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ABSTRACT

Motivation: One of the most successful methods to date for
recognizing protein sequences that are evolutionarily related has
been profile hidden Markov models (HMMs). However, these models
do not capture pairwise statistical preferences of residues that are
hydrogen bonded in beta sheets. These dependencies have been
partially captured in the HMM setting by simulated evolution in
the training phase and can be fully captured by Markov random
fields (MRFs). However, the MRFs can be computationally prohibitive
when beta strands are interleaved in complex topologies. We
introduce SMURFLite, a method that combines both simplified MRFs
and simulated evolution to substantially improve remote homology
detection for beta structures. Unlike previous MRF-based methods,
SMURFLite is computationally feasible on any beta-structural motif.
Results: We test SMURFLite on all propeller and barrel folds in the
mainly-beta class of the SCOP hierarchy in stringent cross-validation
experiments. We show a mean 26% (median 16%) improvement
in area under curve (AUC) for beta-structural motif recognition as
compared with HMMER (a well-known HMM method) and a mean
33% (median 19%) improvement as compared with RAPTOR (a
well-known threading method) and even a mean 18% (median
10%) improvement in AUC over HHPred (a profile–profile HMM
method), despite HHpred’s use of extensive additional training data.
We demonstrate SMURFLite’s ability to scale to whole genomes
by running a SMURFLite library of 207 beta-structural SCOP
superfamilies against the entire genome of Thermotoga maritima, and
make over a 100 new fold predictions.
Availability and implementaion: A webserver that runs SMURFLite
is available at: http://smurf.cs.tufts.edu/smurflite/
Contact: lenore.cowen@tufts.edu; bab@mit.edu
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1 INTRODUCTION
Many researchers use hidden Markov models (HMMs) to annotate
proteins according to homology, with popular systems such as
Pfam (Finn et al., 2008) and Superfamily (Wilson et al., 2007) based
on HMM methods integrated into UniProt. However, HMMs are
limited in their power to recognize remote homologs because of

∗To whom correspondence should be addressed.

their inability to model statistical dependencies between amino-acid
residues that are close in space but far apart in sequence (Cowen
et al., 2002; Lifson and Sander, 1980; Olmea et al., 1999; Steward
and Thorton, 2002; Zhu and Braun, 1999).

For this reason, many have suggested (Lathrop and Smith, 1996;
Liu et al., 2009; Menke et al., 2010; Peng and Xu, 2011; Thomas
et al., 2008; White et al., 1994) that more powerful Markov random
fields (MRFs) be used. MRFs employ an auxiliary dependency graph
which allows them to model more complex statistical dependencies,
including statistical dependencies that occur between amino-acid
residues that are hydrogen bonded in beta sheets.

However, as the dependency graph becomes more complex, major
design difficulties emerge. First, the MRF becomes more difficult
to train. Second, it quickly becomes computationally intractable to
find the optimal-scoring parse of the target to the model.

We have built a fully automated system, SMURFLite, that
combines the power of MRFs with Kumar and Cowen’s simulated
evolution (Kumar and Cowen, 2010) (which offloads information
about pairwise dependencies in beta sheets into new, artificial
training data), in order to build the first MRF models that are
computationally tractable for all beta-structural proteins, even
those with limited training data. The SMURFLite system builds
in part on the SMURF MRF (Menke et al., 2010), which uses
multidimensional dynamic programming to simultaneously capture
both standard HMM models and the pairwise interactions between
amino acid residues bonded together in beta sheets. Unlike the
full SMURF MRF, where the computational requirements of the
random field become prohibitive on folds with deeply interleaved
beta-strand pairs, such as barrels, SMURFLite is tractable on all
beta-structural proteins. SMURFLite enables researchers to trade
modeling power for computational cost by tuning an interleave
threshold. The interleave threshold represents the maximum number
of unrelated beta strands that can occur in linear sequence between
the beta strands hydrogen bonded in a beta sheet while still being
retained as pairwise dependencies in the MRF. As the interleave
threshold increases, computation time increases, but so does the
power of the MRF (see Fig. 1).

We first test SMURFLite on all propeller and barrel folds in
the mainly-beta class of the SCOP hierarchy in stringent cross-
validation experiments. We show a mean 26% (median 16%)
improvement in area under curve (AUC) for beta-structural motif
recognition as compared with HMMER (a popular HMM method;
Eddy, 1998) and a mean 33% (median 19%) improvement as
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Fig. 1. A closed beta barrel (PDB ID 1bw3, a Barwin domain) from the
superfamily ‘Barwin-like endoglucanases’ to illustrate interleaving of strand
pairs. Beta strands a and b, which close the barrel, have interleave 4, whereas
strands c and d, which are adjacent in sequence, have interleave 1. Strands
b and c have interleave 2.

compared with RAPTOR (a well-known threading method; Xu
et al., 2003), and even a mean 18% (median 10%) improvement
in AUC over HHPred (a profile–profile HMM method; Söding
et al., 2005), despite HHpred’s use of extensive additional
training data. We demonstrate SMURFLite’s ability to scale
to whole genomes by running a SMURFLite library of 207
beta-structural SCOP superfamilies against the entire genome of
T.maritima, and make over a 100 new fold predictions (available at
http://smurf.cs.tufts.edu/smurflite). The majority
of these predictions are for genes that display very little sequence
similarity with any proteins of known structure, demonstrating the
power of SMURFlite to recognize remote homologs.

