
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17988  | https://doi.org/10.1038/s41598-020-75002-y

www.nature.com/scientificreports

Characterizing the evolution life 
cycle of the Sunkoshi landslide 
in Nepal with multi‑source SAR 
data
Meng Ao1, Lu Zhang1*, Yuting Dong2, Lijun Su3, Xuguo Shi2, Timo Balz1 & Mingsheng Liao1

A catastrophic landslide disaster happened on 2 August 2014 on the right bank of Sunkoshi River in 
Nepal, resulting in enormous casualties and severe damages of the Araniko highway. We collected 
multi‑source synthetic aperture radar (SAR) data to investigate the evolution life cycle of the Sunkoshi 
landslide. Firstly, Distributed Scatterers SAR Interferometry (DS‑InSAR) technology is applied to 
analyze 20 ALOS PALSAR images to retrieve pre‑disaster time‑series deformation. The results show 
that the upper part, especially the top of the landslide, has long been active before collapse, with the 
largest annual LOS deformation rate more than − 30 mm/year. Time series deformations measured 
illustrate that rainfall might be a key driving factor. Next, two pairs of TerraSAR‑X/TanDEM‑X bistatic 
data are processed to identify the landslide affected area by intensity change detection, and to 
generate pre‑ and post‑disaster DSMs. Surface height change map showed maximum values of 
− 150.47 m at the source region and 55.65 m in the deposit region, leading to a debris volume of 5.4785 
± 0.6687 million  m3. Finally, 11 ALOS‑2 PALSAR‑2 and 82 Sentinel‑1 SAR images are analyzed to derive 
post‑disaster annual deformation rate and long time series displacements of the Sunkoshi landslide. 
The results illustrated that the upper part of the landslide were still in active deformation with the 
largest LOS displacement velocity exceeding − 100 mm/year.

Landslide disasters along highway in mountainous area are increasing progressively to constitute a majority of 
highway disaster  events1. Many landslides show characteristics of large scale, complex mechanism and cata-
strophic losses. It has become a great challenge for scientists and engineers of geotechnical engineering to under-
stand and mitigate landslide hazards in mountainous areas. For this purpose, the spatial–temporal evolution 
pattern of deformation field for a certain landslide during its life cycle should be well known. Unfortunately, such 
information is usually difficult to obtain using traditional ground-based measurements that are only available at 
sparse points. As a modern geodetic technology, synthetic aperture radar interferometry (InSAR) can be utilized 
to solve above problem and has been successfully applied in landslide  monitoring2–5. However, most landslide 
investigations focus on a specific stage only, such as pre-disaster deformation signal  extraction6–10, quantification 
of mass wasting  volume11,12 and post-failure displacement  monitoring13,14, while there has been few application 
of InSAR to comprehensively characterize a collapsed landslide during its pre-, co- and post-disaster stages.

The Sunkoshi landslide is located at the northern half of the Araniko highway. The road was built in 1960s 
with the assistance of China, with the total span of about 115 km from the Zhangmu Port on the border between 
China and Nepal to Kathmandu, the capital of Nepal (as shown in Fig. 1). It is not only the main trade and per-
sonnel channel connecting China and Nepal, but also the lifeline of rescue and the major transport artery for 
the local earthquake stricken areas.

The highway passes through the contact zone between Indian plate and Eurasian plate that is raised along 
with continuing Himalayan orogeny induced by inter-plate collision and  compression15, with an average uplift-
ing range of more than 3000 m. It is one of the most active areas of tectonic movement on the Earth. The strong 
neotectonic movement makes the bedrock part metamorphosed and broken, providing abundant loose solid 
source for landslide activity.
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Along the highway, the height difference between the mountain peak and the valley floor is up to several 
thousand meters, forming natural steep slopes more than 30° with some part nearly vertical. This area is also 
characterized by complex geologic, hydrologic and climatic conditions, as well as frequent earthquake disasters. 
In particular, the Mw 7.8 Gorkha earthquake that happened on 25 April 2015 caused strong ground motions 
and triggered thousands of landslides in the exceedingly steep topography of  Nepal16–21. Since the Quaternary, 
landslides, collapses, rock piles and debris flows are extremely developed in Nepal, which has brought adverse 
effects on the implementation and protection of the highway.

