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Abstract: The present work shows a procedure to valorize non-commercial boiled shrimp to produce
functional ingredients, using a combined treatment based on enzymatic hydrolysis and subse-
quent glycation under mild conditions. Antioxidant and prolyl endopeptidase-inhibiting activities
were determined as a function of hydrolysis and glycation times (0–120 min and 0–180 min, re-
spectively). The reaction products were characterized by determining the degree of hydrolysis,
browning, fluorescent compounds, free amino acids, phenol content, Fourier transform infrared
spectroscopy (FTIR), and molecular weight of the different fractions obtained. Enzymatic hydrolysis
generated hydrolysates with significant antioxidant and prolyl endopeptidase-inhibiting activities.
Glycation under mild conditions was used as a strategy to improve the antioxidant and poten-
tial nootropic properties of the hydrolysates. During glycation, the free amino acid content de-
creased, total phenols and fluorescent compounds increased significantly, and low molecular weight
melanoidins were formed. The presence of peptide-glucose conjugates was also confirmed by
FTIR. Glycation increased the antioxidant activities of the hydrolysates; however, their prolyl-
endopeptidase-inhibiting activity was lost. Results showed that compounds with promising antioxi-
dant (hydrolysis and glycation) and potential nootropic (hydrolysis) activities and applications in
food systems were obtained from the biotechnological strategy used.

Keywords: protein hydrolysates; Maillard reaction; shrimp by-products; antioxidant; prolyl
endopeptidase

1. Introduction

The shrimp market has grown over the last few years as a result of the increasing global
demand for crustaceans, leading as well to an increase in industrial shrimp processing and,
therefore, in by-products such as heads and shells. Indeed, the global shrimp production
reach to 5.03 million tons in 2020 and is expected to grow up to 7.28 million tons by 2025 [1].
These by-products represent approximately 35–45% of the whole shrimp weight [2] and are
usually discarded without any attempt of valorization. In addition, no recovery processes
have been developed for shrimp that do not meet quality control standards or that expire
before sale after long freezing periods [3]. Furthermore, these by-products represent
an environmental hazard, and their management constitutes a considerable cost for the
industry. Therefore, it is necessary to investigate viable processes to valorize this large
amount of shrimp by-products, which, in turn, are highly rich in protein [4]. The use
of proteases has been reported as an efficient biotechnological strategy to obtain protein
hydrolysates with technological and nutraceutical applications [4–6]. However, it should
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be noted that the properties of the hydrolysates obtained depend largely on the proteases
and raw materials used as well as on the hydrolysis conditions.

Peptides resulting from protein hydrolysis can exhibit interesting antioxidant prop-
erties [7] (Li-Chan 2015). Guerard et al. [6] highlighted the important influence of pH
and temperature in the production of antioxidant peptides from the hydrolysis of shrimp
processing discards. Ketnawa et al. [3] obtained an antioxidant protein hydrolysate from
cooked shrimp that was incorporated into fish tofu and thus delayed lipid oxidation and
microbial spoilage. In addition, peptides with an inhibitory effect against prolyl endopep-
tidase (also known as prolyl oligopeptidase, PEP) and dipeptidyl peptidase-IV (DPP-IV)
have been obtained by the hydrolysis of shrimp protein residues [5]. Peptides showing
prolyl endopeptidase (PEP) inhibitory activity could be of interest as nootropic ingredients
in functional foods, as altered PEP levels are associated with neuropathological disorders
and different types of dementia such as Alzheimer’s disease [8].

The Maillard reaction (or Maillard glycation) proceeds in three different steps (early,
intermediate, and advanced). The first step involves a non-enzymatic reaction between the
nucleophilic amino groups of amino acids, peptides, or proteins, and the carbonyl groups
of reducing sugars, to produce a glucosylamine that spontaneously undergoes the Amadori
rearrangement, eventually forming derivatives called Amadori products [9,10]. Many Mail-
lard reaction products (MRPs) such as ketones, dicarbonyls, furans, aldehydes, and others
are formed in the intermediate step, while brown molecules, fluorescent compounds, and
cross-linked polymers are generated in the advanced step [10,11]. The complex variety of
MRPs formed depends on the source of reactive amino groups, the type of reducing sugar,
and the technological conditions used. Some of these MRPs may have detrimental health
effects, while others may exert beneficial antimicrobial and antioxidant effects [11–16].
The development of the Maillard reaction under controlled conditions can prevent the
generation of advanced glycation products (AGEs), which are implicated in different
pathologies such as diabetes mellitus, atherosclerosis, Alzheimer’s disease, dialysis-related
amyloidosis, and the aging process [17].

The controlled Maillard reaction has been successfully used to improve the antioxidant
activity of fish waste hydrolysates [14,18]. However, little is known about the effect of the
Maillard reaction on other functional or bioactive properties. According to Horvat and
Jakas [13], the nature of the products formed in the early stages of the Maillard reaction will
depend on the structure of peptide moieties and the length of peptide chains in the system,
considering that the reactivity of the sugar is also important [19]. Protein hydrolysates
contain a wide variety of peptides with amino groups capable of reacting with carbonyl
groups; thus, the Maillard reaction will form a very heterogeneous group of MRPs with
technological and/or biological properties that can be improved from those of the original
hydrolysate. Recently, Djellouli et al. [20] obtained antioxidant MRPs from the controlled
reaction of a shrimp protein hydrolysate with glucosamine. Cai et al. [21] explored the
production of flavoring agents by reacting shrimp waste hydrolysates with xylose at 115 ◦C
and observed differences in flavor as a function of heating time. They suggested that these
products could have interesting applications in food. Despite these promising results,
the reality is that the number of studies that have addressed this combined process of
hydrolysis (especially of seafood protein) followed by mild glycation to obtain ingredients
of technological and/or functional interest is very limited.

The main objective of this work was to explore new strategies to valorize shrimp
processing by-products by obtaining compounds with antioxidant and/or PEP-inhibiting
activities from the reaction of shrimp by-product hydrolysates with glucose under mild
conditions. While enzymatic hydrolysis can yield molecules of antioxidant or nootropic
interest, the aim of the Maillard reaction was to enhance these activities and thereby obtain
molecules with greater potential as bioactive and/or technological ingredients for the
food industry.
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2. Materials and Methods
2.1. Chemicals

2,2′-Azinobis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+), 2,2′-diazobis-(2-
aminodinopropane)-dihydrochloride (AAPH), fluorescein, 2,2-diphenyl-1-picrylhydrazyl
(DPPH), Folin–Ciocalteu (FC) reagent, gallic acid (GA), o-phthaldialdehyde reagent (OPA
reagent), 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox), and glucose were from
Sigma-Aldrich, Co. (St. Louis, MO, USA). Prolyl endopeptidase (PEP) from Flavobacterium
was from Seikagaku Corp. (Tokyo, Japan). Z-Gly-Pro-7-amido-4-methylcoumarin was
from Bachem. The commercial enzyme preparation Alkaline protease from Bacillus licheni-
formis (activity of 2,000,000 DAPU/g, optimum pH 7–10, optimum temperature 50–60 ◦C)
was kindly provided by Bio-Cat Inc. (Troy, VA, USA). Other chemicals were of analytical
reagent grade.

