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INTRODUCTION 

The long QT syndrome (LQTs), T-wave alternans (TWA), 
and ventricular tachyarrhythmia (VT) are some of the 
common cardiac diseases which cause sudden cardiac 
death (SCD) in the world.[1,2] Many studies have been 
developed to detect an abnormal sinus ECG based on the 
features of ECG signal. Most of these articles use QRS 
complex to indentify the arrhythmia of the heart. One of 
the traditional methods has been performed by Jain[3] that 
digitized and represented each ECG lead by its z-domain 
modes to enhance the discrimination of the subtle changes 
in P, QRS, and T sections, the derivatives of the waves 
are employed for extraction of the modes. Lin et al.[4]  

used linear prediction to extract features from QRS 
complexes. Osowski et al.[5] applied fuzzy neural network 
to ECG beat recognition and classification and the features 
drawn from the higher order statistics have been proposed 
in the study. Also Engin[6] performed similar method and 
used autoregressive model coefficients, higher-order 
cumulant, and wavelet transform variances as features to 
enhance the performance. Jekova et al.[7] implemented four 
different classifiers based on 26 morphological features 
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As the T-wave section in electrocardiogram (ECG) illustrates the repolarization phase of heart activity, the information which is 
accumulated in this section is so significant that it can explain the proper operation of electrical activities in heart. Long QT syndrome 
(LQT) and T-Wave Alternans (TWA) have imperceptible effects on time and amplitude of T-wave interval. Therefore, T-wave shapes 
of these diseases are similar to normal beats. Consequently, several T-wave features can be used to classify LQT and TWA diseases 
from normal ECGs. Totally, 22 features including 17 morphological and 5 wavelet features have been extracted from T-wave to show 
the ability of this section to recognize the normal and abnormal records. This recognition can be implemented by pre-processing, 
T-wave feature extraction and artificial neural network (ANN) classifier using Multi Layer Perceptron (MLP). The ECG signals obtained 
from 142 patients (40 normal, 47 LQT and 55 TWA) are processed and classified from MIT-BIH database. The specificity factor for 
normal, LQT, and TWA classifications are 99.89%, 99.90%, and 99.43%, respectively. T-wave features are one of the most important 
descriptors for LQT syndrome, Normal and TWA of ECG classification. The morphological features of T-wave have also more effect 
on the classification performance in LQT, TWA and normal samples compared with the wavelet features.
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which have been extracted from lead I, II, and the Frank 
Leads or vector cardiograph (VCG) trajectory signals, 
such as area, slopes, peaks, time intervals, and VCG 
diagram in QRS complex. Asl et al.[8] presented an effective 
cardiac arrhythmia classification algorithm based on the 
generalized discriminant analysis (GDA) to reduce feature 
scheme using support vector machine (SVM) classifier. 
Initially, 15 different linear and nonlinear features have 
been extracted from QRS complex and then reduced to 
only 5 features by the GDA technique. Vaglio et al.[9] and 
Couderc et al.[10] implemented a computer algorithm to 
identify the differentiation of LQT1 and LQT2 carriers’ 
base on T-wave morphology features, such as the Q to 
T-peak (QT-peak), the T-peak to T-end interval, T-wave 
magnitude, and T-loop slopes in these studies.

In recent works,[11,12] simulated and synthetic TWA signals 
were generated. These augmented beats were detected 
using wavelets and 91% sensitivity was achieved. In other 
studies, wavelet/FFT[13] and correlation/FFT methods[14] were 
also considered. 

The novelty of this work can be explained as follows. In 
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this study, diseases are recognized from the beats that 
seem normal (sinus ECG), but in fact, they belong to LQT or 
TWA classes. However, other works only classify heartbeat  
types.[11-14] Consequently, previous studies are not 
comparable with this approach.

In this article, diseases are classified by the following 
procedures: Pre-processing, QRS-complex detection, 
T-wave detection, features extraction from T-wave section 
(morphological and wavelet coefficients), and classification 
using MLP artificial neural networks.

METHOD

Arrhythmia detection algorithm is implemented as follows: 
(a) recalling suitable ECG database; (b) pre-processing;  
(c) QRS-complex detection; T-wave detection; (d) feature 
extraction from T-wave; and (e) MLP classifier as shown in 
Figure 1.

ECG Database and Pre-processing

In this article, the MIT/BIH database[15-17] has been chosen 
with 40 normal records, 47 LQT syndrome records, and 55 
sets of TWA arrhythmia from 142 ECG recordings Lead I 
with 128Hz, 250Hz, and 500Hz sampling rate, respectively.

