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Abstract. In human keratinocytes cultured in condi- 
tions which allow differentiation and stratification 
and are suitable to reconstitute a fully functional 
epidermis, ot6/~4 and two members of the/~ integrin 
family (o~2/31 and ot3/3~) were respectively polarized to 
the basal and lateral domains of the plasmamembrane 
both in growing colonies and in the reconstituted 
epidermis. Conversely, the uv integrin subunit, pre- 
sumably in association with/35, was expressed at the 
basal surface in growing and migrating but not in sta- 
tionary keratinocytes. The integrin c~B4: (a) was orga- 
nized in typical patches which often showed a "leopard 
skin" pattern where spots corresponded to micro- 
filament-free areas; (b) was not associated with focal 
contacts containing vinculin and talin but rather cor- 
responded to relatively removed contact areas of the 
basal membrane as shown by interference reflection 
microscopy; and (c) was coherent to patches of lami- 
nin secreted and deposited underneath the ventral 
membrane of individual cells. The two/3~ integrins 
(a2/~ and c~3~), both endowed with laminin receptor 
properties, were not associated with focal adhesions 
under experimental conditions allowing full epidermal 
maturation but matched the lateral position of vinculin 

(but not talin), cingulin, and desmoplakin, all makers 
of intercellular junctions. Often thin strips of laminin 
were observed in between the lateral aspects of in- 
dividual basal keratinocytes. The integrin complex 
o~v/35 had a topography similar to that of talin- and 
vinculin-containing focal adhesions mostly in the pe- 
ripheral cells of expanding keratinocyte colonies and 
in coincidence with fibronectin strands. The discrete 
topography of/~1 and/~4 integrins has a functional role 
in the maintenance of the state of aggregation of cul- 
tured keratinocytes since lateral aggregation was im- 
paired by antibodies to/3, whereas antibodies to/34 
prevented cell-matrix adhesion (De Luca, M., R. N. 
Tamura, S. Kajiji, S. Bondanza, P. Rossino, R. Can- 
cedda, P. C. Marchisio, and V. Quaranta. Proc. Natl. 
Acad. Sci. USA. 87:6888-6892). Moreover, the sur- 
face polarization of integrins followed attachment and 
depended both on the presence of Ca 2+ in the medium 
and on the integrity of the cytoskeleton. We conclude 
that our in vitro functional tests and structural data 
suggest a correlation between the pattern of integrin 
expression on defined plasmamembrane domains and 
the mechanism of epidermal assembly. 

C 
ELL adhesion is a fundamental process in the or- 
ganization of multicellular organisms (reviewed by 
Ekblom et al., 1986; Fleming and Johnson, 1988). 

The regulation of cell adhesive properties is a complex pro- 
cess that plays a major role in morphogenetic events and in 
the maintenance of tissue integrity (Edelman, 1986). Re- 
cently, major advances in our understanding of the molecu- 
lar mechanisms of cell adhesion have occurred, with the 
identification of several intercellular and cell-substratum 
membrane adhesion molecules (reviewed by Albelda and 
Buck, 1990; Buck and Horwitz, 1987; Edelman, 1986; Ek- 
blom et al., 1986; Hynes, 1987; Ruoslahti and Piersch- 

bacher, 1987) and extracellular matrix molecules which may 
assemble in the basement membrane (Martin and Timpl, 
1987; Yurchenko and Schittny, 1990). 

The integrins are an important class of transmembrane 
surface receptors involved in cell-matrix and cell-cell adhe- 
sion (Buck and Horwitz,1987; Hynes, 1987; Ruoslahti and 
Pierschbacher, 1987). They are heterodimers composed of 
noncovalenfly associated ot and/3 subunits. So far,/3 subunits 
and at least 11 ~ subunits have been recognized (Ruoslahti 
and Giancotti, 1989), primarily on the basis of amino acid 
sequence homologies (Sheppard et al., 1990; Ramaswamy 
and Hemler, 1990). The o~ subunits tend to associate exclu- 
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sively with one of the ~ chains, although exceptions to this 
rule exist (Cheresh et al., 1989; Holzmann and Weissman, 
1989; Dedhar and Gray, 1990). Integrins are then divided 
into subfamilies, according to their ~ chains (I-Iynes, 1987). 
The various integrin heterodimers share many features. For 
instance, all a chains are homologous to each other, and so 
are the ~ chains. Many integrins bind to a common ligand 
motif, centered around the tripeptide Arg-Gly-Asp (Ruos- 
lahtl and Pierschbacher, 1986, 1987). Distinguishing fea- 
tures are the pattern of tissue-specific expression and the 
spectrum of ligand spccificities. 

One of the most recently discovered integrins, the complex 
c~4  (Sonnenberg et al., 1988; Kajiji et al., 1989; Kennel 
et al., 1988), has been sequenced (Hogervorst et al., 1990; 
Suzuki and Naitoh, 1990; Tamura et al., 1990) and found 
to be highly expressed by epithelial cells. Moreover, two 
members of the 81 integrin family (i.e., c~2~ and o~3~), have 
been located to cell-cell contact domains in epidermal cells 
(Konter et al., 1989; Carter et al., 1990; De Luca et al., 
1990b; Larjava et al., 1990; Staquet et al., 1990) while o~dL 
has been located to their basal domain in a typical pattern 
which suggested a polarity-dependent organization of inte- 
grins and a functional role of c~d34 in the recognition of and 
in the attachment to the basement membrane both in the na- 
tive and in vitro-reconstituted epidermis (De Luca et al., 
1990b). A further epithelial integrin heterodimer, c~v/35, has 
been identified (Cheresh et al., 1989), and the/35 chain se- 
quenced (Ramaswamy and Hemler, 1990). 