2.2. Preparation of Shrimp Hydrolysate and Maillard Glycation

Cooked shrimp (Penaeus vannamei) were stored at −20◦C for 24 months and thawed
overnight before testing. The protein hydrolysate was obtained according to the protocol
described by Ketnawa et al. [5] with slight modifications. Five hundred grams of peeled
shrimp were minced in a blender for 20 s. Then, the minced samples were mixed with
700 mL of 0.1 M phosphate buffer, pH 8. Before hydrolysis, the pH was adjusted to 8 with
1 M NaOH. Proteins were digested using 3 g (460 units) of alkaline protease, considering
1 unit as the amount of enzyme required to release 1 µmol Tyr/min under the experimental
conditions used [22]. The hydrolysis was carried out in a batch reactor of 2 L at 50 ◦C.
The pH was maintained at the desired value (8) using a pH-stat TIM 856 (Radiometer
Analytical, Villeurbanne, France). Different aliquots were collected at minutes 10 (H10),
30 (H30), 60 (H60), and 120 (H120) of the reaction. A control sample without alkaline
protease was heated at 50 ◦C for 120 min. The reaction was stopped by heating the
solutions at 90 ◦C for 20 min in a thermostatic bath (Selecta Unitronic OR, Barcelona, Spain).
The samples were filtered through two layers of cheesecloth to separate large particles and
further centrifuged at 14,000× g at 5 ◦C for 30 min (Beckman Coulter J2-mc, Indianapolis,
IN, USA). The supernatants were collected and stored at 4 ◦C until use.

The Maillard glycation was carried out according to Djellouli et al. [20]. Both the
control and shrimp hydrolysates were first mixed with glucose (2:1, v:w) in screw-capped
glass tubes. Then, the pH was adjusted to 8.4. The samples were heated to 100 ◦C in a
temperature-controlled water bath with stirring (120 rpm). Different aliquots were collected
at minutes 0, 40, 60, 120, and 180, immediately cooled on crushed ice, and freeze-dried for
72 h in a lyophilizer (VirTis model Benchtop-6KB, Zaragoza, Spain).

2.3. Molecular Weight Distribution

The molecular weight (Mw) profile of each hydrolysate before and after glycation
was measured by size exclusion chromatography, as described by Lajmi et al. [22], with
modifications. A Superdex 30 Increase 3.2/200 column from GE Health-care Bio-Sciences
(Barcelona, Spain), with bed dimensions of 3.2 × 300 mm, was connected to an HPLC
consisting in an injector (model SIL-10AD vp), a pump (model LC-10AD vp), an UV-Vis de-
tector (model SPD-10A vp), a column oven (model CTO-10AC vp), and a system controller
(model SCL-10A vp), all from Shimadzu (Tokyo, Japan). The mobile phase consisted of 30%
(v/v) acetonitrile with 0.01% (v/v) TFA. The flow rate was 750 µL/min and the injection
volume was 5 µL. The absorbance of the hydrolysates was read at 214 nm, while that of the
glycated samples was read at 280 and 420 nm. The Mw of the most abundant populations
was calculated based on the elution time of the following standards: bovine serum albumin
(BSA, 6700 Da), polylysine (4700 Da), vitamin B12 (1340 Da), hippuryl-L-histidyl-L-leucine
(429 Da), and glycine (75 Da). The relative amount of the most abundant molecules was
calculated by measuring the height of the corresponding peaks and was expressed as a
percentage of the total. The Mw distribution in the ranges 10–1 kDa, 1–0.5 kDa, and below



Foods 2021, 10, 2844 4 of 17

0.5 kDa was calculated by measuring the areas in the chromatogram and was expressed as
a percentage of the total.

2.4. Determination of Protein Content

The nitrogen content in the solid shrimp waste was determined with a LECO FP-2000
nitrogen analyzer (LECO Corp., St. Joseph, MI, USA), previously calibrated with EDTA,
according to Lajmi et al. [22]. The total protein content was calculated using a nitrogen-to-
protein conversion factor of 6.25. The protein content in the solid waste was expressed as
percentage (g/100 g).

The protein content of the liquid samples resulting from the heating reaction of the
protein hydrolysates with glucose was quantified using the Bradford assay and expressed
as g/100 mL. Bovine serum albumin (BSA) at concentrations of 0.1–0.6 mg/mL was used
as a standard. The correlation coefficient for the standard calibration curve was 0.99.

2.5. Degree of Hydrolysis (DH), Free Amino Acids, and Browning

The degree of hydrolysis (DH) was defined as the percentage of cleavage peptide
bonds relative to the total number of peptide bonds, and it was quantified according to
Ketnawa et al. [5], using the next formula:

DH =

(
B× Nb

Mp× α× htot

)
× 100

B was the amount of NaOH used to keep the pH constant during the protein hydrol-
ysis; Nb was the normality of the NaOH used; Mp was the protein content in the shrimp
waste (defined as N × 6.25), α was the average degree of dissociation of the α-NH2 groups
released during the hydrolysis, and htot was the total number of peptides bonds/protein
equivalent. The results were expressed as percentage of peptide bonds released.

The amount of total free amino acids before and after the reaction with glucose was
calculated and measured using OPA (O-phthalaldehyde) according to Nielsen et al. [23].
An aliquot of 10 µL of each sample and standard (Serine) was mixed with 100 µL of freshly
prepared OPA reagent in a 96-well microplate. It was incubated at room temperature for
5 min, and absorbance readings were taken at 340 nm using a microplate reader Fluostar
Omega (BMG, Ortenberg, Germany). Milli-Q water was used as the blank. The mean
value of the absorbance readings obtained from three assays was used for the calculations.
The DH was calculated using the equation described by Nielsen et al. [23]. The results were
expressed as mEq Ser NH2/g of protein.

The browning intensity of the samples at different glycation times was quantified by
reading the absorbance at 420 nm on an Appliskan Multimode microplate reader (Thermo
Fisher Scientific, Waltham, MA, USA), according to Djellouli et al. [20]. The fractions
were pre-diluted with distilled water according to the initial color intensity. The degree
of dilution was taken into account to calculate the final browning value of each sample.
The results were expressed as the increase (%) relative to browning at time 0.