Before applying detections, feature extraction and 
classifying procedure in this experiment, several pre-
processings are necessary to obtain an appropriate result 
and reduce errors in processing and detection phases. Most 
common artifacts and drifts appear by 50 Hz of 60 Hz power 
line interface, muscle contractions of electromyography 
noise (EMG), baseline drift and ECG amplitude modulation 
with respiration, and ECG corruption with abrupt baseline 
shift.[18] To avoid these disturbances, the following filters 
are applied:

a.  To eliminate power line effect a notch filter[19] has been 
developed with the following transfer function:

 
H z z z z z

z p z p
( ) ( )( )

( )( )
=

− −
− −

1 2

1 2

 (1)

 Where

 
z j1 0 0= +cos( ) sin( )   (2)

 And

 z j2 0 0= −cos( ) sin( )   (3)

 are the zeros of transfer function and

 p k j1 0 0= +[cos( ) sin( )]   (4)

 And

 p k j2 0 0= −[cos( ) sin( )]   (5)

 are the poles of the transfer function with pole/zero 
ratio k=0.9, cutoff frequency ω0=±[ f0 / fs ]×(2πr), 
center frequency f0 = 50 Hz and sampling rate fs.

b. To reduce the effect of EMG noise, a discrete 
Butterworth filter with order 8 and cutoff frequency  
fc = 70 Hz and sampling rate fs.

c. For decreasing the amount of ECG baseline drift with 
respiration the following method is applied:[20]

1. Computing median of the ECG
2. Shifting ECG by this median value
3. Fitting a 4th degree polynomial to the shifted ECG
4. Shifting ECG by this calculated polynomial
5. Detecting the R peaks of ECG
6. Computing median of each RR interval the ECG
7. Shifting each RR interval by its median value

d.  For ECG corruption with abrupt baseline shift the 
algorithm mentioned in part(c) is also applied to the 
ECG signal.

 Noise reduction and robustness of implemented 
algorithm with above artifacts have been discussed in 
another study.[21] 

QRS Complex Detection

In this section, the QRS complexes of the ECG are detected 
and eliminated form overall ECG to prepare the signal for 
T-wave detection. This will be implemented by the following 
steps:[22]

1. Recall ECG signal S(n) and compute square of this signal 
after pre-processing:

 TS1(n) = S(n)*S(n) (6)

2. Evaluate the steepest windowed gradient of TS1(n) by 
using a rectangular sliding window with 11 points from 
sample n-5 to n+5:

 G1(n) = TS1max(w)-TS1min(w)  (7)

3. Smooth the signal by using a moving average method 
from sample n-5 to n+5 with center n:

 FG n G i
i n

n
1 1

11
1

5

5
( ) ( )=
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∑   (8)
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QRS detectionPre-processingECG database

Figure 1: Block diagram of algorithm
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4. Normalize the following values by their respective 
maximum peak amplitude: S(n), TS1(n), G1(n) and  
FG1(n).

5. Transform the ECG signal by a sigmoid function: 

 TS n
e S n2 1 2

12( ) ( )= −
+

  (9)

6. Evaluate the steepest windowed gradient of TS2(n) by 
using a rectangular sliding window with 11 points from 
sample n-5 to n+5.

 G2(n) = TS2max(w)-TS2min(w)  (10)

 and smooth it to FG2(n) like step 3. 

7. Normalize the following values by their respective 
maximum peak amplitude: TS2(n), G2(n) and FG2(n).

8. Multiply by ECG with FG2(n): 

 TS3(n) = FG2(n)*S(n) (11)

9. Evaluate the steepest windowed gradient of TS3(n) by 
using a rectangular sliding window with 11 points from 
sample n-5 to n+5.

 G3(n) = TS3max(w)-TS3min(w) (12)
 and smooth it to FG3(n).

10. Normalize the following values by their respective 
maximum peak amplitude: TS3(n), G3(n) and FG3(n).

11. Compute:

 TS4(n) = FG1(n)+ FG3(n) (13)

12. Shift the resulting signal by median ‘m’:

 TS4m(n) = TS4(n)-m (14)

13. Normalize TS4m(n) as:

 Pre_FQ(n) = TS4m(n)/max(abs(TS4m(n))) (15)

14. FQ(n) is derived by retaining the amplitude values of 
Pre_FQ exceeding 5% of its maximum peak amplitude 
and reducing the remaining to zero:

 F n
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15. CQ is the proposed feature signal employed for 
identifying QRS out of ECG signal. This signal is 
digitalized version of FQ(n):
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T-Wave Detection

To extract features from T-wave section of ECG signal 
the interval of T-wave segments should be separated 
from other parts of signal. There are several methods to 
detect this section.[23-26] One of the latest approaches can 
be done by the following steps after eliminating negative 
values and QRS parts of ECG signal in each of the following  
steps:
1. fc1: Feature #1 is calculated from the first derivative of 