In this paper we studied the distribution and, when appro- 
priate reagents were available, the functional role of integrins 
as a function of the cytoskeleton organization of epithelial 
cells. To study the role of integrins in the organization of 
epithelia, we used, as a model system, normal human epider- 
mal keratinocytes cultured in vitro in conditions that allowed 
full epidermal differentiation (Rheinwald and Green, 1975). 
This system has been extensively characterized (Green, 
1980; Barrandon and Green, 1987a,b; De Luea et al., 1988) 
and has many advantageous features for investigating tissue 
organizing determinants, such as: (a) the cultured keratino- 
cyte is a normal cell, i.e., nontransformed; (b) it forms epi- 

thelial colonies and sheets closely resembling normal human 
epidermis (Green et al., 1979) and maintains virtually the 
same differentiation features and gene expression patterns of 
its in vivo counterpart (Green, 1980) such as to be used as 
routine grafting for large skin and mucosal defects (Galli- 
co et al., 1984; De Luca et al., 1989, 1990a; Romagnoli 
et al., 1990). 

In this paper we report that c~d3,: (a) has a novel type of 
organization in the basal plasmamembrane domain of epithe- 
lial cells; (b) a relationship with the cytoskeleton different 
from that displayed by any other integdns; and (c) a corre- 
spondence with organized laminin patches. The organization 
of o~4  is different from that shown by o~135 and O~2~1/O[3/~ l 
integrins and suggests that it represents the prototype of a 
new integrin family provided with a peculiar relationship 
both with the extracellular matrix and the cytoskeleton. We 
also propose that three different laminin receptors located to 
discrete surface domains may interact with their physiologi- 
cal ligand to support both adhesion to the basement mem- 
brane and collaborate with other molecules in the main- 
tenance of intercellular bonds. 

Materials and Methods 

Cell Culture 
Human epidermal keratinocytes were cultured according to the methods 
described by Rheinwald and Green (1975). Briefly, 2-cm 2 skin biopsies 
from healthy volunteers were minced and trypsinized (0.05 %/0.01% EDTA) 
by gently stirring at 37"C for 3 h. A single cell suspension was collected 
every 30 min. Cells were thenplated (2 x 106/75 cm 2 flask) on feeder layers 
of lethally irradiated 3T3-J2 mouse fibroblasts (a gift from H. Green, Har- 
vard Medical School, Boston, MA) and cultured in kerafinocyte growth 
medium (KGM) at 37"C in a water-saturated atmosphere of 5 % CO2. 
KGM composition was: Dulbecco-Vogt Eagle's and Ham's F12 media (3:1 
mixture) containing 10% fetal calf serum, glutamine (4 raM), insulin (5/tg/ 
ml), transferrin (5 ~g/ml), adenine (0.18 mM), hydrocortisone (0.4 t~g/ml), 
cholera toxin (0.1 nM), triiodothyronine (20 pM), epidermal growth factor 
(10 ng/ml; a gift from C. Nascimento, Chiton Corp., Emeryvile, CA), 
penicillin-streptomycin (50 IU/ml). Confluent primary cultures were tryp- 
sinized and passaged at a density of 4 x 103 to 1.3 × 104 cells/cm 2. Under 
these culture conditions, keratinocytes can be serially propagated in vitro 
for several passages (Green et al., 1979). 

In some experiments, adherent keratinocyte colonies were squirted with 
several jets of buffer from the narrowed tip of a Pasteur pipette before fixa- 
tion. The aim was to detach some of the cells, expose the underlying matrix, 
and loosen the bonds among cells. 

For control purposes, a line of human keratinocytes was obtained from 
Clonetics Co., San Diego, CA and cultured according to manufacturer's in- 
structions in growth medium with low Ca 2+. 

Antibodies 
The murine monoclonal antibodies (mAb) $3-41 and A 3  and the poly- 
clonal antiserum 5710 to ae~4 have been described (Kajiji et al., 1989) and 
generously provided by V. Quaranta, Research Institute of Scripps Clinic, 
La Jolla, CA. Other murine mAb, with the investigators that kindly 
provided them, arc as follows: TS2/7, to a t  (Hemler et al., 1983), B-5G10, 
to c~4 (Hemler et al., 1987b) from M. Hemler, Dana Farber Cancer Insti- 
tute, Boston, MA; PID6 and PIFS, to c~5 (Wayner et al., 1988) from W. 
Carter, Hutchinson Cancer Research Center, Seattle, WA; LM142, to c~v, 
from D. Charesh, Research Institute of Scripps Clinic; A-1AS, to ~1 (Hem- 
ler et al., 1983, 1987a), from M. Hemler; 12FI, to c¢2, (Pischel et al., 
1987) from V. Woods, University of California, San Diego, CA; J143, to c~3 
(Fradet et al., 1984), from L. Old, Sloan-Kettering Institute, New York; 
VIPI-2, to 83, from W. Knapp, University of Vienna, Austria; CLB-54, to 
82, from R. van Lier, Central Laboratory of the Netherlands Red Cross, 
Amsterdam, The Netherlands. The rat mAb GOH3 to c~6 (Sonnenberg et 
al., 1987) was a gift from A. Sonnenberg, Central Laboratory of the 
Netherlands Red Cross. Of two rabbit antisera to 83, one was donated by 
R. Pytela, Department of Medicine, University of California, San Fran- 
cisco, CA (Pytela et al., 1985), the other was raised in P. C. Marehisio's 
laboratory (Dejana et al., 1988/7). Goat antiserum to ~1 has been de- 
scribed (Conforti et al., 1989). An mAb to vinculin was purchased from 
Bio Makor, Rehovot, Israel (VIN 11-5, cat, No. 6501) and an mAb cross- 
reacting with human talin (clone 8D4) was obtained from K. Burridge, 
University of North Carolina at Chapel Hill, Chapel Hill, NC. Rabbit an- 
tisera to laminin and to collagen type IV were respectively from C-ibco 
Laboratories, Grand Island, NY (cat. No. 680-3019) and from Heyl GmBH, 
Berlin, Federal Republic of Germany. In some experiments the laminin anti- 
bodies were preabsorbed with an excess of laminin purified from EHS 
mouse tumor (a kind gift of G. Taraboletti, Istituto Murio Ncgri Bergamo, 
Bergamo, Italy). A rabbit antiserum to cingulin (Citi et al., 1988, 1989) 
was obtained from S. Citi, Columbia University, New York, and an mAb 
to desmoplakin 1 and 2 (clone DP 2.15, code 695421) was purchased from 
ICN ImmunoBiologicals, Lisle, IL. Finally, an mAb to cellular fibronectin 
(IST 9) was kindly provided by L. Zardi, IST, Genova, Italy (Borsi et al., 
1987; Carmemolla et al., 1987) and affinity-purified rabbit IgGs to human 
vitronectin were given by K. Preissner, Max Planck Institute for Thrombosis 
Research, Giessen, FRG (Preissner et al., 1985). 