Affected by strong and concentrated precipitation during the Indian monsoon season, the annual precipita-
tion in many areas can reach 2500  mm15. In the rainy season, with the special topography of the landslide area, 
the surface water cannot be discharged along the surface runoff in time, but fully infiltrates along the surface 
cracks and loose block gravel soil layer. On one hand, it makes the sliding body heavier and increases the slid-
ing force. On the other hand, the weak soil layer will become further saturated and softened, and the strength 
reduced rapidly. Rainfall caused events of landslides, debris flows and other natural disasters often happened, 
which seriously affected the post-disaster reconstruction and the daily life of local people.

The Sunkoshi landslide happened on 2 August 2014 at the K83 mileage of Araniko highway, which caused 
severe casualties (at least 156 deaths) and destroyed the highway of about 700 m. As a result, the operation of the 
Araniko highway has been suspended for a long period, which brought great difficulties to goods transportation 
and economic communication along the line, and also hampered the vigorous development of the golden tour-
ism route between China and Nepal. The Sunkoshi River flowing through the slope toe was blocked by slipped 
rocks, forming a dam of about 56 m high and a large volume barrier lake. Supplementary Fig. S1 online shows 
multi-temporal panoramic images from Google Earth that can reflect the evolution of the Sunkoshi landslide. The 
instability of landslide and the barrier lake posed great threats upon the operation of the downstream hydropower 
station as well as human life and property safety.

Although the collapse of Sunkoshi landslide had a strong impact on the Sino-Nepal transportation and the 
Nepal social-economic development, more attentions have been paid to the safety of dam and barrier lake formed 
by the  landslide22–25, while very few scientific investigations of this landslide stability analysis has been carried 
out, which may be primarily due to its remote location and low accessibility.

Results
In this study, the evolution life cycle of the Sunkoshi landslide during different periods (pre-, co- and post-disaster 
stages) is characterized using various InSAR techniques with multi-source SAR data. The deformation pattern 
and possible driving factors in the pre-disaster stage are explored, the sliding area is determined with the collapse 

Figure 1.  Location of the Sunkoshi landslide along with the Araniko Highway. The subfigure in the upper-left 
corner shows the relative position of Sunkoshi landslide (red rectangle) in Nepal. The map was generated using 
ESRI ArcGIS 10.1 (https ://www.esri.com/en-us/home).

https://www.esri.com/en-us/home
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volume estimated, and the post-disaster stability of the landslide is evaluated. Such kinds of information should 
be of significance to help decision making for post-disaster treatment and risk management.

Retrieval of pre‑disaster time‑series deformations. The Sunkoshi landslide is located in the northern 
mountainous area of Nepal with steep topography, complex geologic background and dense vegetation. With a 
long wavelength, ALOS PALSAR data can maintain high coherence and achieve deep penetration into vegeta-
tion. 20 scenes of ALOS PALSAR images are analyzed to inverse the LOS surface deformation. The SRTM DEM 
of 3 arc-second resolution is used for the estimation and removal of flat-earth and topographic phase compo-
nents. Both Distributed Scatterer SAR Interferometry (DS-InSAR) and Small Baseline Subset SAR Interferom-
etry (SBAS-InSAR) techniques are applied to retrieve time-series displacements. The SBAS-InSAR functionality 
was fully implemented in the StaMPS software package, while the DS-InSAR processing chain was established 
in a mixed way by self-developing the preprocessing steps and adopting the spatial–temporal 3D phase unwrap-
ping procedure embedded in StaMPS.