ECG signal
2. fc2: Feature #2 is calculated from filtered gradient, 

which means the ECG signal passes through a sigmoid 
function, windowed gradient, and smoothed by a 
moving average window

3. fc3: Feature #3 is calculated from the product of filtered 
gradient ECG and fc2

4. fc4: Feature #4 is calculated from the combination 
of fc1, fc2, fc3 and absolute value of ECG: 
[fc1+fc2+fc3+|S(n)]*|S(n)|

5. fc5: Feature #5 is calculated from another 
combination of fc1, fc2, fc3 and absolute value of ECG: 
fc1+fc2+fc3+|S(n)|.

Then the summation of these five features is computed by 
the following formula:

Pre_FNQ(n)=fc1(n)+ fc2(n)+ fc3(n)+ fc4(n)+ fc5(n) (18)

Finally the main feature will be computed by:
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The values greater than 2% of the maximum of this feature 
will show the P-wave and T-wave regions in ECG which is 
marked as pulses. The pulses occur before QRS complexes 
indicate P-waves and the pulses after QRS shows T-waves as 
depicted in Figure 2. The details and exact formulation of 
this procedure can be found in articles.[27] 

Feature Extraction
Detecting T-waves from ECG signal prepares the field to 
extract necessary descriptors from these parts of signal. 
Totally, 22 features have been considered and extracted from 
T-wave which consist of two fundamental types of features; 
There are 17 morphological features and 5 wavelet features. 
Morphological features include amplitude of T-wave, static 
and dynamic rising and falling slopes, areas of rising and 
falling segments, five slopes and five areas respect to split 
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falling segment of T-wave into five sections. The other type 
of features is variances of Daubechies wavelet coefficients 
which decomposed T-wave segment into five levels. These 
features have been summarized in Table 1 and shown in 
Figure 3a-d. As it is evident in Figure 4, the T-wave of three 

classes (normal, LQT, and TWA) are very similar together 
and cannot recognize simply. For this reason, 22 features 
are selected to classify these types from each other.

Classification

The classification of diseases is based on Multi Layer 
Perceptron (MLP) using Artificial Neural Network (ANN)[28,29] 
with 22 neurons at input, 14 at hidden layer, and one at 
output which generates 3 integer numbers for 3 classes. All 

Figure 3: Some morphological features extracted from T-Wave. (a) Dynamic slopes and infection points of T- wave; (b) Static slopes of T-wave; (c) Rising 

and falling areas of T-wave; (d) Falling area and slopes of T-wave separating to seqments

Table 1. Feature description extracted from T-wave
Feature No. Notation Description

1 msr Static rising slope
2 msf Static falling slope
3 mdr Dynamic rising slope
4 mdf Dynamic falling slope
5 Tp Maximum peak of T-wave
6 Ar Rising segment Area
7 Af Falling segment Area
8-12 Af1,...,Af5 Falling segment area split into five parts
13-17 mf1,...,mf5 Falling segment slopes split into five parts
18-22 σw1,...,σw5 Variance of wavelet coefficients

Zeraatkar, et al.: Arrhythmia detection using morphological and time-frequency features 

Figure 2: QRS-Complex and T-Wave separating pulses 
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of the 22 features have been scaled and applied to the input 
of ANN are used and implemented to an appropriate ANN 
architecture for training and testing as shown in Figure 5. 
The output of network is determined as normal, LQT, and 
TWA abnormalities.

RESULTS

The discussed approach is simulated and applied to normal 
and abnormal TWA and LQT databases of MIT/BIH arrhythmia 

recordings. The input vectors, which are developed from 
T-wave features of ECG, are collected and separated into 
two parts for training and testing the MLP neural network. 
There are 22 scaled and extracted features containing 17 
morphological and 5 wavelet features. Since the T-wave 
part of an ECG, specially falling interval, illustrates the 
repolarization phase of heart activity, the information 
which is accumulated in this section is so significant that 
it can explain the proper operation of electrical activities 
in heart. Therefore, these features are rich descriptors for 
heart performance.

The MIT-BIH database[15-17] has been chosen for 
implementation of the algorithm in this study. The samples 
have been taken from three ECG types totally 142 records 
with the following properties:
• MIT-BIH Normal Sinus Rhythm Database (40 records, 

128Hz sampling rate);
• The QT Database (47 records, 250Hz sampling rate);
• T-Wave Alternans Challenge Database (55 records, 

500Hz sampling rate).