Immunostaining 
Keratinocytes from confluent primary cultures (1.3 x 104 cells/era 2) were 
plated onto 24-well Costar plates containing 1.1-cm 2 round glass coverslips 
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which had been previously coated either with a feeder layer or the indicated 
substrate (10 t,g/ml). After indicated time, coverslip-attached keratinocytes 
were fixed in 3 % formaldehyde (from paraformaldehyde) in PBS pH 7.6 
containing 2 % sucrose for 5 rain at room temperature. After riming in PBS, 
ceils were permeabilized by so~kin~ coverslips for 3-5 rain at 0*C in Hepes- 
Triton-X-100 buffer (20 mM Hepes, pH 7.4, 300 mM sucrose, 50 mM 
NaC1, 3 mM MgCI2, and 0.5% Triton X-100). This procedure of fixation 
and permeabillzation permits immunostaining of cytoskeletal and adhesion 
components (for example, see Marehisio et al., 1984; Dejana et ai., 198ga, 
b). Indirect single-label immunofluoresconce experiments were performed 
as reported (Marchisio et al., 1984). Briefly, the primary antibody (usually 
at an Ig concentration of IO-30/~g/ml) was layered on fixed and permeabi- 
lized cells and incubated in a humid chamber for 30 rain. After rinsing in 
PBS-0.2 % BSA, coverslips were incubated in the appropriate rhodamine- 
tagged secondary antibody (DAKOPATTS, Copenhagen, Denmark) for 30 
rain at 37"C in the presence of 2/~g/ml of fluorescein-labeled phalloidin 
(F-PHD; Sigma Chemical Co., St. Louis, MO). Indirect double-label im- 
munofluorescence experiments were performed essentially as reported 
(Dejana et al., 1988/,). Coverslips were mounted either in Mawiol 4-88 
(Hoechst AG, Frankfurt/Main, FRG) or in 50% glyceroi-PBS. Routine ob- 
servations were carried out in a Zeiss Axiophot photomicroscope equipped 
for epifluorescence, plan-apochromatic lenses or Antiffex 63x lens for 
interference reflection microscopy 0RM). Fluorescence images were 
recorded on Kodak T-Max 400 films exposed at 1000 ISO and developed 
in T-Max Developer for 10 rain at 20"C. In some experiments a laser confo- 
cal fluorescence imaging system (Lasersharp MRC-500 was used to evalu- 
ate the position of integrins in the thickness of keratinocyte colonies. 

Cell Radiolabeling, Lysis, and Immunoprecipitation 
These experiments were carried out as described (Kajiji et al., 1989). 
Briefly, cells were metabolically radiolabeled and detergent extracts immu- 
noprecipitated with LM142 mAb to cry or with a rabbit polyclonal 
anti-vitronectin receptor antibody (both antibodies were a gift of D. 
Cheresh). Immunoprecipitates were washed and then einted in sample buffer 
(Laemmli, 1970) at 100*C with or without reduction/alkylation by 10 mM 
dithiothreitol and 50 mM iodoacetamide and electrophoresed on SDS- 
PAGE (Laemmli, 1970), followed by fluorography (Laskey and Mills, 1975) 
on x-ray film. 

Adhesion and Cohesion Assays 
Costar plates (96 wells) were coated for 1 hr at 370C with laminin (10/~g/ml 
in PBS) or Matrigel (either 2/zg/ml in DMEM, a gift of A. Albini, IST, 
Genova, Italy). Keratinocytes obtained from confluent cultures (30,000 
ceils/well) were plated in KGM without serum and EGF in the presence of 
indicated antisera or control sera from corresponding species (1:100 dilu- 
tions) and then incubated for 12 h at 370C. Controls of cell viability during 
cohesion assays were routinely carried out. Cohesion assays were repeated 
a minimum of six times with consistent results. The cells which had adhered 
after exposure to the Bt antiserum (almost no cells adhered after treatment 
with the B4 antiserum; De Luca et al., 1990b) were fixed and stained with 
R-PHD as described above to evaluate their morphology. 

Results 

Integrin Topography in Cultured Human Keratinocytes 
We previously showed both by serological and biochemical 
means that normal human keratinocytes express the integrins 
ot2B~, o~3/~, and ot~4 (De Luca et all., 1990b). Here we show 
that normal human keratinoeytes express Otv in association 
with B5 or a Bs-like molecule by SDS-PAGE mobility as 
demonstrated by immunopreeipitation with anti-otv antibod- 
ies (Fig. 1). That the B chain associated with O~v is not B3 is 
indicated by the lack of reactivity of normal human keratino- 
cytes with anti-B3 antibodies (Fig. 1) and, on the basis of 

1. Abbreviations used in this paper: CD, cytochalasin D; FoPHD, 
fluorescein-labeled phalloidin; IRM, interference reflection microscopy; 
R-PHD, rhodamine-labeled phalloidin. 