Firstly, annual mean LOS deformation rates of Sunkoshi landslide during pre-disaster stage derived by SBAS-
InSAR and DS-InSAR separately are shown in Fig. 2a,b. The landslide surface before collapse was largely covered 
by vegetation, leading to very sparse measurement points (MPs) identified in the SBAS result. The spatial density 
of MPs detected by DS-InSAR is much higher than that of SBAS by about 13.5 times. With significantly increased 
number of MPs, more detailed information on the spatial pattern of the landslide surface deformation is clearly 
presented. We can observe in Fig. 2b that obvious instability appeared in the upper part of the landslide, with 
the largest deformation rate higher than − 30 mm/year at the crown, while the lower part of the slope was rela-
tively stable without evident sign of movement. The entire landslide mass can be divided into two zones with 
one resistant layer in between. The upper part of the landslide is steep with an average slope of 52.45°, while the 
lower part is relative gentle with a mean slope of 37.44°. Such a terrain condition made the upper part prone to 
failure, and might be a contribution factor leading to the collapse of the landslide in August 2014.

The climate of Nepal belongs to a typical monsoon climate type. In its northern mountainous area char-
acterized by humid with mist clouds, and the precipitation is abundant in rainy season. We used the archived 
precipitation data over this area acquired by the NASA Tropical Rainfall Measuring Mission (TRMM) to verify 
whether the historic deformations of the Sunkoshi landslide were correlated with seasonal rainfall. The time 
series mean cumulative displacements of MPs within the deforming region (the top part of the landslide) as well 
as the precipitation data are plotted in Fig. 3.

We can see that the annual precipitation was mainly concentrated in summer from June to September. The 
deformation shows an overall linear trend with seasonal variations that might be related to rainfall. The maximum 
cumulative deformation in four years was more than − 100 mm. During the months of heavy rainfall, accelera-
tion of the deformation tended to show up. Moreover, the landslide disaster occurred on 2 August 2014, hence 
it is reasonable to identify rainfall as an important factor that can deeply affect the landslide stability. However, 

Figure 2.  Results of pre-disaster annual deformation rate of Sunkoshi landslide obtained by (a) SBAS-
InSAR and (b) DS-InSAR, separately. The Sunkoshi River and Araniko highway are rendered in their original 
locations before destruction. The subfigures on the lower-left corner show the histograms of standard deviation 
distribution of deformation rate. The maps were generated using ESRI ArcGIS 10.1 (https ://www.esri.com/
en-us/home).

https://www.esri.com/en-us/home
https://www.esri.com/en-us/home
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more information on the geological structure and deformation mechanism of the landslide are needed to further 
validate if precipitation is the main cause of the 2014 collapse event.

Slope surface changes observed from TSX/TDX bistatic data pairs. After the landslide disaster 
happened, the surface underwent dramatic changes due to collapse and sliding, leading to serious decorrelation. 
Two pairs of TerraSAR-X/TanDEM-X (TSX/TDX) bistatic SAR data acquired before and after the 2014 Sunkoshi 
landslide event were processed to generate pre- and post-disaster DSMs to further quantify the slope surface 
changes. Landslide-affected area can be identified by intensity change detection, and the debris volume can be 
estimated through surface height change mapping.

Change detection with SAR backscatter intensity. In this section, the approach of intensity differencing between 
pre- and post-disaster SAR images is employed to identify the failure-affected area. Firstly, SAR amplitude 
images showing radar backscatter intensity are multi-looked to suppress the speckles. Then subpixel level geo-
metric alignment of multitemporal SAR images is carried out to facilitate change detection.

Figure 4 shows the intensity map before (a) and after (b) collapse, with the intensity difference in (c). The land-
slide formed barrier lake can be easily identified in Fig. 4b. The river channel beneath the landslide was reshaped 
from a curve into a straight line after dredging the river blockage induced by debris flow. In Fig. 4c, dense vegeta-
tion and shrubs were demolished and moved away, and rocks and soils were exposed, resulting in the intensity 
brightening. The landslide crown was cut off, yielding a steeper slope, and the nearly vertical landslide trailing 
edge can be seen from Fig. 8a to be shown later, which corresponds to the obviously large shadow area in Fig. 4b.

Figure 3.  Pre-disaster time-series deformation of Sunkoshi landslide. Grey bar chart illustrates the monthly 
cumulative rainfall. White squares connected by the black lines represent the time-series measurements of 
annual mean LOS displacements of MPs on the landslide crown, with the vertical error bars indicating standard 
deviation or uncertainties of measurements.