2.6. Measurement of Fluorescence

The increase in fluorescence throughout the Maillard reaction was determined as a
measure of the formation of intermediate molecules, such as Amadori compounds, ac-
cording to Djellouli et al. [20]. The samples collected at different glycation times were
firstly diluted in 20 mM phosphate-buffered saline (pH 7, 15 mM NaCl), and then, flu-
orescence was measured at λexc 340 nm and λem 410 nm in an Appliskan Multimode
microplate reader. The excitation wavelength for maximum emission was determined in a
previous experiment.

2.7. Total Phenols (TPs)

TPs were quantified in all the samples, included the controls, using the Folin-Ciocalteu
method as described by Slinkard and Singleton [24], with modifications. A volume of
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140 µL of the sample extract was mixed with 280 µL of Folin–Ciocalteu reagent previously
diluted (1:10, v/v) and 980 µL of 42.86 mM sodium carbonate. The mixture was shaken
and allowed to stand for 100 min in darkness, following centrifugation at 15,000× g for
3 min. The absorbance was measured at 765 nm with a microplate reader Fluostar Omega.
The results were expressed as mEq gallic acid (GAE)/100 g of sample (dry basis) using a
calibration curve with gallic acid as a standard (9.8–700 µM). The correlation coefficient for
the standard calibration curve was 0.99. The samples were evaluated in duplicate.

2.8. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of the samples before and after the reaction with glucose were ob-
tained in a Perkin-Elmer Spectrum 400 Infrared Spectrometer (Perkin-Elmer Inc., Waltham,
MA, USA) equipped with an ATR prism crystal accessory. The spectral resolution was
4 cm−1. Measurements were performed at room temperature using approximately 1 mg
of dried sample, which was placed on the surface of the ATR crystal and pressed with a
flat-tip plunger until spectra with suitable peaks were obtained. Background interference
was eliminated using the Spectrum software version 6.3.2 (Perkin-Elmer Inc., Waltham,
MA, USA).

2.9. Antioxidant Activity
2.9.1. ABTS•+ Radical Cation Scavenging Activity (ABTS•+)

The classical version of this method was adapted from the assay developed by Martin-
Diana et al. [25]. A stock ABTS·+ solution was prepared by mixing a 7 mM aqueous
ABTS solution with 2.45 mM K2O8S2 in a 1:1 (v/v) ratio. Before the assay, the stock
ABTS·+ solution was diluted with phosphate buffer (75 mM, pH = 7.4) to obtain a working
solution with an absorbance value of 0.70 ± 0.02 at 734 nm. Then, a volume of 20 µL of
diluted samples was mixed with 200 µL ABTS•+ working solution in a 96-well microplate.
The decay in absorbance at 730 nm was monitored over 30 min with a microplate reader.
A calibration curve with Trolox (7.5–240 µM) diluted in the extracting solvent was used as
standard (correlation coefficient of 0.99). The results were expressed as µEq Trolox/100 g
sample (dry basis).

2.9.2. Oxygen Radical Absorbance Capacity (ORAC)

The procedure was based on the method previously described by Ou et al. [26],
with modifications. The samples were diluted in phosphate buffer (10 mM, pH 7.4).
Fluorescence was monitored over 150 min with a microplate reader Fluostar Omega at
λexc 485 nm and λem 520 nm. Trolox (7.5–240 mM) was used as a standard. The results
were calculated using the areas under the fluorescence decay curves, which were blank
corrected (run without antioxidants) and compared to those areas obtained using Trolox
standard concentrations (7.5–180 µM). The correlation coefficient for standard calibration
curve was 0.99. The results were expressed as µEq Trolox/100 g sample (dry basis).

2.9.3. DPPH· Radical Scavenging Activity

The extract-based DPPH· assay was performed as described by Brand-Williams et al. [27]
with modifications. A 120 µM DPPH·working solution in pure methanol was prepared.
In a 96-well microplate, 25 µL of the extracts were mixed with 100 µL of Milli-Q water and
125 µL of DPPH working solution. The decay in absorbance at 525 nm was recorded over
30 min with a microplate reader Fluostar Omega. Different solutions of Trolox (7.5–240 µM)
were evaluated to perform a calibration curve. The correlation coefficient for the stan-
dard calibration curve was 0.99. The results were expressed as µEq Trolox/100 g sample
(dry basis).

2.9.4. Ferric-Reducing Antioxidant Power (FRAP)

A FRAP assay was performed following the protocol reported by Benzie and Strain [28].
The FRAP reactive was composed of acetate buffer (300 mM, pH 3.6), TPTZ (10 mM), and
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FeCl3 (20 mM) as a ratio of 10:1:1, respectively and kept at 37 ◦C. One hundred µL of the
extracts, 1.8 mL of FRAP reactive, and 1.2 mL of distilled water were mixed and incubated
at 37 ◦C for 15 min. Then, the absorbance was measured with a microplate reader at
593 nm. FeSO4·7H2O was used as the standard (2–4 mM). The correlation coefficient for the
standard calibration curve was 0.99. The results were expressed as mEq Fe/100 g sample
(dry basis).

2.10. Prolyl Endopeptidase (PEP)-Inhibiting Activity

The PEP inhibitory activity of each hydrolysate before and after the reaction with
glucose was measured according to Sila et al. [29]. The samples were diluted in 0.1 M
sodium phosphate buffer and tested for the PEP-inhibiting ability in 96-well microplates.
In brief, 20 µL of enzyme (1 mU) was mixed with 30 µL of sample and 150 µL of assay
buffer and incubated for 15 min at 30 ◦C. Then, 100 µL of substrate (0.01 mM Z-Gly-Pro-
AMC) were added, and the increment in fluorescence (λexc 340 nm and λem 450 nm) was
measured at 1 min intervals for 20 min using the microplate reader. Six controls were
used, using the assay buffer instead of sample. The inhibitory activity of the samples
(final concentration in the 1 mg/mL system) was calculated from the maximal increment
in fluorescence in the presence or absence of sample and was shown as a percentage
of inhibition.

2.11. Statistical Analysis

The statistical analyses were performed using Statgraphics Centurion XVI. All analyses
were carried out in triplicate. The experimental data were subjected to analysis of variance
(one-way ANOVA). A MANOVA (multivariate analysis of variance) test was also used
to find any inter-relationships between hydrolysis and glycolysis time. The differences
between pairs of means were assessed based on confidence intervals using Fisher’s LSD
(Least Significant Difference) with a level of significance of p < 0.05.