Figure 1. Immunoprecipitates from detergent lysates of metaboli- 
cally radiolabeled keratinocytes wiih antibodies to B3 or to C~v inte- 
grin chains (see Materials and Methods). The eluates were ana- 
lyzed by SDS-PAGE under nonreducing (NR) or reducing (R) 
conditions, followed by autoradiography. No specific bands are de- 
tectable in the anti-fl3 lanes. In the anti-txv lanes, the open arrow- 
heads point at bands consistent with the mobility of a f15 subunit, 
while the closed arrowheads indicate the positions of txv bands. 
The higher txv band in the reducing lane is often observed and 
likely represents a higher molecular mass precursor of the mature 
a~ chain. 

mobility properties, the/3 chain does not correspond to any 
of the alternative /3 chains reported to associate with otv 
(Holzmann and Weissman, 1989; Dedhar and Gray, 1990). 
Moreover, no ot chain with the mobility properties of c~v 
could be immunOprecipitated using 131 antibodies thus ex- 
cluding the occurrence of the newly reported complex Otv/~ 
(Bodary and McLean, 1990; Vogel et al., 1990). 

Here the fine topography of integrins was investigated in 
its relationship with cytoskeletal components in the same 
cells by using indirect immunofluorescence. First of all, no 
above control immunofluorescence signal was detected with 
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Figure 2. Distribution of/34 (b), cc6 (d),/3~ (f), and o~3 (h) integdns in human keratinocyte colonies grown for 3 d on glass coverslips in 
complete medium without feeder layer. The corresponding staining for F-actin (A) is shown in a, c, e, and g. The cells were immunofluores- 
cenfly stained with mouse mAbs and costained with fluorescein-labeled phalloidin (F-PHD). The patterns of/34 and 0~6 staining of the 
ventral membrane (b and d) are very similar insofar the complex is enriched in F-actin microfilament-poor areas (see also Fig. 3). Staining 
is also present in footprints left by cells which had been mechanically detached during the staining procedures (a and b, see arrowhead; 
see also Fig. 8). This suggests that the c~c~4 complex is exposed in the ventral membrane in contact with the substrate. Staining for/3m 
(f) and c~3 (h, as is identical to c~3) indicates that there is just a hazy staining for the/31 complex in the ventral membrane (f, see asterisk) 
while fluorescence is enriched at intercellular contact rims. No F-actin staining was apparent in substrate-attached material. Bar, 5/zm. 

cq, a4, or/33 antibodies (not shown). Distinct localization 
patterns were observed with anti-/5, compared to anti-/3~ an- 
tibodies. Both mAb $3-41 or AA3 and the rabbit serum 5710 
to otd34 (Kajiji et al., 1989) stained keratinocytes on the 
basal surface with a pattern of  polymorphous patches, some- 
what granular in appearance (Fig. 2 b) and often suggesting 
a leopard skin pattern (Figs. 3 and 4). Cell footprints, re- 
maining on the substratum from cells detached during fixa- 
tion (Fig. 2 b, arrowhead; see also Fig. 8), similarly dis- 
played granular fluorescence with 134 antibodies. An 
identical pattern of reactivity (Fig. 2 d) was found with an 

mAb reactive with ~ ;  codistribution of ,~6 and/~4 in basal 
patches was confirmed also in double-label immunofluores- 
cence (Fig. 3, a and b). Almost no o~s84 immunoreactivity 
was detected in the contour of  the cells, in the apical zones, 
or in association with talin at focal adhesions (Fig. 3, c and 
d).  Such pattern of  integrin distribution was virtually identi- 
cal in confluent keratinocyte colonies. 

A peculiar feature of o~d3, distribution was that it was vir- 
tually absent from areas containing submembranous bun- 
dies of  F-actin microfilaments suggesting a complementary 
distribution of the integrin complex and the submembran- 
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Figure 3. Double-label indirect immunofluorescence staining of human keratinocyte colonies grown for 3 d on glass coverslips in complete 
medium without feeder layer. Virtual codistribution of c~ (a) and/~4 (b) indicates that immunostaining with the corresponding antibodies 
(rabbit Igs to the cytoplasmic domain of c~6 and mAb $3-41 to/34) shows the basal location of the ~6/~4 heterodimer in rather typical 
patches. No obviously similar pattern was observed by coimmunostaining for talin (c, rabbit antiserum to human platelet talin; T) and 
mAb $3-41 to/34 (d): arrows indicate the position of. some peripheral talin-positive focal adhesions (c) located in 134-free areas (d) of the 
ventral attachment area. The exclusion of the c~d~4 complex from areas showing bundles of microfilaments (staining with F-PHD for 
F-actin; A is shown in e and f :  almost negative imaging appears from the comparison of the two frames (e.g., at arrowheads). Bar, 5 #m. 

otis microfilament meshwork (compare the paired pictures in 
Fig. 2a and b, c and d, and Fig. 3, e and f ) .  When observed 
in interference reflection microscopy fIRM), an optical sys- 
tem which shows the distance between the attachment sur- 
face and the ventral membrane of cultured ceils (for exam- 
ple, see Izzard and Lochner, 1976), ~x~fi4 patches never 
corresponded to focal adhesions but rather to areas slightly 
more removed from substrate than those corresponding to 
microfilamentous strands which, instead, were more closely 
apposed to the substrate (Fig. 4). Cell types other than ker- 
atinocytes, i.e., occasional human fibroblasts, dendritic cells 
(probably melanocytes), and the 3T3-J2 cells of the feeder 
layer, were consistently negative for ~6fi4. 

The anti-fit, as well as the anti-od2 and anti-or3 mAbs pre- 
dominantly stained those areas of plasmamembrane involved 
in cell-to-cell contact in growing colonies (Fig. 2, e-h) as 
well as in the reconstituted epidermis. Little u2afi~ staining 
was seen in the basal surface areas found reactive with fi4 
antibodies. Similarly, cell footprints that contained otd34 did 
not contain/31 (not shown). In our hands, no specific stain- 
ing was observed with a5 mAbs in keratinocytes but, in the 
same cultures, occasional human fibroblast-like ceils dis- 
played elongated streaks along stress fibers, indicating that 
the antibody could indeed recognize otsfi~ at focal contacts 
(not shown). 