Figure 4.  Intensity map of (a) TDX 20130307 before and (b) TDX 20140908 after collapse as well as (c) 
intensity difference between two TDX SAR intensity rendered in radar coordinate system. Logarithmic 
transformation is applied to convert intensity values into decibel (dB) expressions. The dashed yellow line 
outlines the landslide boundary.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17988  | https://doi.org/10.1038/s41598-020-75002-y

www.nature.com/scientificreports/

The mean intensities of 20 ALOS PALSAR images and 11 ALOS-2 PALSAR-2 images are also produced and 
rendered in Supplementary Fig. S2 online. We can clearly identify similar changes in backscattering character-
istics of the landslide surface before and after the collapse as shown in Fig. 4.

The difference of intensity reflects the temporal alteration of backscattering characteristics of the ground 
surface, which can be applied to identify the landslide affected area, but it cannot quantify the actual variation 
of the surface landscape.

Estimation of slope surface height changes. In order to quantitatively assess the surface damage caused by the 
collapse, the height change map is generated by differentiating the pre- and post-disaster DSMs, as shown in 
Fig. 5. It can be divided into three zones: the depletion zone on the top, the scraping zone in the middle, and the 
accumulation zone at the slope toe. The maximum change of surface height reached − 150.47 m at the depletion 
zone and 55.65 m in the accumulation zone. The depletion zone with the maximum height difference is exactly 
the same as the area with the largest deformation rate before collapse, while the accumulation zone where eleva-

Figure 5.  Elevation change map generated by differencing the pre- and post-disaster DSMs. Resolution cells 
with height differences less than 10 m are masked out. The map was generated using ESRI ArcGIS 10.1 (https ://
www.esri.com/en-us/home).

https://www.esri.com/en-us/home
https://www.esri.com/en-us/home
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tion changed remarkably is just located at the course of Sunkoshi River, and the elevation difference indicates 
the height of the landslide dam.

A large volume of mass wasting destroyed the road and diverted the river to form a huge barrier lake. 
The mass volume collapsed from the depletion zone is estimated from the height difference map (as shown in 
Fig. 6). Tandem-X DEMs have a relative vertical accuracy of 4 m for areas with a slope greater than 20%26, and 
a theoretically synthetic uncertainty of 5.6569 m can be produced in height differences between pre- and post-
disaster DSMs. By multiplying the vertical uncertainty with the area of depletion zone, we can roughly assess 
the uncertainty of mass volume estimation. As the result, the total debris volume of the Sunkoshi landslide was 
estimated as 5.4785 ± 0.6687 million  m3.

Post‑disaster deformation mapping. After the collapse event in August 2014, the road was dredged 
and the barrier lake was discharged. As the Araniko highway is the primary transportation channel linking 
China and Nepal, the unstable Sunkoshi landslide still poses long-term threats on human and vehicles passing 
by, hence post-disaster deformation monitoring is a crucial task to prevent possible catastrophic events in near 
future. In consideration of SAR data availability, we divided the post-disaster stage into two overlapping periods, 
i.e. period I from September 2014 to October 2017, and period II from January 2017 to October 2019.

Eleven ALOS-2 PALSAR-2 images were collected to investigate deformations of the Sunkoshi landslide dur-
ing period I. Eighteen interferograms generated from ALOS-2 data pairs with good coherence were chosen to 
perform Stacking InSAR analysis. The post-disaster DEM derived from TSX/TDX bi-static data pair was utilized 
to remove the flat-earth and topographic phase components. In addition, the phase ramp, baseline errors and 
residual terrain errors are estimated and removed from the unwrapped phase to enable multi-interferogram 
stacking.

The annual mean deformation rate of Sunkoshi landslide during period I is illustrated in Fig. 7a. The upper 
part of the landslide was still deforming, and the largest deformation rate exceeded − 140 mm/year. The result 
shows that a large volume of loose debris was accumulated on the resistant layer in the upper part of the landslide 
(region A), which was very unstable and prone to slide in case of heavy rainfall, and thus may cause secondary 
disaster. In addition, significant deformations appeared at another two unstable spots (circles B and C) in the 
lower part of the landslide where the debris was accumulated.