3. Results and Discussion
3.1. Effect of Reaction Time on DH and Free Amino Acid Content of Shrimp

The DH increased rapidly in the first ten minutes up to 6.07% due to the large number
of peptide bonds available. After 60 min, a significant reduction in the reaction rate was
observed (DH = 12.07%), which finally remained constant until the end of the process
(Table 1), which was probably due to the lower amount of substrate available, enzyme
self-digestion, and product inhibition [30]. After 2 h of hydrolysis, the DH was 12.08%, this
value being higher than that obtained by Ketnawa et al. [5] after the hydrolysis of cooked
shrimp, using different proteases. These variations could be attributed to the different
proteases used as well as to the heat-induced protein denaturation, which could affect the
accessibility of proteases to peptide bonds.

Table 1. Evolution of the degree of hydrolysis along time and content of free amino acids in the
hydrolysates before and after 180 min of Maillard glycation. * Indicates significant differences
between hydrolysates before and after glycation. The difference in the content of free amino acids
before and after glycation is expressed as percentage in parentheses.

Sample Time of Hydrolysis
(min)

DH
(%)

Free Amino Acids Content
(mEq Ser NH2/g Protein)

Before Glycation After Glycation

Control 0 0 1.52 ± 0.07 0.97 ± 0.05 * (−36%)
H10 10 6.09 2.56 ± 0.05 1.33 ± 0.06 * (−48%)
H30 30 10.47 2.43 ± 0.30 3.11 ± 0.09 * (+27%)
H60 60 12.07 3.42 ± 0.05 2.87 ± 0.38 * (−16%)
H120 120 12.08 4.39 ± 0.18 2.71 ± 0.37 * (−38%)
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The free amino acid content increased during the hydrolysis time, reflecting the activity
of alkaline protease (Table 1). After glycation, a general decrease in the free amino acid
content of the samples was observed. Although the amino acid profile of the glycated and
non-glycated samples was not determined, it may be assumed that the significant decrease
in free amino acid content (16–48%) is the result of the reduction of available primary
amino groups caused by the reaction with the reducing carbonyl groups of glucose [19].
In previous work, Djellouli et al. [20] observed a significant decrease in lysine and arginine
contents after the reaction of Pacific white shrimp protein hydrolysates with glucosamine.
These authors also observed a decrease in the amount of glutamic acid and glutamine,
glycine, valine, and isoleucine, among other amino acids, which could have reacted with
glucose if located at the N-terminal position of some peptides. Nonetheless, it cannot
be ruled out that prolonged heating in the presence of glucose may have induced some
thermal degradation of specific amino acids in the glycated samples [31]. An unexpected
increase in the total amount of free amino acids was observed after the glycation of H30.
Similar increases were observed by Djellouli et al. [20] but in the absence of reducing sugars,
and these could be attributed to peptide hydrolysis caused by prolonged heating [32].
The degradation of peptides in this sample may occur at the same time as the reaction with
glucose, which should result in different MRPs than would be expected.

3.2. Evolution of the Average Molecular Weight (Mw) during Protein Hydrolysis

The average Mw decreased over the hydrolysis time mainly due to the release of
peptides (Table 2). This was reflected in the relative amount of peptides found with a Mw
below 500 Da, which increased over time, and also of those in the 500–1000 Da range, which
highly augmented during the first 10 min. Peptides with Mws around 574 Da, followed by
others around 279 and 949 Da, were predominant in the sample that was hydrolyzed for
10 min. From then on, the protein was scarcely hydrolyzed, reaching a predominant Mw of
857 Da. The average Mw of other predominant peptides (around 570–580 and 270–280 Da)
remained relatively constant until the end of the hydrolysis.

Table 2. Molecular weight profile of the protein hydrolysates at different glycation times, measured at different wavelengths
(214 nm, 280 nm, 420 nm). The results are expressed in Dalton and correspond to the Mw of the most abundant molecules
found in the samples. The relative abundance of each peptide population is indicated in parentheses.

Glycation Time

214 nm 0 min 40 min 90 min 150 min 180 min

Control

2836 6455 (8%) 7146 (8%) 6749 (7%) 7065 (7%)
585 (9%) 656 (8%) 585 (10%) 585 (11%)

337 (36%) 335 (37%) 335 (40%) 332 (33%)
194 (47%) 211 (47%) 213 (43%) 222 (50%)

(>1, 1–0.5, <0.5 kDa) (75, 14, 11%) (23, 8, 69%) (26, 8, 67%) (23, 10, 67%) (22, 10, 67%)

10 min

949 (24%) 767 (12%) 769 (26%) 772 (13%) 769 (14%)
574 (29%) 344 (59%) 432 (42%) 343 (59%) 343 (58%)
279 (28%) 255 (29%) 262 (32%) 254 (29%) 253 (28%)

<110 (20%)
(>1, 1–0.5, <0.5 kDa) (32, 25, 43%) (23, 15, 62%) (29, 23, 48%) (21, 16, 63%) (22, 16, 61%)

30 min

902 (23%) 748 (12%) 722 (10%) 836 (14%) 713 (12%)
582 (28%) 342 (57%) 343 (59%) 343 (51%) 332 (58%)
263 (34%) 239 (33%) 256 (31%) 230 (35%) 250 (30%)

<110 (15%)
(>1, 1–0.5, <0.5 kDa) (25, 28, 46%) (17, 14, 70%) (29, 36, 35%) (33, 34, 33%) (18, 16, 66%)

60 min

876 (21%) 714 (9%) 693 (10%) 715 (12%) 699 (12%)
570 (29%) 343 (57%) 343 (56%) 343 (56%) 341 (56%)
282 (29%) 245 (33%) 246 (34%) 240 (32%) 251 (32%)

<110 (21%)
(>1, 1–0.5, <0.5 kDa) (23, 26, 52%) (13, 12, 75%) (14, 13, 73%) (15, 15, 70%) (15, 15, 70%)
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Table 2. Cont.