Further evidence for the segregation of fit and/34 inte- 
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Figure 4. High power picture of the fluorescence staining for F-ac- 
tin (a), ctd34 (b), and the corresponding IRM pattern (c) of a large 
keratinocyte located at the periphery of a growing colony. Irregular 
patches of c~6/34 show a preferential location in F-actin poor areas 
and, conversely, o ~ ,  is excluded from areas where microfilaments 
are abundant (e.g., in the areas indicated by the asterisks and by 
the arrowhead). The F-actin-rich and c~d54-free areas of the ventral 
membrane are darker in IRM indicating a closer proximity with the 
substrate (see arrowhead) than those corresponding to ¢xd34 
patches. IRM black focal contact streaks are found only at the edges 
of the cells and never correspond to ,~6/3, patches (see also Fig. 3). 
In general, the IRM pattern of cultured keratinocytes is completely 
different from that of a fibroblast-like cell (for review see Burridge 
et al., 1988). Bar, 5/zm. 

grins in keratinocyte colonies was obtained by laser scanning 
confocal microscopy. Coverslips immunostained with either 
mAb A-1A5 for 131 or $3-41 for/3, were scanned on con- 
secutive planes along the vertical axis and digitally recon- 

Figure 5. Confocal sectioning images obtained with a Lasersharp 
MRC-500 fluorescence imaging system of human keratinocyte 
colonies grown for 6 d on feeder layer and stained for/55 (a and b) 
and /34 (C). Optical sectioning was adjusted 1.5 (b and c) and 
3 ~m (a) above the plane of adhesion. The upper two pictures, ob- 
tained from the same colony, show two digitally reconstructed opti- 
cal sections showing that/35 integrins are exposed on the lateral 
surface at two levels 1.5 apart while/34 is virtually absent 1.5 #m 
above the adhesion plane (c). The arrow in c indicates a cell at the 
periphery of the colony that shows positivity to c~d3, with a slab 
being somewhat raised from the substrate. Bar, l0 ~m. : 

structed. Anti-31 immunoreactivity could be followed a few 
micrometers upward from the plane of  attachment within 
colonies, indicating that/3~ integrins are enriched on lateral 
surfaces (Fig. 5, a and b). Anti-/34 reactivity, instead, was 
absent in equivalent planes of  focus removed from the attach- 
ment surface, i.e., starting from 1.5 ~m above the substra- 
tum (Fig. 5 c). 

The different topography of/31 and/34 integrins was con- 
sistently observed in growing and stationary keratinocytes 

The Journal of Cell Biology, Volume 112, 1991 766 



Figure 6. Distribution of C~v (b) and vinculin (d) in human keratinocyte colonies grown for 3 d on glass coverslips in complete medium 
without feeder layer. The corresponding staining for F-actin is shown in a and c (A). The localization of talin is not shown and is identical 
to that of vinculin (see also Fig. 3 c). The keratinocytes that had migrated outward (e-h) are devoid of integrins (e.g.,/50 associated to 
recognizable cellular structures (e) and show vinculin (f), cingulin (g), and desmoplakins in tiny dots (h) at cell-to-cell boundaries. No 
talin was found in cells of the upper layers. Bars, 5 #m. 

whether they were initially seeded on fibroblast feeder layers 
or on artificial substrates like laminin, fibronectin, or vitro- 
nectin, suggesting that the sorting of/3~ and/34 integrins to 
discrete domains of epidermal cells was an intrinsic property 
of adherent keratinocytes (see also below). 

The localization of the integrin chain av was then studied 
using the mAb LM142. We assumed that the localization of 
cry corresponded to that of the heterodimer tx435 in view of 
the reported absence of/33 or other/~ chains from epithelial 
cells (Cheresh et al., 1989; De Luca et al., 1990b). It was 
found that o~v was located to tiny IRM dark streaks mostly 
at the periphery of the basal aspect of expanding keratino- 
cytes and in association with the endings of short microfila- 
ment bundles (Fig. 6, a and b). A similar location was shown 
by the cytoskeletal proteins vinculin (Fig. 6, c and d) and ta- 
lin (see Fig. 3 c). On the basis of the similar location of cry, 
vinculln and talin as the endings of microfilament bundles, 
we suggest that cx~, most probably in association with/35, is 
the epithelial integrin chain that interacts with both vinculin 
and talin (and, hence, with the microfilamentous cytoskele- 
ton) and forms minute focal contacts in basal keratinocytes. 
Moreover, the discrete localization of vinculin and talin to 
the peripheral focal contacts, that are also o~v positive, high- 
lights the absence of such cytoskeletal molecules from areas 
containing oe~4 (see Fig. 3, c and d). Data awaits to be 
confirmed by the colocalization of otv and/~s when appro- 
priate immune reagents for ~s are available. 

We then looked at the cells that had migrated outward and 
formed the upper layers of the colonies. We found that no 
integrins were associated with obvious cellular structures 
(e.g., /~, Fig. 6 e) but gained evidence that junctions of 
different types had formed and that proteins like vinculin (a 
marker of adhesion junctions, Geiger et al., 1985), cingulin 

(a marker of tight junctions, Citi et al., 1988, 1989), and des- 
moplakins 1 and 2 (markers for desmosomes, Miiller and 
Franke, 1982) lined the boundaries among the tile-shaped 
cells of upper layers (Fig. 5, e-h). No talin immunoreactivity 
was observed in keratinocytes belonging to the upper epider- 
mal layers (not shown) in line with the reported absence of 
talin from adhesion junctions of epithelial cells (reviewed by 
Burridge et al., 1986, 1988). 

In summary, these data show that o~d34 and old35 integrins 
are located to different adhesion structures of the basal mem- 
brane and two/31 integrins are enriched in the lateral mem- 
brane of keratinocytes, in a rather mutually exclusive distri- 
bution and that the interaction of these different integrins 
with the keratinocyte cytoskeleton is different. 