The in-situ photos taken in October 2015 are given in Fig. 8. The steep rock wall induced by the collapse at 
the top and the resistant layer in the middle of the landslide can be clearly identified. In addition, the debris flow 
generated by the slide was accumulated in the upper and lower parts of the landslide. Specifically, Fig. 8a shows 
the area in the most active deformation (area A), while areas B and C shown in Fig. 8b are another two unstable 
spots with loose structure at the lower part.

The last acquisition of ALOS-2 PALSAR-2 data we obtained was on 28 October 2017. In order to make clear 
the current state of the Sunkoshi landslide, eighty-two Sentinel-1 SAR images were analyzed to measure the more 
recent deformations of the Sunkoshi landslide during period II. The result is shown in Fig. 7b. Due to the limited 
resolution of Sentinel-1 image and the problem of temporal decorrelation for C-band InSAR in vegetated area, 
sparse MPs are identified on the rock-exposed landslide body, while there is almost no MP in the surrounding 
vegetated areas. Similar to the results derived from ALOS-2 data, clear deformation signal appeared in the area 
of debris accumulation in the upper part of the landslide with the largest deformation rate as high as − 120 mm/
year. In addition, although the diversion road around the Sunkoshi landslide has been put into operation and 
the traffic was flowing again on the Araniko highway, instability was found at the landslide toe around the reo-
pened highway due to the destruction of accumulated debris by road dredging and heavy rainfall, as shown in 
Supplementary Fig. S3 online.

Long time-series displacements at MPs within region A extracted from ALOS-2 PALSAR-2 and Sentinel-1 
data stacks are plotted in Fig. 9, in which the date of Mw 7.8 Gorkha Earthquake (25 April 2015) is marked by the 
vertical dashed red line. A study employed offset tracking with ALOS-2 data to measure the co-seismic landslide 
displacements along the Araniko highway caused by the devastating 2015 Gorkha earthquake, and their results 
revealed that the largest surface displacements were 2 m in azimuth and 1.2 m in range direction,  respectively27. 
Therefore, it is necessary to investigate the post-seismic landslide deformation to evaluate the impact of earth-
quake on the long-term landslide stability.

Figure 6.  Three dimensional map of the height differences used for calculating the debris volume. The map was 
generated using Matlab R2014.
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An obvious acceleration after the earthquake can be observed from Fig. 9 in spite of the sparse measurements 
due to the limited number of ALOS-2 images. Afterwards, the deformation has become slowing down gradually 
to evolve into a linear pattern since early 2016, particularly demonstrated by the dense time series displacements 
measured by Sentinel-1 data. Nevertheless, the maximum cumulative deformation during the past five years has 
reached over − 400 mm. Furthermore, there seems no significant dependence between landslide deformation 
and rainfall, which might be primarily due to lack of sufficient ALOS-2 observations during period I.

The mean deformation rates over pre- and post-disaster stages together with the elevations of SRTM and 
post-disaster TanDEM are extracted along the profile I–I′ (marked in Fig. 7a) and plotted in Supplementary 
Fig. S4 online. Most debris detached from the source area was accumulated at the slope toe. The elevation change 
in the accumulation zone was identified as wide-spreading and slight to moderate increase. The post-disaster 
deformation detected in the accumulation area was relatively stable. In contrast, a large volume of debris was 
accumulated on the resistant layer in the upper part of the landslide. Since such debris was loosely structured 
without any stabilization, this elevated area could be in high risk of catastrophic sliding in cases of earthquake 
or heavy rainfall.

Figure 7.  Post-disaster annual mean LOS deformation rate of Sunkoshi landslide measured by (a) ALOS-2 data 
during period I and (b) Sentinel-1 data during period II. The repaired road and dredged river are also rendered. 
The subfigure in the lower-left corner shows the histogram of standard deviation distribution of deformation 
rate. The map was generated using ESRI ArcGIS 10.1 (https ://www.esri.com/en-us/home).