Glycation Time

120 min

857 (21%) 716 (8%) 688 (9%) 693 (22%) 665 (12%)
565 (32%) 341 (56%) 342 (56%) 437 (42%) 341 (55%)
274 (28%) 234 (36%) 238 (34%) 254 (36%) 240 (33%)

<110 (19%)
(>1, 1–0.5, <0.5 kDa) (22, 27, 51%) (10, 11, 79%) (12, 12, 76%) (15, 22, 63%) (14, 15, 71%)

280 nm 40 min 90 min 150 min 180 min

Control
460 (22%) 480 (15%) 479 (17%) 481 (18%)
235 (78%) 321 (35%) 328 (37%) 326 (36%)

241 (50%) 242 (46%) 244 (46%)
(>1, 1–0.5, <0.5 kDa) (2, 7, 91%) (5, 9, 87%) (8, 12, 80%) (8, 13, 79%)

10 min
342 (60%) 421 (41%) 341 (59%) 341 (60%)
245 (40%) 247 (59%) 245 (41%) 245 (40%)

(>1, 1–0.5, <0.5 kDa) (12, 11, 77%) (18, 17, 65%) (13, 13, 74%) (15, 13, 72%)

30 min
341 (61%) 341 (59%) 340 (61%) 339 (60%)
234 (39%) 245 (41%) 239 (39%) 245 (40%)

(>1, 1–0.5, <0.5 kDa) (8, 9, 83%) (9, 10, 81%) (13, 12, 75%) (12, 11, 77%)

60 min
341 (58%) 341 (58%) 341 (60%) 339 (60%)
241 (42%) 244 (42%) 243 (40%) 249 (40%)

(>1, 1–0.5, <0.5 kDa) (5, 8, 87%) (7, 10, 83%) (10, 12, 78%) (11, 13, 76%)

120 min
339 (58%) 340 (58%) 432 (43%) 339 (61%)
241 (42%) 242 (42%) 246 (57%) 245 (39%)

(>1, 1–0.5, <0.5 kDa) (5, 7, 88%) (6, 10, 84%) (10, 19, 71%) (10, 13, 77%)

420 nm 40 min 90 min 150 min 180 min

Control
496 (20%) 510 (21%) 560 (28%) 551 (26%)
327 (37%) 358 (32%)
281 (43%) 282 (47%) 262 (72%) 277 (74%)

(>1, 1–0.5, <0.5 kDa) (4, 21, 75%) (9, 21, 70%) (14, 22, 64%) (11, 23, 66%)

10 min
526 (18%)

291 282 283 286 (82%)
(>1, 1–0.5, <0.5 kDa) (17, 16, 67%) (16, 16, 68%) (18, 16, 66%) (20, 16, 64%)

30 min
693 (16%) 555 (15%)

298 284 299 (84%) 280 (85%)
(>1, 1–0.5, <0.5 kDa) (16, 15, 69%) (13, 15, 71%) (21, 15, 64%) (19, 16, 65%)

60 min
487 (14%) 530 (12%)

286 283 286 (86%) 280 (88%)
(>1, 1–0.5, <0.5 kDa) (8, 15, 74%) (12, 16, 72%) (15, 15, 70%) (16, 15, 69%)

120 min
483 (12%) 667 (16%)

284 281 283 (88%) 281 (84%)
(>1, 1–0.5, <0.5 kDa) (10, 15, 75%) (12, 15, 73%) (13, 15, 71%) (17, 16, 67%)

3.3. Evolution of the Average Molecular Weight during the Maillard Reaction

In the glycated samples, absorbance at 214 nm was employed to determine the pres-
ence of molecules with amide bonds in their structure. As well, to detect molecules with
aromatic rings and browning compounds, absorbance measurements at 280 nm and 420 nm
were obtained, respectively. It is important to note that the protein hydrolysates contained
a very diverse pool of amino acids and peptides that could produce a very complex mixture
of molecules after the Maillard glycation.

During the first 40 min of the reaction with glucose, the control sample mainly yielded
molecules with Mws around 200 and 335 Da, along with other molecules of around 600 Da
(Table 2). This Mw profile, rich in low Mw molecules (67–69%), remained constant until the
end of the reaction. In addition, molecules of around 6500–7000 Da, presumably polymers
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derived from the interaction of glucose with the soluble polypeptides present in the sample,
were found.

The products of the reaction of the protein hydrolysates with glucose showed different
Mw profiles as compared with the one observed in the control sample. In almost all cases,
low Mw molecules predominated, mainly those of around 350 Da, in some cases reaching
up to 70–79% (Table 2). These molecules were formed during the first 40 min and were
likely to remain stable throughout the Maillard reaction. Molecules of around 230–260 Da,
apparently dipeptides and/or the result of the reaction of glucose with short dipeptides
or free amino acids, were also abundant (approximately 30%). Moreover, molecules of
700–800 Da were found in all cases (about 10–20%), with certain changes in their Mw being
observed during the heating reaction. The slight differences observed when the reaction
times are the same, and which depend on the hydrolysate used, indicate the influence of
peptide composition in the formation of these molecules. Considering the difference in
terms of molecules with a Mw of around 850–950 Da as compared with the hydrolysates, it
seems that this peptide population played an important role in the generation of these new
700–800 Da molecules in the reaction with glucose, whereas the other populations most
likely participated in the formation of the lowest Mw molecules.

In all cases, the most abundant molecules found at 214 nm were also predomi-
nant at 280 nm (Table 2), indicating the presence of an aromatic ring in their structure.
These molecules could be the result of the Strecker reaction during the first 40 min of
heating. The proportion of molecules below 500 Da detected at 280 nm was significantly
high (65–91%), which indicates that aromatic molecules were mainly formed during the
first minutes of the reaction. However, this proportion decreased slightly thenceforward,
suggesting the generation of aromatic polymers.

Interestingly, the high Mw molecules derived from the reaction of the control sample
with glucose detected at 214 nm (Table 2) were not found at 280 nm (Table 2). The molecules
with a Mw above 1 kDa only accounted for a maximum of 8% of the relative abundance.
Furthermore, the most abundant molecules found at 280 nm were very different from
those detected at 214 nm, indicating that the reaction of glucose with proteins or peptides
followed different pathways.

3.4. Evolution of Browning during the Maillard Reaction

Browning is the result of melanoidin formation and was studied in this work as a
measurable parameter indicating the extent of the Maillard reaction. Browning intensity
was similar in all samples during the first 40 min of the reaction, increasing significantly
thereafter, mainly when H60 and H120 were used as a source of amino groups (Figure 1).
Although heated glucose was not used as a control, sugar caramelization is not probably
involved in the increased browning, as observed by Laroque et al. [19] and Morales and
Jiménez-Pérez [10]. Whereas melanoidins can have Mws higher than even 100 kDa [11],
the Mw profiles obtained at 420 nm (Table 2) indicated that the increment in browning
was mainly produced by the formation and accumulation of low Mw brown-colored
compounds, as previously reported [11,33].

The browning intensity of the control sample increased over time, mainly after 150 min
of heating, and it was concurrent with changes in the composition of low Mw melanoidins
(Table 2). Molecules of around 350 Da were formed during the first 90 min but from then on,
they disappeared, which was probably due to condensation processes. In addition, a small
quantity of melanoidins with Mws above 1 kDa (4–11%) was produced during glycation.