Distribution of  Matrix Proteins 
in Cultured Keratinocytes 

Deposition and organization of fibronectin, collagen type IV, 
vitronectin, and laminin were studied with specific antibod- 
ies in human keratinocytes cultured with or without feeder 
layer of 3T3-J2 cells. It was found that fibronectin was orga- 
nized around the peripheral keratinocytes of exponentially 
growing colonies and by feeder cells (Fig. 7) and formed a 
circumferential meshwork around each colony. Fibronectin 
was missing from underneath both growing and confluent 
keratinocytes (Fig. 7). 

Laminin was deposited under both expanding and con- 
fluent keratinocytes and was also intensely secreted by 
feeder cells and by occasional dendritic cells that could 
represent melanocytes. Double-label immunofluorescence 
staining was performed on cells that had been lightly 
squirted by a stream of buffer before fixation to optimize an- 
tibody access. Under these conditions ~ 4  and laminin ap- 
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Figure 7. Distribution of fibroneetin (b) and F-actin (a) in keratino- 
cyte colonies cultured in the presence of fibroblast feeder layer. A 
fibronectin network (b, right) lines the border of a keratinocyte 
colony (a, left) costained for F-actin (,4) with F-PHD. No fibronec- 
tin immunoreactivity (determined by the cellular fibronectin-specific 
mAb IST-9) was found underneath keratinocytes. Bar, 5 #m. 

peared to codistribute with a similar leopard skin pattern 
(Fig. 8, a and b). The same pattern was found in cell foot- 
prints left by removed cells (Fig. 8, c and d). Absorption of 
the laminin antibodies with Engelbreth-Holm-Swarm tumor 
laminin abolished larninin stoning (not shown). Under the 
same experimental conditions (i.e., when cells had been 
squirted with a jet of buffer and presumably slightly dis- 
sociated to allow access to antibodies), laminin was occa- 
sionally enriched in thin discrete strips corresponding to 
cell-cell boundaries (Fig. 3, e and f ) .  The latter data awaits 
support by immunocytochemistry at the electron microscope 
level. 

Collagen type IV was distributed in a rather homogeneous 
meshwork (not shown) and vitronectin was negative except 
for a faint background signal presumably due to the presence 
of serum in the culture medium (not shown). 

In summary, a meshwork of fibrunectin was found in appo- 
sition with the peripheral row of keratinocytes in exponen- 
tially growing colonies but was missing from confluent colo- 
riles. Conversely, laminin and collagen type IV were found 
underneath keratinocytes that actively synthesized, secreted, 
and organized these basement membrane proteins. More- 
over, the laminin organized by cultured keratinocytes dis- 
played a deposition pattern similar to that of integrin o~d34 
on the basal membrane of cells and was also occasionally 
found between cells. 

Effects of Substrates, Ca ~÷ Deprivation and 
of Cytoskeleton-disrupting Drugs on Integrin 
Distribution in Cultured Keratinocytes 
We seeded keratinocytes on substrates composed of purified 
matrix proteins like laminin, fibronectin, or vitronectin 
(components either of the basement membrane or of the 
provisional matrix of regenerating epidermis) or on Matrigel 
which represents an artificial basement membrane and is 
composed of laminin, collagen type IV, nidogen, and hepa- 
ran sulfate proteoglyean (Kleinman et al., 1983). The aim 
was to detect possible fine differences in integrin distribution 
as a function of different substrates of attachment. No obvi- 
ous difference was shown in /~ ,  /34, and otd35 patterns at 
times ranging from 12 to 72 h, indicating that the typical 
distribution of these integrins did not depend on the initial 
recognition of a well-defined substrate but rather on the in- 
teraction with the matrix that keratinocytes themselves au- 
tonomously produced and organized. 

Keratinocyte stratification into epidermis is known to de- 
pend on the presence of Ca 2+ in the culture medium (Watt 
and Green, 1982; Watt, 1984; Magee et al., 1987). In the 
absence of added Ca 2+ or with low Ca 2+, keratinocytes 
failed to form colonies and to differentiate in cells that soon 
moved to outward layers. We found that the sorting out of 
/~ and ~4 integrins to lateral and basal domains, respec- 
tively, was impaired by Ca 2+ deficiency but rather integrins 
remained diffusely distributed on the cell surface (Fig. 9, b 
and d). A very similar pattern was shown by a secondary line 
of keratinocytes (Clonetics Co., San Diego, CA) that grow 
with low Ca 2+ and are often used as an in vitro model for 
keratinocyte differentiation (Fig. 9, e-h). It must be noted 
that, without Ca 2+, a fair amount of ~4, but not ~t, cross- 
reactive material is shed and found attached to the substra- 
turn (e.g., Fig. 9, b and f ) .  

We then tested the effects of the microfilament-disrupting 
drug cytochalasin D (CD; Carter, 1967) and of colcemid, a 
microtubule-depolymeriziag drug, on the integrin pattern of 
keratinocytes both during the spreading process and on es- 
tablished colonies. Attachment was fully inhibited by col- 
cemid (1 /~g/ml), supporting the concept that functional 
microtubules are required for cell adhesion (Osborn and We- 
ber, 1976) and epithelial polarization (Eilers et al., 1989). 

In contrast, CD treatment (2 ~tg/mi) allowed attachment 
and spreading of keratinocytes but prevented colony forma- 
tion in a way similar to that produced by exposure to ~t an- 
tibodies (see below). The pattern of ~4 distribution at the 
basal aspect of cells was not coarsely altered (Fig. 9 j )  but 
rather followed the typical rearrangement of microfilament 
organization induced by CD treatment (Weber et al., 1976). 
Instead, CD prevented the sorting of ~1 integrins to the 
lateral membrane. The ~1 integrins were in part diffuse on 
the whole membrane without being enriched at lateral 
aspects or retained within cells (Fig. 9 l). No major changes 
in ~1 and 84 distribution were produced by either drugs in 
established keratinocyte cultures. 

