC preserved sodium/potassium-
ATPase activity in the early index ischemic period.
Since that early report, further studies suggest that
low-dose or transient doses of cardiac glycosides (oua-
bain, digoxin) can pharmacologically PreC or PostC the
heart (Pierre et al., 2007; Belliard et al., 2016; Duan
et al., 2018; Lauridsen et al., 2018).

Finally, other currently used antiarrhythmic drugs
encountered in the management of AMI include flecai-
nide, propafenone, and disopyramide. Whether they
exert cardioprotective effects beyond their known anti-
arrhythmic effects in IRI has not been determined.

VI. Conclusions and Future Perspectives

The discovery of the remarkable cardioprotective ef-
fect of innate adaptive responses elicited by different
conditioning strategies has fueled intensive research
in the past 3 decades to find key cellular mechanisms,
drug targets, and novel drug candidates for pharma-
cological cardioprotection as well as clinically applica-
ble protocols for mechanical cardioprotection elicited
by medical devices.
Most of the clinical trials with cardioprotective drugs

or medical devices have been unsuccessful so far. One
of the reasons might be that validation of drug targets
and in vivo preclinical studies aiming to assess cardio-
protective efficacy of drug candidates and performance
of medical devices as well as their safety have been
performed in juvenile, healthy animals subjected to
IRI. Here we have summarized some data suggesting
that validation of drug targets, assessment of in vivo
efficacy of drugs, and performance of medical devices
in comorbid animal models would be essential for suc-
cessful clinical translation. Furthermore, we highlight
observations that routine medications for cardiovascu-
lar and other diseases may exert undesirable effects on
the ischemic heart and cardioprotective signaling
mechanisms that should be also taken into account
when developing cardioprotective therapies.
The body of evidence we have reviewed here under-

scores the critical importance of preclinical models
and study designs that address cardioprotection spe-
cifically in relation to complicating disease states and
risk factors. This more sophisticated approach is now
an urgent necessity in experimental cardioprotection
research to maximize the likelihood of identifying
translatable effective approaches to therapeutic pro-
tection of the aged or diseased ischemic heart (Lecour
et al., 2021).
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