Low Mw melanoidins (below 500 Da) were found to be the main components of the
glycated hydrolysates (Table 2); however, their composition changed over time. During the
first 90 min, melanoidins of around 280–300 Da were predominant. From then on, other
molecules of 500–600 Da were formed, but in a smaller proportion (12–16%). As well, a
slight tendency to form melanoidins with higher Mws than 1 kDa was observed (10–20%),
coinciding with a sharp increase in browning intensity. This tendency to increase the
average Mw during glycation has been previously described [34]. Kim and Lee [15] found
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that Mw increased markedly with heating time during the reaction of glucose with glycine,
diglycine, and triglycine. The slight presence of melanoidins with higher Mws than 1 kDa
and the absence of those with higher Mws than 10 kDa (data not shown) suggest that the
new products formed hardly polymerize and hence are not the result of the reaction of
intermediate molecules with reactive amino groups that is observed in advanced states
of the Maillard reaction [11]. Interestingly, the higher the Mw of the larger molecules and
their relative content, the lower the DH of the samples. These results indicate that a higher
amount of low Mw peptides is associated with a higher production and accumulation
of brown compounds, which could be ascribed to the presence of a greater number of
amino groups susceptible to react with glucose in the most hydrolyzed samples (Table 1).
These results are in agreement with Kim and Lee [15].
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Figure 1. Increment in browning during the Maillard glycation of the control and the hydrolysates. The increments were
calculated from the browning of each sample at time 0.

The low Mw melanoidins were presumably generated by the reaction of Amadori
compounds with amino acids [11,17,35] or by the reaction of amino acids with conjugated
enediols (i.e., reductones) produced by the enolization of Amadori compounds and their
subsequent dehydration. Djellouli et al. [20] observed a different trend in browning during
the first 40 min when heating a shrimp protein hydrolysate with glucosamine at 100 ◦C.
This indicates that the induction periods are different based on the type of sugar used,
as previously proposed [19]. Hofmann [33] also reported the predominance of colored
compounds of Mws below 1000 Da in glucose/amino acid mixtures heated at 95 ◦C for
4 h and observed the presence of low amounts of brown molecules of 1000–3000 Da.
Wang et al. [11] reviewed the structure of melanoidins and reported the production of low
Mw melanoidin-type compounds containing furan, pyrrole, and pyrrolinone structures
and derivatives by heating xylose/glucose and alanine/proline/lysine for 5 h.

3.5. Evolution of Fluorescence during the Maillard Reaction

The increase in fluorescence along the Maillard reaction has been associated with
the formation of intermediate products, such as Amadori compounds [13,36]. The fluo-
rescence of the samples was firstly measured at different excitation and emission wave-
lengths (data not shown). The maximum fluorescence, in all cases, was obtained at 340
and 410 nm, respectively. This suggests a common formation pathway for fluorescent
compounds. The maximum excitation wavelength was in agreement with that reported
by Matiacevich et al. [37] for fluorescent products of the Maillard reaction (340–370 nm).
In contrast, the maximum emission wavelength was lower than that registered by these
authors (420–450 nm). Djellouli et al. [20] described different optimum excitation and
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emission wavelengths for the compounds formed during the reaction of shrimp protein
hydrolysates with glucosamine. This is probably attributable to different variables such as
the type of protein and carbohydrate sources, and reaction conditions in terms of pH and
temperature, for instance.

The fluorescence of the glycated hydrolysates increased slightly during the Maillard
glycation (Figure 2) in contrast to the significant increases observed by Djellouli et al. [20]
during the reaction of shrimp protein hydrolysates with glucosamine. Morales et al. [36]
studying different model systems and milk also noted that fluorescent compounds were
formed during heating. The highest increase was observed during the glycation of H120,
which was probably due to the higher reactivity of low Mw peptides, as previously ob-
served by Su et al. (2011). According to Horvat and Jakas [13], the presence of low Mw
peptides is associated with a higher degradation of Amadori compounds, as well as with
the development of Maillard fluorescence. Interestingly, a slight decrease in fluorescence
was observed in all hydrolysates after 90 min of reaction with glucose. This coincided
with changes in the molecular weight profiles observed at 214 nm (Table 2), and it could
be the result of the disappearance and creation of intermediate molecules of different
fluorescence intensity.
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Figure 2. Fluorescence of the samples along Maillard glycation.

A considerable accumulation of fluorescent intermediate molecules was observed
from the first minutes of glycation of the control sample before brown pigments were
significantly generated (Figure 1). This suggests that these fluorescent intermediates could
be precursors of the low Mw melanoidins formed in more advanced steps [10,21,36,38].
From min 40 to 150 of the reaction, fluorescence increased dramatically together with the
increase in browning, indicating the concomitant formation of fluorescent and colored
intermediate MRPs. During the last 30 min of reaction, in all samples, fluorescence either
suffered a slight increase (H10, H30, H120) or remained stable (control and H60), suggesting
that the fluorescent intermediates are rather stable upon prolonged heating.

3.6. Phenol Content

The phenol content in the protein hydrolysates was significantly higher (p < 0.05)
than that of the control sample (Table 3). This is probably due to soluble peptides with
tyrosine residues being released from insoluble muscle proteins during the hydrolysis
process. The phenol content increased significantly (p < 0.05) until 30 min of hydrolysis,
and no peptides with tyrosine residues were released thereafter.

During the Maillard glycation, the phenol content increased significantly (p < 0.05) in
all cases, regardless of the peptide source used (Table 3), which was probably as a result
of Amadori rearrangements. However, the molecular profiles observed at 280 nm did not
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indicate relevant changes in the phenolic compound composition of the samples analyzed,
suggesting that the significant differences observed at the same glycation times were the
result of the formation of aromatic molecules at different concentrations. Moreover, the
results seem to indicate that there is no relationship between phenol content and DH.

Table 3. Total phenol (TP, mEq GAE/100 g dry matter), total antioxidant activity as ABTS•+, ORAC, DPPH (µEq
Trolox/100 g dry matter), and FRAP (mEq Fe2+/100 g dry matter) of the samples before and after different glycation times
(0, 40, 90, 150, 180 min).