We offer an online server (http://smurf.cs.tufts.edu/
smurflite) for predicting remote homologs from our library of
207 mainly-beta superfamilies using SMURFLite. The online server
sets the interleave threshold (the parameter that determines the
complexity of the MRF) to 2; we have also shown that increasing
the interleave number for SMURFLite can dramatically improve
performance, but at a great computational cost. While the primary
intent of using simulated evolution in conjunction with simplified
MRFs is to compensate for the removal of highly-interleaved beta-
strand pairs required for computational feasibility, we surprisingly
find that simulated evolution can still improve full-fledged SMURF
in cases of sparse training data. For instance, the 5-bladed beta
propellers have only three superfamilies in SCOP, two of which
contain only one family. We find that for the 5-bladed beta-propeller
fold, combining SMURF and simulated evolution improves AUC
from 0.73 for full SMURF alone to 0.89.

2 METHODS

2.1 Review of SMURF MRF framework
SMURF and SMURFLite rely on training data in the form of a multiple
structure alignment with beta strand annotation. This alignment is created
using the Matt program (Menke et al., 2008). Beta strand annotation is done

on a structure-by-structure basis, where the beta-strand residue pairing is
determined using the same algorithm implemented by the Rasmol (Sayle and
Milner-White, 1995) visualization program. A post-processing step annotates
those beta-strand residues that appear in more than half the structures in
the alignment as beta-conserved. As gaps in beta strands would complicate
training, this post-processing step makes beta-conserved template strands
contiguous in the alignment exactly as in (Menke et al., 2010). The result
at this stage is a sequence alignment (resulting from the Matt structural
alignment) with conserved beta-strand pairs annotated according to the
residue positions and conformation (buried or exposed to solvent).

The pairwise probability portion of the MRF is based on the beta
probability tables that were computed by collecting a set of amphipathic beta
sheets from the Protein Data Bank (PDB; Berman et al., 2000) and tabulating
the frequencies of pairs of hydrogen-bonded residues in two tables, one for
buried residues and one for residues exposed to solvent (Bradley et al., 2001;
Menke et al., 2010). For each residue position, the most likely conformation
(buried or exposed) is chosen based on whether that residue pairing is most
probable from the buried or exposed beta-pairing tables.

Given a trained MRF, SMURF and SMURFLite align a query sequence
to the MRF. The query phase of SMURF and SMURFLite computes the
alignment of the sequence to the states of the MRF that maximizes the
combined score:

log
(
HMM score

)+log
(
pairwise score

)

In this combined score, the HMM score is the conditional probability
of observing the sequence given the HMM portion of the model, and
the pairwise score is the conditional probability of observing the paired
beta-strand components of the sequence given the beta-pair portion of the
model. Let the sequence have residues r1...rn, and the MRF have match
states m1...ml , deletion states d1...dl and insertion states i1...il . Suppose that
r1...rk and match states m1...ms have been assigned. Then, the probability
of assigning rk to the next match state mj =ms+1 is:

Pr
[
mj|rk,uj−1

]=HMM
[
mj,rk

]·
transition

[
uj−1,mj

]·
βstrand

[
rj,rk,mj,mk

]

where uj−1 can be either dj−1, ij−1 or mj−1 depending on whether the current
state is a deletion, insertion or match state. When the current state is a match
state, the SMURFLite template replaces the transition

[
uj−1,mj

]
term with

a value of 1. The β strand component set to be identically 1 unless the
particular match state mj participates in a beta strand that is matched with
a state mk earlier in the template. This component is the primary difference
between our MRF and an ordinary HMM (Menke et al., 2010).