The learning process to train MLP neural network has been 
implemented with three different learning sets: 50, 60, 
and 70% heartbeats of total recordings. For estimating the 
performance of discussed approach, three different feature 
vectors have been developed and tested: Only wavelet 
features, only morphological features, and both features 
together. Finally, four performance indices based on ROC 
(Receiver Operating Characteristics) were computed for 
normal and abnormal classes: sensitivity (Sei), specificity 
(Spi), positive predictive value (PPVi) and negative predictive 
value (NPVi). They are calculated according to the following 
relations:[30]

Sp TN
TN FP

Se TP
TP FN

NPV TN
TN FN

PPV TP
TP F

i
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Figure 4: Typical wave forms fromT-wave section of (a) Normal (b) LQT 

and (c) TWA
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Figure 5: MLP neural network architecture
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Figure 6: Statistical distribution for three features: 5th falling area, 5th falling 

slope and 1st wavelet coef
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Table 2: Testing results for normal ECG signal
Normal Feature set #1  

5 descriptors 
(Wavelets)

Feature set #2   
17 descriptors 
(Morphology)

Feature set #3  
22 descriptors 

(Total)

Learning set #1  
(50% of data)

Index
Sp† 95.01 99.43 99.8
Se‡ 90.45 98.64 99.12
NPV§ 91.61 98.77 99.20
PPV* 94.29 99.37 99.78

Learning set #2  
(60% of data)

Index
Sp 96.52 99.77 99.79
Se 90.54 98.34 99.18
NPV 91.80 98.51 99.25
PPV 95.96 99.74 99.78

Learning set #3  
(70% of data)

Index
Sp 96.77 99.66 99.89
Se 88.50 98.97 99.09
NPV 90.16 99.06 99.17
PPV 96.18 99.63 99.88

† Sp – Specificity; ‡ Se – Sensitivity; § NPV – Negative predictive value;  
* PPV – Positive predictive value; Figures are in percentage

Table 3: Testing results for LQT ECG signal
LQT Feature set #1  

5 descriptors 
(Wavelets)

Feature set #2  
17 descriptors 
(Morphology)

Feature set #3  
22 descriptors 

(Total)

Learning set #1  
(50% of data)

Index
Sp 95.82 99.40 99.89
Se 73.07 96.51 98.45
NPV 88.74 98.44 99.30
PPV 88.78 98.65 99.76

Learning set #2  
(60% of data)

Index
Sp 93.93 99.46 99.90
Se 70.47 96.35 99.24
NPV 87.55 98.36 99.65
PPV 84.02 98.78 99.78

Learning set #3  
(70% of data)

Index
Sp 95.25 99.32 99.89
Se 71.77 98.75 99.71
NPV 88.10 99.43 99.96
PPV 87.33 98.52 99.76

† Sp – Specificity; ‡ Se – Sensitivity; § NPV – Negative predictive value;  
* PPV – Positive predictive value; Figures are in percentage

where TPi are the number of true positives, TNi are true 
negatives, FPi are false positives, and FNi are false negatives. 
The results are representation listed in Tables 2-4 according 
to different learning sets and descriptor vectors. As it is 
evident in the results, the network performance differs 
by changing learning sets and changing the types of   
features.

The statistical measurements for three features have 
been depicted in Figure 6 to show the ability of features 
for the classification of diseases. This describes that the 
morphological properties, such as falling area and falling 
slope of T-wave, have different distribution, mean, and 
variance and can be used for ECG classification.

CONCLUSIONS

In previous biomedical studies, detecting normal and 
abnormal beats are considered by applying several 
methods. These procedures verify the variations of one 
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beat against others to find out abnormal beats. Regarding 
the new suggestions of cardiologists, some diseases, 
such as LQT and TWA, have imperceptible effect on time 
and amplitude of T-wave interval. In contrary to previous 
articles, in this work, disease detection (LQT syndrome and 
TWA) has been performed using apparently normal beats. 

In some researches, several algorithms have been developed 
for T-wave detection. The accuracy reported in these 
articles is satisfactory.[24-26,28,29,31] In this study, the T-wave 
detection based on threshold method developed in[28] with 
96.98% accuracy is used. This performance is more accurate 
compared with other methods. 

According to the achieved results, it is obvious that 
T-wave features in sinus ECG signals have the capability 
to separate these diseases. Since the falling slope of the 
T-wave is associated with the repolarization phase of heart 
activity and preparing of heart muscles for next oscillation, 
this section contains significant morphological descriptors 
and has the necessary information to classify heartbeats. 
The specificity of mentioned approach depends on the 
quantity of learning set and feature types for neural 
network training. The morphological features of T-wave 
have also more effect on the classification performance 
in LQT, TWA, and normal samples compared with wavelet  
features.
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