Figure 8.  Photos of deformed debris flow accumulation areas after collapse. (a) Main deformation area (area 
A) in the upper part of landslide. (b) Unstable spots (area B and C) in the lower part. Photos were taken by Dr. 
Lijun Su.

https://www.esri.com/en-us/home
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Discussion
Landslides are a kind of geohazard widely spread in the northern mountainous area of Nepal. As this area is 
located in the active Hymalayan tectonic belt with summer monsoon climate, these landslides are vulnerable to 
events of earthquake and heavy rainfall. Although the population density in the northern Nepal is relatively low, 
those landslides close to human settlements and major transportation links still pose great threats upon local 
people and passengers. The Sunkoshi landslide investigated here is a typical example.

Wide-area detection, regular monitoring and disaster early warning are crucial tasks for the efficient manage-
ment of landslide hazards to prevent and mitigate possible catastrophic slope failure events. Interferometry and 
pixel offset tracking (POT) with repeat-pass satellite SAR observations can be employed as powerful geodetic 
tools as they are capable of measuring land surface displacements that range from millimeters to meters. In 
particular, traditional two-pass DInSAR and Stacking InSAR techniques are usually first applied to carry out 
preliminary detection of potential landslides across wide areas. However, there might be big uncertainty in their 
results due to decorrelations and atmospheric disturbances.

Methods of time series InSAR analysis including PSI, SBAS-InSAR, and DS-InSAR, etc., need a long stack of 
repeat-pass SAR data as input. They can be used to not only derive more accurate results of landslide detection 
than DInSAR, but also perform regular monitoring of long-term landslide surface displacements. Generally 
speaking, the conventional PSI method is much less applicable than SBAS-InSAR and DS-InSAR in mountain-
ous areas of Nepal.

Two fundamental products can be derived by time series InSAR analyses. One is the mean LOS displacement 
rate map showing the spatial pattern of deformations. The other is the time series displacements of MPs that can 
reveal temporal evolution of deformations. Dramatic accelerations in time series displacements might be taken 
as a kind of precursory signal of possible forthcoming slope failures to facilitate landslide disaster early warning, 
which has been demonstrated by several studies using long time series Sentinel-1  datasets28,29.

An additional lesson we can learn from the case study of the Sunkoshi landslide is that it is necessary to evalu-
ate post-disaster slope stability by continuing deformation monitoring after the collapse, because the remaining 
part of the slope as well as the accumulated debris might be still in high risk of secondary failure subject to 
triggering factors such as earthquakes and intensive rainfall. The measurements of post-disaster deformation 
can support decision making on disaster relief and following treatments to avoid further damages and losses.

Multi-source SAR datasets are used in the case study of the Sunkoshi landslide. X-band high-resolution 
TerraSAR-X/TanDEM-X bistatic data pairs are specifically used to reconstruct pre- and post-disaster slope 
topography for quantitative identification of slope surface changes as well as estimation of collapsed mass volume. 
Archived L-band ALOS PALSAR data (2007–2011), L-band ALOS-2 PALSAR-2 data (2014–2017) and C-band 
Sentinel-1 data (2017–2019) are analyzed by DS-InSAR, Stacking InSAR and SBAS-InSAR techniques respec-
tively to retrieve landslide surface displacements during the pre- and post-disaster stages. Comparisons among 
their results suggested that L-band data with longer wavelength and higher resolution outperforms C-band data 
in characterizing spatial pattern of deformation, while C-band data of much higher acquisition frequency shows 
advantage of revealing more detailed temporal evolution pattern of deformations.

Due to the limitation of SAR data availability and revisit period, most landslide monitoring investigations 
are focusing on a specific stage and cannot reveal the whole evolution process of the landslides. Therefore, the 
primary objective of this study is to make full use of archived and in orbit satellite data and employ various 

Figure 9.  Long time-series deformation of region A. The dashed red line marks the date of Gorkha Earthquake 
happened on 25April 2015.
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InSAR techniques to characterize the life cycle of the Sunkoshi landslide, i.e. including exploration of defor-
mation pattern and possible driving factors in the pre-disaster stage, identification of the sliding area as well 
as estimation of the collapsed mass volume, and evaluation of the post-disaster slope stability. The results can 
provide important information to support deformation mechanism analysis of the Sunkoshi landslide and enable 
secondary disaster prevention.