SMURFLite computes the maximum score of a sequence using
multidimensional dynamic programming on the MRF. This dynamic
programming resembles the classic Viterbi algorithm (Viterbi, 1967) used on
HMMER’s ‘plan7’ (Eddy, 1998) HMMs, except that some states are beta-
strand states, which are required to be match states, and which are paired with
other beta-strand nodes in the model. Because the pairwise component of the
score can only be calculated for a given MRF node once it is determined what
residue occupies the paired MRF node earlier in the sequence, each time the
dynamic programming reaches a state in the MRF that corresponds to the first
residue of the first beta strand in a set of paired beta strands, we need to keep
track of multiple cases, depending on what residue in sequence is mapped
to that state. SMURFLite uses a multidimensional array to memoize these
possible subproblem solutions. A maximum gap size is set to the longest
gap seen in the training data plus 20, for computational efficiency. When
paired beta strands follow each other in sequence with no interleaving beta
strands between them, the number of dimensions in the table for the dynamic
programming is directly proportional to the maximum gap length. Let us call
the last MRF state for the first of every pair of beta strands a ‘split’ state
and the first MRF state for the second of that pair a ‘join’ state. Then, at
every split state, the number of dimensions of the dynamic program will be
multiplied by the maximum gap length, because the dynamic program must
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keep track of scores for each possible sequence position (up to the maximum
gap length) that could be mapped to that state. At the corresponding join state,
the number of dimensions will be reduced by the maximum gap length,
because the scoring function can calculate all the pairwise probabilities of
placing that residue into the join state, and then simply take the maximum
of all ways to have placed its paired residue into the split state. However,
when other beta strands are interleaved, the dynamic program must open
additional multidimensional tables before clearing the previous ones from
memory. Thus, the number of elements in the multidimensional table is never
more than the sequence length times the maximum gap length raised to the
interleaving number power.

2.2 Datasets
From SCOP (Murzin et al., 1995) version 1.75, we chose the folds
‘5-bladed Beta-Propellers’, ‘6-bladed Beta-Propellers’, ‘7-bladed Beta-
Propellers’ and ‘8-bladed Beta-Propellers’. We also chose superfamilies
from all of the mostly-beta folds containing the word ‘barrel’ in their
description, whether open or closed, restricted to those superfamilies
comprising at least four families (in order to facilitate leave-family-
out cross-validation). These superfamilies were: ‘Nucleic acid-binding
proteins’ (50249), ‘Translation proteins’ (50447), ‘Trypsin-like serine
proteases’ (50494), ‘Barwin-like endoglucanases’ (50685), ‘Cyclophilin-
like’ (50891), ‘Sm-like ribonucleoproteins’ (50182), ‘PDZ domain-like’
(50156), ‘Prokaryotic SH3-related domain’ (82057), ‘Tudor/PWWP/MBT’
(63748), ‘Electron Transport accessory proteins’ (50090), ‘Translation
proteins SH3-like domain’ (50104), ‘Lipocalins’ (50814) and ‘FMN-binding
split barrel’ (50475). Of these, we removed the superfamilies ‘Lipocalins’
and ‘Trypsin-like serine proteases,’ which were not structurally consistent
enough to permit a multiple structure alignment for training HMMER or
the SMURF variants, and which were broken into distinct superfamilies by
(Daniels et al., 2012), with the result that 11 superfamilies containing barrels
were selected. In addition, for the whole-genome search on T.maritima, out
of 354 total superfamilies within the SCOP class ‘All beta proteins’, 288
(81%) of which contain at least two protein chains, 207 superfamilies (71%)
were structurally consistent enough to be aligned using the Matt (Menke
et al., 2008) structural alignment program. We built SMURFLite templates
for these 207 superfamilies, and obtained from UniProt the protein sequences
for T.maritima, comprising 1852 genes.

2.3 Training and testing process
For the beta-propeller folds, strict leave-superfamily-out cross-validation
was performed. The propeller folds are structurally highly consistent (Menke
et al., 2010), and thus high-quality Matt (Menke et al., 2008) multiple
structure alignments were possible without descending to the superfamily
level. For each propeller fold, its constituent superfamilies were identified.
Each superfamily was left out, a training set was established from the protein
chains in the remaining superfamilies, with duplicate sequences removed.
An HMM (in the case of HMMER and HHPred) or MRF (in the case
of SMURF and SMURFLite) were trained on the training set (HMMER
parameter settings are discussed below). Protein chains from the left-out
superfamily were used as positive test examples. Negative test examples were
protein chains from all other folds in SCOP classes 1, 2, 3 and 4 (including
propeller folds with differing blade counts), indicated as representatives from
the non-redundant Protein Data Bank repository (nr-PDB) (Berman et al.,
2000) database with non-redundancy set to a BLAST E-value of 10−7.