Hydrolysis/
Heating Time Assay 0 min 40 min 90 min 150 min 180 min

Control

TP

117.54 ± 0.5 Aa 1375.31 ± 9.64 Ac 1448.11 ± 11.54 Ac 710.86 ± 0.24 Ab 2405.63 ± 96.95 Ad

H10 432.34 ± 0.2 Ba 1593.26 ± 3.35 Bb 4220.61 ± 127.81 Bc 3553.15 ± 65.62 Bc 11,161.73 ± 6.85 Bd

H30 640.81 ± 8.33 Da 3851.77 ± 124.01 Eb 4144.05 ± 137.38 Bb 5808.61 ± 85.36 Ec 9718.77 ± 63.36 Cd

H60 588.3 ± 5.7 Ca 2723.46 ± 37.31 Cb 4951.76 ± 16.57 Cc 4518.19 ± 104.63 Dc 10,875.64 ± 17.91 Cd

H120 585.9 ± 4.1 Ca 3214.33 ± 96.06 Db 5034.13 ± 43.66 Cd 4053.64 ± 62.00 Cc 12,865.95 ± 487.75 De

Control

ABTS•+

34.0 ± 6.2 Aa 425.8 ± 8.5 Ac 421.6 ± 3.7 Ac 211.4 ± 0.6 Ab 3045.18 ± 25.2 Ad

H10 107.3 ± 23.1 Ba 890.7 ± 18.2 Bb 1235.1 ± 80.0 BCc 1083.5 ± 21.2 Bc 9749.84 ± 75.7 Bd

H30 188.4 ± 12.3 Ca 1163.3 ± 55.7 Cb 1122.8 ± 104.3 Bb 1601.1 ± 65.1 Cc 9256.53 ± 34.8 Bd

H60 111.4 ± 1.6 Ba 742.9 ± 7.5 Db 804.5 ± 109.6 Db 1136.3 ± 133.1 Bb 10,090.7 ± 62.1 Cc

H120 178.3 ± 2.8 Ca 936.6 ± 17.8 Bb 1358.9 ± 81.6 Cc 902.8 ± 150.5 Bd 11,126.3 ± 64.9 Dd

Control

ORAC

6.56 ± 0.28 Aa 79.10 ± 6.6 Abc 102.68 ± 6.17 Ac 74.50 ± 1.2 Ab 411.5 ± 18.8 Ad

H10 62.23 ± 4.35 Ba 478.19 ± 8.9 Db 537.47 ± 10.98 Bc 521.09 ± 32.6 Bc 1966.0 ± 46.8 Cd

H30 94.73 ± 6.44 Ca 517.28 ± 18.78 Eb 517.66 ± 16.46 Bb 1066.95 ± 35.0 Dc 1827.4 ± 17.2 Bd

H60 84.83 ± 7.11 BCa 359.50 ± 24.41 Bb 654.81 ± 133.33 Bc 632.92 ± 30.3 Cc 1983.5 ± 14.9 Cd

H120 70.55 ± 7.15 Ba 450.86 ± 7.21 Cb 871.75 ± 65.67 Cd 619.58 ± 29.3 Cc 2105.1 ± 40.2 De

Control

DPPH

0.02 ± 0.00 Aa 0.12 ± 0.00 Ad 0.06 ± 0.00 Ac 0.00 ± 0.00 Ab 0.12 ± 0.00 Ad

H10 0.06 ± 0.00 Aa 0.11 ± 0.00 Bb 0.25 ± 0.00 Cc 0.24 ± 0.01 Dc 0.41 ± 0.01 BCd

H30 0.03 ± 0.00 Aab 0.35 ± 0.01 Cab 0.37 ± 0.02 Eb 0.28 ± 0.01 Ea 0.40 ± 0.00 Bc

H60 0.07 ± 0.01 Aa 0.24 ± 0.00 Dc 0.29 ± 0.01 Dd 0.22 ± 0.02 Cb 0.43 ± 0.00 Ce

H120 0.06 ± 0.00 Aa 0.27 ± 0.00 Ed 0.22 ± 0.00 Bc 0.19 ± 0.00 Bb 0.46 ± 0.01 De

Control

FRAP

0.03 ± 0.00 Aa 0.39 ± 0.02 Ac 0.52 ± 0.01 Ad 0.18 ± 0.00 Ab 1.22 ± 0.02 Ae

H10 0.07 ± 0.00 Ba 0.67 ± 0.012 Bb 1.89 ± 0.10 Dc 0.80 ± 0.01 Bb 2.05 ± 0.06 Bd

H30 0.13 ± 0.00 Ca 0.84 ± 0.02 Cc 0.77 ± 0.01 Bb 1.27 ± 0.00 Ed 2.51 ± 0.02 De

H60 0.20 ± 0.00 Ca 0.58 ± 0.00 Db 1.08 ± 0.00 Cd 1.01 ± 0.005 Dc 2.25 ± 0.01 Ce

H120 0.12 ± 0.00 Da 0.53 ± 0.00 Eb 1.18 ± 0.00 Cd 0.92 ± 0.05 Cc 2.80 ± 0.09 Ee

For each marker. Values (mean ± standard deviation, n = 3) followed by the same uppercase letter in same column are not significantly
different (p < 0.05). Values (mean ± standard deviation, n = 3) followed by the same lowercase letter in the same row, for each parameter,
are not significantly different (p < 0.05).

3.7. Fourier Transform Infrared Spectroscopy (FTIR)

In the spectra (Figure 3) of the hydrolysates and the control sample, several char-
acteristic protein absorption bands were observed, such as the amide A, amide I, and
amide II bands, typically found at ≈3300 cm−1, 1600–1690 cm−1, and 1480–1575 cm−1,
respectively [39] (Figure 3). Other characteristic protein bands were not observed, which
was probably due to the inability of peptides to adopt complex conformations in contrast
with native proteins. The amide A band, which is ascribed fundamentally to NH stretching
vibrations, could be seen at ≈3265 cm−1 in all samples. The amide I band was observable
at 1634 cm−1 in hydrolyzed samples (Figure 3B–E). This band, mainly attributable to C=O
stretching vibrations and, to a lesser extent, to NH in-plane bending vibrations of the
peptide linkages [39], is very sensitive to protein conformational changes. The amide II
band appeared in the range 1538–1575 cm−1, depending on the sample. This band derives
primarily from NH in-plane bending but also from CN stretching vibrations [39]. In the
case of the control sample (Figure 3A), a clear resolution between amide I and amide II
bands could not be observed, showing a maximum al ≈1590 cm−1. This is probably due
to protein aggregation produced by boiling and prolonged freezing. However, during
hydrolysis, peptide fragments are released, and their secondary structures can be observed.
This is supported by the fact that amide I and II band intensities increased proportionally
with hydrolysis time. It is also worth noting the marked intensity peak found in the
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band at 1400–1450 cm−1 (attributed to C-H bending modes) in the hydrolyzed samples, as
compared with the control sample, indicating the presence of peptides [40].
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Figure (F) represents the spectrum of glucose.