Conclusion
As a typical example of catastrophic landslide disasters along the Araniko highway in north Nepal, little detail on 
the historic evolution of the Sunkoshi landslide has been known till now due to its remote location and absence 
of ground measurement. In this study, we analyzed multi-source satellite SAR datasets to characterize the evolu-
tion life cycle of this landslide. Our major findings are summarized as follows.

First, according to the results of time series InSAR analyses with ALOS PALSAR data, the upper part of the 
landslide has long become unstable before collapse, with the maximum mean LOS displacement rate of about 
− 30 mm/year. Joint analysis of time series displacements retrieved and monthly cumulative precipitation records 
suggested that rainfall was the predominant impact factor for the landslide stability, and the 2014 failure event 
might be triggered by intensive rainfall in the summer monsoon season.

Second, by differencing pre- and post-disaster DSMs generated from two pairs of bistatic mode TerraSAR-
X/TanDEM-X data over the Sunkoshi landslide, we quantified the slope surface height changes induced by the 
collapse event and estimated the collapsed mass volume. The results show that the maximum surface height 
changes reached − 150.47 m at the depletion zone and 55.65 m in the accumulation zone, leading to a debris 
volume of 5.4785 ± 0.6687 million  m3.

Thirdly, we evaluated the post-disaster slope stability of the Sunkoshi landslide with InSAR analyses of 
ALOS-2 PALSAR-2 and Sentinel-1 data. The results clearly indicated that the upper part of the landslide was 
still in active deformation since late 2014 and thus the potential risk of catastrophic failure in the future cannot 
be ignored. Furthermore, intermittent accelerations of displacement can be observed, which might be induced 
by the 2015 Gorkha earthquake and heavy rainfall of summer monsoon. Therefore, regular monitoring of the 
slope stability with operational SAR data acquisitions should be carried out to facilitate landslide risk manage-
ment and disaster early warning.

Methods
DS‑InSAR processing. The Sunkoshi landslide is located at a high-altitude area with dense vegetation and 
complicated topography. Traditional InSAR technologies cannot identify sufficient measurement points and the 
low spatial density of detectable coherent points generally results in phase unwrapping errors and consequently 
big uncertainties in the deformation  measurements30. Aiming at this problem, DS-InSAR is applied to ensure 
high spatial density of MPs extracted from the ALOS PALSAR data stack, and to solve the difficult problem of 
mapping landslide surface deformation in mountainous areas. Two key processing steps for DS-InSAR analysis 
are DS target identification and optimal phase estimation.

DS identification. DS is the coherent ensemble of radar echo signals from all small scatterers within the same 
resolution cell, among which none of these scatterers is  dominant31, and they behave as statistically homogenous 
pixels (SHP). K-S test is usually used to calculate and select the appropriate DS by testing if the amplitude time 
series of two pixels follow the same probability distribution  function32, which can be intrinsically formulated 
as a nonparametric goodness-of-fit  test33. In this study, those pixels centered at a window of fixed size 25 × 25 
with more than 20 SHPs are selected as DS candidates. The resultant SHP map for the landslide region outlined 
in Supplementary Fig. S5(a) online is shown in Supplementary Fig. S5(b) online. We can see clearly that the 
number of SHPs identified strongly depends on the local topography. Specifically, a large number of SHPs are 
detected over homogenous areas on the hillside, while for targets along stream channels in valleys the numbers 
of SHPs are much lower.

Optimal phase estimation. For the identified SHP of pixel P, the sample coherence matrix can be estimated  by32:

where H indicates Hermitian conjugation and �  represents a homogeneous group containing SHP pixels. d′(P) 
is the normalized complex reflectivity vector.