The beta propellers are atypical of most beta-structural SCOP folds, in
that they structurally align well at the fold level of the SCOP hierarchy.
For the beta-barrel superfamilies, strict leave-family-out cross-validation
was performed. The barrel superfamilies are distinguished by strand number
and shear as well as other structural features (Murzin et al., 1995), and so
like most beta-structural motifs they do not align well structurally at the
fold level. For this reason, the superfamily level was chosen for training.
For each superfamily, its constituent families were identified. Each family

was left out, a training set was established from the protein chains in the
remaining families, with duplicate sequences removed. An HMM (in the case
of HMMER and HHPred) or MRF (in the case of SMURF and SMURFLite)
were trained on the training set. Protein chains from the left-out family were
used as positive test examples. Negative test examples were protein chains
from all other superfamilies in SCOP classes 1, 2, 3 and 4 (including other
barrel superfamilies), indicated as representatives from the nr-PDB (Berman
et al., 2000) database with non-redundancy set to a BLAST E-value of 10−7.

Each test example was aligned to the trained HMM (from HMMER
and HHPred) and MRF, and was also threaded, using RAPTOR, against
each individual chain in the training set (RAPTOR parameters are discussed
below). The score reported for HMMER and HHPred was the output HMM
score, and the score reported for SMURF and SMURFLite was the combined
HMM and pairwise score from the MRF. For RAPTOR, the score reported
for a test example was the highest score from all the scores resulting from
threading that test example onto each chain in the training set. For each
training set, the scores for each method were collected and a ROC curve
(a plot of true positive rate versus false positive rate) computed. We report
the area under the curve (AUC statistic) from this ROC curve (Sonego and
Pongor, 2008).

2.4 P-values
SMURFLite computes the P-value for an alignment similarly to HMMER,
using an extreme value distribution (EVD) (Eddy, 1998). An EVD is fitted
to the distribution of raw scores over a random sampling of 5000 protein
chains from across the SCOP hierarchy. The P-value is then simply computed
as 1−cdf (x) for any raw SmurfLite score x, where cdf is the cumulative
distribution function for the EVD.

2.5 SMURFLite augmented training data
(Kumar and Cowen, 2009, 2010) showed that ‘simulated evolution,’
augmenting limited training data with additional sequences produced by
mutating the original sequences, improved the performance of HMMER at
recognizing the same-superfamily level of homology. (Kumar and Cowen,
2010) used two types of simulated evolution: point-wise and pairwise. Here,
we add only pairwise mutations based on beta-strand pairings, as we expect
long-range interactions between beta strands to be highly conserved across
similar structures. We postulated that the elimination of the beta-strand pairs
SMURFLite must disregard because of computational complexity might be
compensated for by augmenting the training data with artificial sequences
based on likely mutations in those paired beta strands. This training data
augmentation comes at insignificant runtime cost and is done before beta-
strand pairs are removed from the template (but after their interleave number
has been identified, where we define interleave number next below). The
mutation frequencies are given by the Betawrap and SMURF (Bradley
et al., 2001; Menke et al., 2010) pairwise probability tables. Using the
same algorithm as (Kumar and Cowen, 2010), we generate 150 new artificial
training sequences from each original training sequence. For each artificial
sequence, we mutate at a 50% mutation rate per length of the beta strands.
The parameters 150 and 50% were recommended by (Kumar and Cowen,
2010); we also evaluated a 10% mutation rate (a secondary peak according
to their work) and performance was slightly worse (data available from the
authors).

2.6 SMURFLite simplified random field
SMURFLite trains a MRF on a template built from a multiple structure
alignment. Beta strands in the aligned set of structures are found by the
program SmurfPreparse which is part of the SMURF package (Menke et al.,
2010; Menke, 2009). The program not only outputs the positions of the
consensus beta strands in the alignment, it also declares a position buried
or exposed based on which of the two tables is the best fit to the amino
acids that appear in that position in the training data. SMURFLite then
assigns an interleave value to each beta-strand pair, as follows: any pairwise

1218



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:27 10/4/2012 Bioinformatics-bts110.tex] Page: 1219 1216–1222

SMURFLite

interaction between beta strands whose interleave value equals or exceeds
the SMURFLite threshold is removed from the training data.

Consider three beta strands: A, B and C. Suppose strand A interacts with
strand B and the (A,B) pair has an interleave value of 4, whereas strand B
also interacts with strand C and that (B,C) pair has an interleave value of just
1. With a SMURFLite threshold of 2, the (A,B) pair would be discarded, but
the (B,C) pair would remain in the training data. Thus, interleave numbers are
properties of pairs of beta strands; a beta strand may be involved in multiple
pairings, each of which may have a distinct interleave value. Discarding
beta-strand pairs whose interleave value equals or exceeds the threshold
guarantees that the MRF will have no beta-strand pairs greater than or equal
to that threshold, and thus bounds the computational complexity, which is
exponential in the maximum interleave value found in a training template.

Note that SMURFLite with an interleave threshold of 0, which will discard
all beta-strand pair information, is simply an HMM.