The spectrum of glucose, which was determined for comparative purposes, showed
some peaks as it is described in the literature [41] (Figure 3F). In carbohydrates, the most
intense bands appeared in the region 1180–953 cm−1, resulting from vibration modes such
as CC and CO stretching and the bending mode of CH bonds [42]. The reaction of the
different samples (hydrolysates and control) with glucose gave rise to evident changes in
the spectra; however, only minor differences were found based on the type of hydrolysate
(hydrolysis time) and on the reaction time with glucose. In the region 3600–3200 cm−1,
the wideband corresponding to NH stretching vibrations in proteins (amide A) showed a
very marked intensity increase after reacting with glucose, and the maximum peaks shifted
toward lower wavelengths (≈3239–3249 cm−1), which was probably as a consequence of
the contribution of OH stretching vibrations [43,44]. This is indicative of the formation
and accumulation of melanoidins [20,43] and is in line with the increment in browning
(Figure 1). However, a clear relationship between the increase in band intensity and
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glycation time was not observed in all samples. The sharp and well-defined peaks detected
at ≈2969 cm−1 and 2935 cm−1 are attributed to –CH3 and –CH2 and have been previously
observed in melanoidin samples [43].

After the reaction with glucose, the amide I and amide II bands disappeared com-
pletely in all samples, even after the shortest treatment (40 min). At the same time, a new
band at 1641–1642 cm−1 appeared, which is compatible with C=N stretching vibrations.
Both events are indicative of the implication of proteins in the formation of Schiff bases
with glucose as a result of the Maillard reaction [45]. Other authors evidenced a reduction
of the intensity of amide I and amide II bands in systems composed of soy protein/soy
soluble polysaccharides or casein/glucose, which was associated with the formation of
Maillard reaction products [46,47]. The intense bands found in the 1200–900 cm−1 region
in the glycated samples are the typical bands associated with glucose, indicating that many
functional groups of glucose remain intact.

3.8. Prolyl Endopeptidase-Inhibiting Activity (PEP)

The protein hydrolysates showed PEP inhibitory activity with a maximum value of
40.9 ± 1.9% after 10 min of hydrolysis (H10). Thereafter, the inhibitory activity decreased
significantly (20.8 ± 3.4%) and remained constant until the end of the hydrolysis, reaching
values close to 25.3± 4.1%. Thus, the most active PEP inhibitory peptides were formed dur-
ing the first minutes of the reaction but were subsequently hydrolyzed by alkaline protease.
The PEP inhibitory activity of H10 showed similar values to those previously reported in
cooked shrimp hydrolysates prepared with trypsin or alkalase [5]. However, while these
authors hydrolyzed shrimp protein for 3 h, in the current work, 10 min were enough to
obtain similar results. Sila et al. [29] also obtained comparable results in hydrolysates from
barbell skin gelatin prepared with different enzymes, although the average Mw reported
was much higher than 1000 Da. On the contrary, Lajmi et al. [22] obtained PEP-inhibitory
hydrolysates rich in a wide variety of peptides below 500 Da from smooth-hound by-
products, which indicates that the inhibition is likely related to the presence of specific
sequences or certain amino acids located at particular positions in the peptide chain.

The heating reaction with glucose led to the loss of PEP inhibitory activity, at least
at the concentration tested in this study, suggesting that the Maillard reaction caused
important changes in the structure of the inhibiting peptides, which modified negatively
their binding to the enzyme molecule. Nonetheless, the modification in the peptides
structure produced by prolonged heating times should not be dismissed.

3.9. Antioxidant Activity

All samples showed antioxidant activity regardless of their DH, as shown in Table 3.
The antioxidant activity was significantly improved (p ≤ 0.05) owing to protein hydrolysis,
except for DPPH radical scavenging activity, as determined by the antioxidant tests per-
formed. The antioxidant activity of the different hydrolysates at equal glycation time was
in almost all cases significantly different, although no clear trend was observed. The high-
est antioxidant activity was observed in samples H10, H30, and H60, depending on the
technique used and the glycation time. These results are consistent with those presented by
Guerard et al. [6], who suggested that the antioxidant capacity depends on the composition,
structure, and hydrophobicity of the peptides present in the hydrolysates [48,49], rather
than on the Mw of the peptides. Additionally, a wide variety of antioxidant compounds
present in the hydrolysates, such as astaxanthin, histidine dipeptides (e.g., anserine, carno-
sine), and free amino acids (aspartic acid, glutamic acid, alanine, leucine, lysine, and
taurine), could also have participated in the antioxidant activity.

The reaction of the hydrolysates with glucose for at least 40 min significantly (p ≤ 0.05)
increased the antioxidant capacity of all samples (Table 3) as compared with that of the con-
trol. This increase was correlated with a slight increment in browning and is attributed to
the formation of fluorescent intermediates and low Mw melanoidins [10,11]. However, the
strong increase in browning during the first 150 min of reaction was not clearly associated
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with an increase in antioxidant activity, which is consistent with the lack of positive corre-
lation between radical scavenging activity and browning previously described [10,50,51].
On the contrary, all the antioxidant activities analyzed increased markedly (p < 0.05) during
the last 30 min of the reaction, coinciding with a strong increase in browning and the
appearance of low Mw melanoidins (Table 2). These molecules are probably responsible for
the strong antioxidant activity, as suggested by Wang et al. [11] and Murakami et al. [51],
implying that not all the colored compounds generated during the reaction exerted the
same antioxidant activity. Interestingly, the antioxidant activity of the samples that were
glycated for 180 min was higher when the average Mw of the protein hydrolysate used
was lower, indicating that the smallest peptides play an important role in the generation of
colored compounds with strong antioxidant capacity, as observed by Su et al. [52].

The free radical scavenging activity, reducing power, and metal-chelating capacity of
melanoidins have been previously reported by different authors [10,11,53,54]. The afore-
mentioned could be attributed to their metal-chelating ability, their capacity to reduce
hydroperoxides and to break the free radical chain reaction by donating hydrogen, and/or
their ability to scavenge hydroxyl radicals [11,55]. Other molecules with reducing power,
such as reductones or glucose degradation products, could also be formed under alkaline
conditions and contribute to the antioxidant activity [54,56].

4. Conclusions

This work shows that a combined treatment based on protein hydrolysis and a sub-
sequent glycosylation reaction under mild conditions is an effective strategy to valorize
uncommercial cooked shrimp since it generates compounds with antioxidant activity and
with interesting applications as a natural antioxidant to preserve food quality during stor-
age. A process consisting of 120 min of protein hydrolysis followed by 180 min of glycation
under mild conditions will produce the most potent antioxidant molecules from the shrimp
waste. The hydrolysis time could be shortened to 10 min due to its higher energy efficiency,
although the antioxidant activity after glycation would be somewhat lower than that of the
shrimp waste hydrolyzed for 120 min and glycated. Moreover, hydrolyzing the shrimp
waste protein for a short period (10 min) without further glycation proved to be useful to
produce PEP-inhibiting peptides with potential applications as nootropics. Further work
should focus on evaluating the use of the glycated hydrolysates as antioxidant ingredients
in food products and their impact on sensory characteristics, as their brown color could
limit their application in certain foods.
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