The optimal phase series θ = [θ1, θ2, . . . , θN ]
T of each pixel can be estimated by the maximum likelihood 

estimation (MLE), the first value of θ  is set as zero, i.e. θ1 = 0:

where η = [0, ejθ2 , . . . ejθN ]T  and the symbol ° represents the mathematic operator of Hadamard product between 
two matrices. Phase linking approach is applied to solve this equation quite efficiently in closed form  as34:
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1
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where k is the iteration step and the starting point of the iteration was assumed as the phase of the vector η0 = 1.
The DS candidates identified are then combined together with PS candidates to establish the observation 

network, upon which the standard PS-InSAR algorithm implemented in the StaMPS software package is applied 
to estimate the deformation time series of each  MP35–37. The processing flowchart is shown in Supplementary 
Fig. S6 online.

Surface change analyses with TSX/TDX bistatic SAR data pairs. After landslide disaster, the slope 
surface will undergo dramatic changes, leading to serious decorrelations. We make use of SAR intensity infor-
mation to detect the landslide affected  area38 with multitemporal SAR images acquired over the same area. In 
consideration of dissimilar imaging geometries adopted by SAR observations of multiple epochs, geometric 
correction and image registration are needed before performing change detection.

Surface height changes can be deduced by differencing two digital surface models (DSMs) acquired at two 
different  dates39. For this purpose, two pairs of TSX/TDX bistatic SAR data were processed to generate pre- and 
post-disaster DSMs representing the surface topography before and after the collapse. Then a DSM change map 
was created to evaluate the mass volume of debris accumulated.

Post‑disaster stacking InSAR and SBAS‑InSAR analysis. A limited number of 11 ALOS-2 PAL-
SAR-2 images acquired after the collapse event were collected. It is usually difficult to apply time-series InSAR 
methods to achieve reliable results from such a small and temporarily sparse group of SAR observations. There-
fore, stacking InSAR technique is adopted to retrieve post-disaster deformation during period I.

In this study, the post-disaster DSM derived from TSX/TDX bi-static data pair was utilized to remove flat-
earth and topographic phase components from eighteen high-quality interferograms generated with ALOS-2 
data pairs. Then all selected n interferograms with good coherence generated from N SAR images are unwrapped 
after proper corrections of phase ramp, baseline errors and residual height errors. With the assumptions of almost 
linear deformation pattern and random atmospheric disturbances, the deformation rate of the study area can be 
estimated as below according to the stacking InSAR  technique40:

where ϕi  is the unwrapped phase measurement of the ith interferogram, and tbi is the corresponding temporal 
baseline.

In consideration of the strong temporal decorrelation for C-band InSAR in vegetated area and the high com-
putational cost of the DS-InSAR method, we employed the SBAS-InSAR  technique41 to evaluate the landslide 
stability with 82 Sentinel-1 SAR images. 240 differential interferograms were generated following the criteria of 
small spatial and temporal baselines (here the upper limits are 200 m for spatial baseline and 120 days for tem-
poral baseline). The quantitative relationship between the unknown mean phase velocity v  and the unwrapped 
interferometric phase observation δφ can be expressed as:

where δϕT = [δϕ1, . . . , δϕM ] is the vector of unwrapped phases of M interferograms generated from N + 1 SAR 
images acquired at epochs t0 to tN. B is the coefficient matrix of size M × N recording temporal baselines for these 
interferograms. The unknown parameters of deformation velocities as well as time series deformations can be 
derived by singular value decomposition (SVD) and least squares  estimation41.

SAR datasets. We acquired 20 scenes of ALOS PALSAR images from January 2007 to January 2011, 11 
scenes of ALOS-2 PALSAR-2 images from September 2014 to October 2017, 82 scenes of Sentinel-1 SAR images 
from 4 January 2017 to 21 October 2019, and two pairs of TerraSAR-X/TanDEM-X (TSX/TDX) bistatic SAR data 
acquired before and after the 2014 Sunkoshi landslide event. Supplementary Table S1 online lists the acquisition 
parameters of all the datasets. Approximate ground coverage of all above SAR datasets are shown in Supple-
mentary Fig. S7 online. Their spatial and temporal distributions are illustrated in Supplementary Fig. S8 online.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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