2.7 HMMER implementation
SMURFLite was tested against HMMER version 3.0a2 with the ‘–seqZ
1’ and ‘–seqE 10000’ options applied to hmmsearch, and the ‘–symfrac
0.2’ and ‘–ere 0.7’ options applied to hmmbuild. The –seqZ 1 option
ensures that E-values are comparable regardless of the size of the sequence
database, whereas the –seqE 10000 option forces HMMER to return results
for all query sequences. The –symfrac 0.2 option requires that only 20%
of sequences need to be in agreement to cause a match state in a given
column (the default is 50%). Given the remote homology at which we were
performing experiments, 50% was an unreasonably high threshold that led
to few match states being found. This option was also used by (Kumar
and Cowen, 2009). The –ere option sets the minimum relative entropy per
position target to 0.7 bits (the default is 0.59). Note that HMMER versions
3.0a2 and 3.0 both SAM sequence entropy (Karplus and Hu, 2001) by default.
This entropy weighting scheme has been shown to be superior for remote
homology detection tasks (Johnson, 2006; Kumar and Cowen, 2009).

HMMER 3.0a2 was used despite having been superseded by version 3.0,
because it uniformly performs better on this task. This is because version
3.0 contains computational optimizations that cause it to reject a sequence
(with no score provided) quickly if it does not appear to align well. These
optimizations, however, cause nearly all query sequences outside the family
level of homology to fail and return no score, with the result that HMMER
version 3.0 never surpasses an AUC of 0.5.

2.8 RAPTOR implementation
SMURFLite was tested against RAPTOR, which was run with the
options ‘-a nc’ indicating that the default threading algorithm described
in the RAPTOR paper (Xu et al., 2003) was used. In addition,
RAPTOR used the weighting parameters ‘weightMutation = 1.4009760151,’
‘weightSingleton = 1,’ ‘weightLoopGap = 16.841836238,’ ‘weightPair = 0,’
‘weightGapPenalty = 1’and ‘weightSStruct = 3.0137849223.’RAPTOR uses
both sequence and structural features, and these options represent the
recommended balance of these features (Xu et al., 2003).

2.9 HHPred implementation
SMURFLite was tested against HHPred version 1.5.1. HHPred HMMs for
each SCOP family were downloaded from the HHPred web site, and queried
using hhsearch. The score of the best-scoring family HMM within each
superfamily was used in computing ROC curves.

2.10 Whole-genome search
All 1852 protein sequences from T.maritima were queried against beta-
structural templates constructed from the nr-PDB (Berman et al., 2000) with
non-redundancy determined by an E-value of 10−7, organized according
to those 207 beta-structural superfamilies from SCOP that were able to be
aligned using the Matt structural alignment program, using SMURFfLite

with an interleave threshold of 2 and simulated evolution mutation rate of
50% on the residues that participate in beta strands. We computed P-values
and alignments for all 1852×207 possible hits.

3 RESULTS

3.1 SMURFLite validation
SMURFLite’s ability to recognize beta propellers and barrels
was compared with HMMER (Eddy, 1998), RAPTOR (Xu et al.,
2003) and HHPred (Söding et al., 2005) in a stringent cross-
validation experiment. From SCOP (Murzin et al., 1995) version
1.75, we chose the folds ‘5-bladed Beta-Propellers’, ‘6-bladed
Beta-Propellers’, ‘7-bladed Beta-Propellers’ and ‘8-bladed Beta-
Propellers’. We also chose superfamilies from all of the mostly-beta
folds containing the word ‘barrel’ in their description, whether open
or closed, restricted to those superfamilies comprising at least four
families (in order to facilitate leave-family-out cross-validation).
These superfamilies were: ‘Nucleic acid-binding proteins’ (50249),
‘Translation proteins’ (50447), ‘Trypsin-like serine proteases’
(50494), ‘Barwin-like endoglucanases’ (50685), ‘Cyclophilin-
like’ (50891), ‘Sm-like ribonucleoproteins’ (50182), ‘PDZ
domain-like’ (50156), ‘Prokaryotic SH3-related domain’ (82057),
‘Tudor/PWWP/MBT’ (63748), ‘Electron Transport accessory
proteins’ (50090), ‘Translation proteins SH3-like domain’ (50104),
‘Lipocalins’ (50814) and ‘FMN-binding split barrel’ (50475). Of
these, we removed the superfamilies ‘Lipocalins’ and ‘Trypsin-like
serine proteases,’ which were not structurally consistent enough to
permit a multiple structure alignment for training HMMER or the
SMURF variants, and which were broken into distinct superfamilies
by (Daniels et al., 2012), with the result that 11 superfamilies
containing barrels were selected.

SMURFLite was tested on these 5 propeller folds and 11 barrel
superfamilies, with interleave thresholds of 1, 2 and 3, and with and
without simulated evolution on the beta-strands (Kumar and Cowen,
2010). Here, the interleave threshold is a parameter of SMURFLite
that trades off the computational complexity with the ability of the
MRF to capture complicated long-range dependencies.