The above experiments suggest that the sorting of integrins 
to be appropriate membrane domains require the presence 
of Ca 2÷ and a functional cytoskeleton, conditions that are 
both prerequisites for epidermal maturation. 

of Antibodies to ~1 on Cohesion 
of Keratinocytes In Vitro 
The experiments were performed with human keratinocytes 
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Figure 8. Double-label immunofluorescence costaining of laminin (a and c) and/~4 (b and d) in keratinocyte colonies that had been lightly 
squirted by a jet of buffer from a Pasteur pipette before fixation. Laminin (LM, detected by rabbit Igs to Englebreth-Holm-Swarm mouse 
tumor laminin) and B4 (detected by mAb $3-41) are codistributed underneath keratinocyte colonies (a and b). Codistributed patches of 
/34 and laminin are also seen where ceils have been detached and have left their footprints (c and d). In a few residual cells that had been 
squirted, intercellular boundaries are intensely positive for laminin (e, arrowheads). The inset (f) shows a detail of the appearance of 
laminin at intercellular rims. Bars, 5 t~m. 

isolated and resuspended from cultures that had reached 
confluency for at least 24 h. We reported that the anti-/~, se- 
rum had negligible effect on adhesion of cells while the 
anti-/34 serum inhibited adhesion by >90% (De Luca et al., 
1990). By observing the morphology of keratinocytes 
seeded in the presence of anti-/~l serum, we found that 
colony organization was severely impaired and individual 
cells were less spread and almost devoid of cell-to-ceU con- 
tacts (Fig. 10 a) while they formed regular colonies with goat 
preimmune serum (Fig. 10 b). This experiment suggests that 
#1 integrins are required for keratinocyte aggregation, a 
condition required for in vitro epidermal maturation. 

Discussion 
The maturation of epidermis is a complex process which has 
been reproduced in vitro to obtain epidermal sheets that are 
used for repair of skin defects including severe burns (Green. 
et al., 1979; Gallico et al., 1984; De Luca et al., 1989). Nor- 
mal epidermal differentiation and the healing of skin wounds 
require cell proliferation and lateral migration (Barrandon 
and Green, 1987b) followed by outward positioning of 
differentiated keratinocytes that end up with the formation of 
a multilayered squamous epithelium. In this paper we pre- 
sent evidence that this complex phenomenon requires the 
polarized distribution of at least two integrin subfamilies that 
are respectively involved in the formation of bonds between 

cells of the basal layer with the basement membrane and in 
stabilizing cell-to-cell lateral recognition. To our knowledge 
this represents evidence for a topographically defined posi- 
tioning of integrin adhesion receptors in a single cell type. 

The newly described integrin a~4 plays a leading role in 
this process because (a) specific antibodies prevent the adhe- 
sion of keratinocytes (De Luca et al., 1990b) and (b) because 
o~84 is specifically restricted to the basal domain of ker- 
atinocytes both in vivo and in vitro and thus comes in tight 
contact with the basement membrane. The integrin c~4 is 
an integrin molecule that is amazingly abundant in the basal 
domain of most epithelial cells such as it may be considered 
as the natural candidate receptor for the epithelial basement 
membrane. Although the actual ligand of the extracellular 
domain of ~x~4 has not yet been biochemically identified 
(Sonnenberg et al., 1990), it is likely that it may be laminin 
itself or an association of laminin with another matrix com- 
ponent and, even if coherent distribution may not be consid- 
ered as direct evidence, our data support this possibility. 
However, there is no codistribution of -6~4 with focal con- 
tacts. Focal contacts, indeed, are hardly noted in confluent 
keratinocytes and mostly restricted to the peripheral cells of 
growing colonies. By using the IRM technique we found that 
the basal membrane of keratinocytes adhered via scattered 
spots of"close contacts" (Izzard and Lochner, 1976) alternat- 
ing with spots slightly more removed from the adhesion sub- 
strate on the basis of their lighter IRM signal. The latter 
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Figure 9. Distribution of ~34 (b and f )  and 13t integrins (d and h) in human keratinocytes in primary culture (a-d) or in secondary culture 
(human keratinocytes from Clonetics, e-h) grown for 3 d in complete medium without feeder layer and in the absence of Ca 2÷. The corre- 
sponding staining for F-actin (A) is shown in a, c, e, and g. In both cell types, grown in the absence of Ca 2÷, integrins are distributed 
all over the surface; in particular,/L (b and f )  seems to be enriched at lateral borders simply because it is found also laterally, b was 
photographed slightly out oflfocus to maximize such information. The rounded cells (i-l) are primary keratinocytes exposed to cytochalasin 
D and immunostained for #4 (j) or/3~ (l) and costained for F-actin (i and k). The distribution of ~34 at the attachment surface is in tiny 
dots and streaks that follow the rearrangement of F-actin induced by CD (i) while/3t is not organized and mostly retained within cells 
(1). Bar, 10 #m. 

correspond to areas where c~d34 and laminin are facing 
each other, while closer spots correspond to ,d34-free and 
F-actin-rich areas. A very similar pattern of adhesion where 
laminin is not coherent with focal adhesions has been de- 
scribed in transforming growth factor-B-treated thyroid cells 
in vitro (Garbi et al., 1990). Moreover, oLzS~, a basal lami- 
nin receptor of endothelial cells (Languino et al., 1989) has 
never been found in association with focal contacts (Lam- 
pugnani et al., 1990). Therefore, adhesion to laminin does 
not occur via supramolecular structures of the focal adhesion 
type but rather via integrin receptors that entertain a looser 
relationship with the substrate and never correspond directly 
to the microfilamentous meshwork of the cell. 

Even more elusive is the potential cytoplasmic ligand of 
the B~ chain which, unlike other integrin B chains, has a 
very large cytoplasmic domain '~1,000 amino acid residues 
long (Hogervorst et al., 1990; Suzuki and Naitoh, 1990; 
Tamura et ai., 1990). For the reasons detailed above we feel 

confident in suggesting that the ligand of such long polypep- 
tide strand exposed to the cytoplasmic environment is not 
any microfilarnent-associated molecule since /34 is almost 
excluded from F-actin-rich domains of the ventral mem- 
brane. The identification of the cytoplasmic interaction of 
B4 is a very challenging task. 