The balance between accuracy and computational efficiency is
determined by the interleave threshold at which SMURFLite is
run. In particular, we found that SMURFLite set to an interleave
threshold of 3 or less was always fast. Thus, our first question is
how SMURFLite with and without simulated evolution performs
on our test set when the interleave threshold is set to 3 or less.
We found that SMURFLite became extremely slow at an interleave
threshold of 4, and essentially intractable at an interleave threshold
of 5 or above. While SMURFLite with an interleave threshold of 1
or 2 requires roughly 1 s of wall-clock time on a 12-core 2.4 GHz
AMD Opteron server, an interleave threshold of 4 raises this run-
time requirement to 7–10 min. Restricting the interleave threshold
to 3 or less has different impacts on the different folds in our test
set. In particular, the beta strands in the propeller folds never have
an interleave >3, which means that full SMURF, as we know, is
tractable on these folds. However, we were still interested in how
simplifying the random field to an interleave of 2 or 1 would impact
performance, and also whether simulated evolution would help. In
contrast, the barrel superfamilies in our test set contain a maximum
beta-strand interleave of between 4 and 8. Interestingly, none of
these barrels contained any beta strands with an interleave of 3 in

1219



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[15:27 10/4/2012 Bioinformatics-bts110.tex] Page: 1220 1216–1222

N.M.Daniels et al.

Fig. 2. Performance of SMURFLite compared with other methods on
the ‘Barwin-like endoglucanases’ beta-barrel superfamily according to the
AUC measure. For SMURFLite, the number (1,2,4) indicates the interleave
threshold (indicating which strand pairs in the barrel participate in the MRF;
note that interleave 3 is omitted since it is identical to interleave 2 for this
fold), and SimEv indicates that simulated evolution was also performed on
the beta strands in the training data. As the interleave threshold increases and
the MRF becomes more powerful, performance tends to improve. Including
simulated evolution also improves performance.

the consensus Matt (Menke et al., 2008) alignment, so our restriction
of running SMURFLite with an interleave threshold of 3 or less is
equivalent, on the barrels, to running SMURFLite with an interleave
threshold of 2.

SMURFLite with interleave threshold 2 and simulated evolution
performs well on all propeller folds, with AUCs between 0.89
and 0.99. It always performs better than HMMER, and better than
RAPTOR and HHPred except on the 7-bladed propellers (of which
there are 39 non-redundant solved structures in 19 SCOP families),
where HHPred achieves an AUC of 0.99 and RAPTOR achieves an
AUC of 0.95 versus an AUC of 0.93 for SMURFLite with interleave
threshold 2 and no simulated evolution (Table 1). Interestingly, on
the 5-bladed propellers (of which there are only 14 non-redundant
solved structures in 7 SCOP families), adding simulated evolution
seems to greatly improve performance; even SMURFLite with an
interleave threshold of 2 with simulated evolution outperforms full-
fledged SMURF. While these results focus on the accuracy of the
MRF score for the remote homolog decision problem, as opposed
to the question of alignment quality, we note that SMURFLite with
an interleave threshold of 1 or 2 produces highly similar alignments
to full SMURF, particularly with respect to placing the ‘blades’ of
the 6-, 7- and 8-bladed propellers.

For all 11 beta-barrel superfamilies, there is a maximum interleave
number that ranges from 4 (as in the ‘Sm-like ribonucleoproteins’) to
8 (as in the ‘Cyclophilin-like’ superfamily). We find that for 6 of the
11 beta-barrel superfamilies, SMURFLite with an interleave of 2 and
simulated evolution outperforms HMMER, RAPTOR and HHPred.
For two of the remaining superfamilies, HMMER performs best; for
two of the remaining superfamilies, RAPTOR performs best; and for
one superfamily, HHPred performs best (Table 2).

As discussed above, SMURFLite begins to test the limits of
computational tractability when interleave numbers of 4 are allowed.
Since many barrel structures had beta-strand pairs with interleaves
of 4, we wished to test if incorporating these more long-range
pairwise dependencies into our MRF would improve performance.
Some barrel superfamilies on which we tested have only strand
pairs of interleave 1 or 2, excepting a pair of beta strands that close
the barrel and thus have an interleave equivalent to the number of
strands in the barrel. Certainly, including that last strand is beyond
the computational power of SMURFLite. Other barrels, whether
open or closed, have more complex strand topology and interleaves
of 3 or 4 are common even in the middle of the barrels. We
chose to run SMURFLite with an interleave of 4 on one of the
barrel superfamilies of moderately complex topology, the ‘Barwin-
like endoglucanase’ superfamily, of which an example appears in
Figure 1. The ‘Barwin-like endoglucanase’ superfamily contains
‘Barwin,’ a protein that may be involved in a common defense
mechanism in plants (Svensson et al., 1992).

On the ‘Barwin-like endoglucanase’ superfamily, we find an
enormous improvement in performance from capturing that last
strand pair, with AUC improving from 0.63 for SMURFLite with
an interleave threshold of 2 and simulated evolution, to 0.94
for SMURFLite with an interleave threshold of 4 and simulated
evolution (Fig. 2). Note that both HMMER and RAPTOR fail
entirely on this superfamily.

3.2 SMURFLite on whole genomes
We considered all 1852 genes from the bacterium T.maritima, a
thermophilic organism that bears some similarity to Archaea and
whose cell is wrapped in an outer membrane, or ‘toga’ (Huber
et al., 1986). Out of 354 total superfamilies within the SCOP
class ‘All beta proteins’, 288 (81%) of which contain at least two
protein chains, 207 superfamilies (71%) were structurally consistent
enough to be aligned using the Matt (Menke et al., 2008) structural
alignment program. We built SMURFLite templates for these 207
superfamilies, and obtained from UniProt the protein sequences
for each of 1852 genes. We predict 139 of the 1852 genes from
T.maritima to belong to one of the 207 beta-structural SCOP
superfamilies we consider, with a P-value of <0.005. Of the 139
genes about which we make predictions, 28 already have solved
structures in the PDB, however, since there is a substantial time
lag before new PDB structures are assigned to SCOP, only one of
those structures was already given a SCOP assignment (and thus
only one of these 28 structures potentially informed SMURFLite
training). Thus, determining the correct SCOP asignments of the
remaining 27 (an easy computational problem given full structural
information) allows us to estimate the accuracy of SMURFLite
predictions on these structures. Using the Matt (Menke et al., 2008)
structural alignment program and the methodology of (Daniels
et al., 2012), we computed SCOP superfamilies for all 27, and in
100% of the cases, Smurflite’s predictions matched the structural
alignments and hence SCOP superfamily assignments. We now
survey the remaining 111 structures on which SMURFLite makes
predictions, for which structural information is not yet available. In
total, 8 of these 111 structures also had their SCOP superfamilies
predicted in the study of Zhang et al. (2009) and in all 8 cases,
our predictions are in agreement with the other study. We note
that for most of these 111 structures, not only is not there solved
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Table 1. AUC on beta-propeller folds. Best AUC for each structure is marked in bold

HMMER RAPTOR HHPred SMURF-Lite 1 SMURF-Lite 1, SimEv SMURF-Lite 2 SMURF-Lite 2, SimEv SMURF-Lite 3 SMURF-Lite 3, SimEv

5-bladed – – – 0.75 0.89 0.73 0.89 0.73 0.89
6-bladed 0.82 0.82 0.88 0.92 0.93 0.96 0.95 0.96 0.96
7-bladed 0.89 0.95 0.99 0.92 0.91 0.93 0.91 0.93 0.91
8-bladed – 0.64 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Note: for SmurfLite, the number (1,2,3) indicates the interleave threshold, and SimEv is simulated evolution. A dash (‘–’) in a result entry indicates the method failed on these
structures, i.e. an AUC of <0.6.

Table 2. AUC on beta-barrel superfamilies

HMMER RAPTOR HHPred SMURF-Lite 1 SMURF-Lite 1, SimEv SMURF-Lite 2 SMURF-Lite 2, SimEv

SMURFLite performs best

Translation proteins – – 0.66 0.93 0.92 0.93 0.93
Barwin-like endoglucanases – – 0.75 – 0.77 – 0.63
Cyclophilin-like 0.67 0.61 0.7 0.82 0.85 0.82 0.83
Sm-like ribonucleoproteins 0.73 0.71 0.77 0.76 0.71 0.76 0.85
Prokaryotic SH3-related domain 0.81 – – 0.83 0.82 0.83 0.83
Tudor/PWWP/MBT 0.78 0.74 0.67 0.83 0.77 0.83 0.79
Nucleic acid-binding proteins 0.75 – 0.67 0.76 0.89 0.76 0.92

HHPred performs best

Translation proteins SH3-like 0.83 0.81 0.86 0.62 – 0.62 –

RAPTOR performs best

PDZ domain-like 0.96 1.0 0.99 0.97 0.97 0.97 0.97
FMN-binding split barrel 0.62 0.82 0.61 – – – –

HMMER performs best

Electron Transport accessory proteins 0.84 – 0.77 0.63 – 0.63 0.66

Note: for SmurfLite, the number (1,2) indicates the interleave threshold, and SimEv is simulated evolution. A dash (‘–’) in a result entry indicates the method failed on these
structures, i.e. an AUC of <0.6.

structure, but there also is not close homology to proteins of solved
structure. In particular, none have BLAST hits in UniProt with
solved structure and >80% sequence identity, 18 have BLAST hits in
UniProt with solved structure and between 30% and 80% sequence
identity, and 4 have BLAST hits in UniProt with solved structure
and <20% sequence identity. As an example, the gene Q9X087
shares only 20% sequence identity with its closest structurally-
solved BLAST hit (Rhoptry protein from Plasmodium yoelii yoelii,
which forms an alpha-helical structure) but we predict it to belong in
the ‘beta-Galactosidase/glucuronidase domain’ SCOP superfamily
with a P-value of 0.0006.