Interesting and new is also the assigned role of Bt inte- 
grins in the mechanics of epidermal assembly that has been 
previously reported by ours and other research groups 
(Carter et al., 1990; De Luea et al., 1990b; Larjava et ai., 
1990). These integrins are members of the largest subfamily 
and wide is the spectrum of ligand specificities displayed by 
B~ integrins. In human keratinocytes we do not have any 
evidence that B1 integrins, including the major fibronectin 
receptor ct4BI, are involved in basal matrix recognition but 
rather they are involved in cell-to'cell recognition. This goes 
along with recent findings that (a) a4Bt is involved in inter- 
cellular recognition (Takada et al., 1989; Campanero et al., 
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Figure 10. Inhibition of keratinocyte cohesion by goat antibodies 
to 131 keratinocytes obtained from subcordluent primary cultures 
were passaged in secondary cultures and grown as described in 
Materials and Methods. They were trypsinized and immediately 
plated on 24-well plates in the presence of fl~ antibodies. The co- 
hesion assay was carried for 12 h. The cells that have attached 
in the presence of/31 antibodies that do not inhibit adhesion (De 
Luca et ai., 1990b) are not completely spread (i.e., they have not 
fully organized their cytoskeleton) and are not aggregated in colo- 
nies as the cells (b) that had been incubated in the presence of goat 
preimmune serum. Ceils were fixed, permeabilized, and stained 
with R-PHD for F-actin. Bar, 15 #m. 

1990), (b) Ot~l and ors/31 are located to intracellular spaces 
in different cell types (Kaufmann et al., 1989; Zutter, M. M., 
and S. A. Santoro, 1989; J. Cell Biol. 109:106a [Abstr.]), 
and that (c) ~,151 and ot~l are located to cell-ceU contacts 
in human endothelial cells (Larnpugnani et al., 1990). The 
integrins o~151 and ors/3, may play roles in keeping cells of 
the basal layers together. Both are laminin receptors, al- 
though they bind laminin with different affinities (Gehlsen et 
al., 1988; Languino et al., 1989; Wayner et al., 1989; Kirch- 
hofer et al., 1990), and some laminin is indeed found in be- 
tween the lateral domains of cultured keratinocytes such as 
we propose that an interaction with laminin may also be in- 
volved in ot~, and ocs~t integrin-mediated lateral adhesion. 
However, we cannot rule out the possibility that they may in- 
teract with each other by hitherto undeseribed homophylic 
bonds or with other cell adhesion molecules such as A-CAM 
(Geiger et al., 1985) and uvomorulin (Ekblom et al., 1986) 
or, finally, recognize unknown ligands. 

A major point is whether integrins correspond to specific 
intercellular junctions in cultured keratinoeytes. At the level 
of resolution of light microscope immunocytochemistry we 
cannot obtain any more detailed information but, in view of 
the punctate versus continuous pattern of desmoplakins and 

/3, integrins we can rule out a discrete integrin location to 
intercellular desmosomes. Even more difficult is to assign 
t~d~4 to a specific junction. The only junctions that are 
found between the basement membrane and the ventral plas- 
mamembrane of basal epidermal cells are hemidesmosomes 
(Farquhar and Palade, 1963). Indeed, at hemidesmosomes, 
the plasma membrane is somewhat removed from the attach- 
ment surface, a feature shared with otd34 spots. It is then 
tantalizing to speculate that otd34 is involved in hemidesmo- 
some formation also in view of the fact that keratin filaments 
and not microfilaments converge on hemidesmosomes. 

These and previous data also suggest that, while/31 inte- 
grins do not have any detectable role in cell-to-substratum 
adhesion in this particular cell system, ad34 plays a major 
role in supporting the adhesion of keratinocytes firmly at- 
tached to their basement membrane and part of a highly 
differentiated cultured epidermis (De Luca et al., 1990b). As 
suggested by their peculiar location, 131 integrins may play 
an important role during histogenesis by allowing lateral rec- 
ognition of keratinocytes and in building up epidermal 
sheets. 

A further epithelial-specific integrin, otvl35, has been re- 
cently described in human carcinoma cells (Cheresh et al., 
1989). We have indirectly located ot435 using an mAb to eCv 
since no immune reagent was available to/35 and/33 is ab- 
sent in normal human keratinocytes. The location of av/35 is 
restricted to peripheral cells in exponentially growing colo- 
nies in coincidence with a fibrillar network of fibronectin. 
Since no vitronectin is apparently produced by keratino- 
cytes, it is likely that ~v/35 binds to fibronectin at small 
adhesion plaques that are located at the endings of short 
stress fibers and contain vinculin and talin. The role of 
ot~/35 would then be related to colony expansion and ker- 
atinocyte locomotion that have previously been ascribed to 
fibronectin recognition and/or deposition during epidermal 
growth and regeneration processes (Takashima and Grinnell, 
1985; Adams and Watt, 1989). Antibodies inhibiting av/3s 
function, when available, will clarify this point. 

The keratinocyte integrin phenotype coincides with that of 
some malignantly transformed epithelial cell lines (Kajiji et 
al., 1989; Cheresh et al., 1989), suggesting that keratino- 
cytes may also be representative of cells from other epithelial 
sources, e.g., from nonstratified or secretory epithelia. A 
distinguishing feature of this phenotype (De Luca et al., 
1990) is the apparent absence from recognizable cell struc- 
tures of the ols~, fibronectin receptor and the Otv/33 vitronec- 
tin receptor well characterized also for its multiple bind- 
ing properties in many other adherent cell types such as 
fibroblasts, endothelial cells, osteoclasts, and tumor cells 
(Cheresh, 1987; Cheresh and Spiro, 1987; Dejana et al., 
1988a, b, 1989, 1990; Fath et al., 1989; Pytela et al., 1985; 
Singer et al., 1988; Zambonin-ZaUone et al., 1989). It will 
be interesting to see how widespread among epithelial cells 
the keratinocyte phenotype is. 
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