All models predicted can be found at http://smurf.cs.
tufts.edu/smurflite/

4 DISCUSSION
We have presented SMURFLite, a method that combines long-
range pairwise beta-strand interactions via a simplified MRF
with simulated evolution, a method that augments training data
to capture pairwise beta-strand interactions as well. SMURFLite
in most cases performs considerably better than HMMER and
RAPTOR; however, we examine those structures for which this
is not so. We postulate that RAPTOR performs best in the case
when there is significant structural conservation across families,
whereas HMMER excels when there is a small but highly conserved

sequence signature in members of a superfamily. In all four beta-
barrel superfamilies on which RAPTOR achieves an AUC of <0.5,
we see considerable structural variation in the protein backbones
within each superfamily, according to the metric of (Daniels et al.,
2012), as compared with the other barrel superfamilies. In contrast,
the barrels on which RAPTOR performed best exhibited little
structural variation. The cases in which SMURFLite performs poorly
exhibit an interesting property: the structural alignment of the
protein chains used in the training set preserves few, or sometimes
none, of the beta strands as ‘consensus’ beta strands. When a
significant number of beta strands are missing in this manner from
the training data, SMURFLite exhibits poor specificity, scoring
some non-homologous sequences comparably to homologous ones.
The ‘Translation Proteins SH3-Like Domain,’ a superfamily in
which HMMER significantly outperforms SMURFLite, is one in
which the consensus alignment obtained from Matt retains zero beta
strands, even though each individual structure has four strands. Thus,
SMURFLite behaves like HMMER, except without HMMER’s
heuristic for quickly failing bad alignments, leading SMURFLite to
report more false positives. The very premise of SMURFLite rests
on the conservation of beta strands, and this finding emphasizes the
importance of evolutionarily faithful structural alignments. In future
work, we will also consider alternative structural aligners, such as
TMalign (Zhang and Skolnick, 2005), in cases where they produce
alignments that better conserve secondary structure.
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We also compared SMURFLite to HHPred, though in a sense
this is not an apples-to-apples comparison, because HHPred uses
all of protein sequence space to build profiles for training; thus it
can leverage a much larger training set than HMMER, RAPTOR,
or SMURF or SMURFLite. Thus it is somewhat surprising
that SMURFLite outperforms HHPred in median AUC on the
propellers and barrels. We expect HHPred to excel in particular on
superfamilies and folds with a high HHPred NEFF (Söding et al.,
2005), where NEFF is the ‘number of effective families’ available
for training the HHPred HMM.

In contrast, simulated evolution seems to help SMURFLite most
on those structural motifs where the HHPred NEFF is lowest; i.e. it
can generate diverse training data when diverse training data is
lacking. A profile version of SMURFLite would be close in spirit
to HHPred, and based on the previous discussions we would expect
profiles might improve performance; this will be a subject for future
investigation. We observed that simulated evolution either improves
or does not affect AUC for beta-barrel superfamilies and beta-
propeller folds with a HHPred NEFF of 20 or lower. The only cases
in which we observed simulated evolution decreasing AUC were
those cases where the NEFF was >20.

While the intent of using simulated evolution in conjunction
with simplified MRFs is to compensate for the removal of highly-
interleaved beta-strand pairs required for computational feasibility,
we find that simulated evolution can still improve full-fledged
SMURF in cases of sparse training data. For instance, the 5-bladed
beta propellers have only three superfamilies in SCOP, two of which
contain only one family. We find that for the 5-bladed beta-propeller
fold, combining SMURF and simulated evolution improves AUC
from 0.73 for full SMURF alone to 0.89.

We have demonstrated that SMURFLite is a powerful
MRF methodology for beta-structural motif recognition that is
computationally tractable enough to scale to whole genomes,
requiring approximately 3 h to scan the T.maritima genome on a
small compute cluster. We have also shown that increasing the
interleave number for SMURFLite can have dramatic effects on
performance, but at a great computational cost. Thus, looking at
heuristic methods (Murphy et al., 1999; Smyth et al., 1997) that
approximately compute the SMURF score more efficiently may add
even more power to our approach in practice.
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