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Abstract: The purpose of the present study is to develop new multifunctional environmentally
friendly materials having applications both in medical and food packaging fields. New poly(lactic
acid) (PLA)-based multifunctional materials containing additives derived from natural resources
like chitosan (CS) and rosemary extract (R) were obtained by melt mixing. Each of the selected
components has its own specific properties such as: PLA is a biodegradable thermoplastic aliphatic
polyester derived from renewable biomass, heat-resistant, with mechanical properties close to
those of polystyrene and polyethylene terephthalate, and CS offers good antimicrobial activity and
biological functions, while R significantly improves antioxidative action necessary in all applications.
A synergy of their combination, an optimum choice of their ratio, and processing parameters
led to high performance antimicrobial/antioxidant/biocompatible/environmentally degradable
materials. The polyethylene glycol (PEG)-plasticized PLA/chitosan/powdered rosemary extract
biocomposites of various compositions were characterized in respect to their mechanical and
rheological properties, structure by spectroscopy, antioxidant and antimicrobial activities, and
in vitro and in vivo biocompatibility. Scanning electron microscopy images evidence the morphology
features added by rosemary powder presence in polymeric materials. Incorporation of additives
improved elongation at break, antibacterial and antioxidant activity and also biocompatibility.
Migration of bioactive components into D1 simulant is slower for PEG-plasticized PLA containing
6 wt % chitosan and 0.5 wt % rosemary extract (PLA/PEG/6CS/0.5 R) biocomposite and it
occurred by a diffusion-controlled mechanism. The biocomposites show high hydrophilicity and
good in vitro and in vivo biocompatibility. No hematological, biochemical and immunological
modifications are induced by subcutaneous implantation of biocomposites. All characteristics of the
PEG-plasticized PLA-based biocomposites recommend them as valuable materials for biomedical
implants, and as well as for the design of innovative drug delivery systems. Also, the developed
biocomposites could be a potential nature-derived active packaging with controlled release of
antimicrobial/antioxidant compounds.
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1. Introduction

The use of natural additives is becoming an increasing interest for the development of new
multifunctional materials as a key for new active packaging strategies and new multifunctional
biomaterials [1]. Poly (lactic acid) (PLA) selected as the base material in this study has been used in a
wide range of applications such as agriculture [2,3], packaging [4], medicine [5,6], etc. Beside its good
thermoplasticity and processability, PLA has good biodegradability, biocompatibility, excellent gas
barrier properties and mechanical properties. Its high stiffness is usually reduced by the addition of
plasticizers [7–10], which is necessary to get materials adequate for processing, but these additives also
lead to a decrease in oxygen barrier and thermal resistance.

The use of fillers that provide a large surface area and interaction with matrix is considered a
suitable method to improve mechanical properties, heat resistance, dimensional and thermal stability.
Various types of biocomposites with PLA as matrix have been prepared such as: PLA/microcrystalline
cellulose [11], PLA/microcrystalline cellulose and silver nanoparticles [12], celulose nanofibers [13],
PLA/nanocrystalline cellulose/nanosericite composites [14], hybrid polyethylene glycol (PEG)/graphene
oxide [15], sandwiched layers structures [16], etc.

Polymeric matrix serves as a vehicle to incorporate additives (flavor agents, colorants, antioxidants,
antimicrobial agents) [17]. Development of new multifunctional materials by the addition of natural
additives and/or agricultural waste by-products is an innovative trend and main strategy in polymer
science with clear practical interest. The innovative biocomposite formulations containing such
additives can accomplish the requirements related to the active packaging functions such as food
protection and preservation; offering to packaging new characteristics as improved mechanical, barrier,
antioxidant, antimicrobial properties and biological functions; for protecting consumers’ health;
marketing; smart communication to consumers; and by their environmental degradation, which will
decrease the pollution by a positive environmental impact and reduced waste generation.

Lipids are one of the most chemically unstable food components, which undergo auto-oxidation
when foods are exposed to air, light, or metal ions. Their oxidation causes quality deterioration including
off-flavor, rancid odor, discoloration, as well as produces some toxic compounds (hydroperoxides,
epoxides, oxycholestrols, dimes, etc.), making during time food unacceptable to consumers [18].
Hydroperoxides, as the major initial (auto)oxidation products decompose to secondary compounds
such as hexanal, pentanal, and malonaldehyde, which are responsible for off-flavors and odors.
Then the acids, alcohols, aldehydes, carbonyls, and ketones are formed which further decompose
and/or polymerize resulting in toxic compounds that damage either cells or tissues [19]. Therefore the
use of a suitable antioxidant/antibacterial additive is important both for food preservation (in active
packaging systems) and to improve the human health (as antimicrobial medical devices).

Antimicrobials can be classified into two major groups [20–22]: chemical agents (triclosan
benzoates, sorbates, etc.) and natural agents (components of plant extracts and essential oils, bacteriocins
and bio-preservatives). Their action is essential in reducing or even eliminating some of the main
food spoilage causes, such as rancidity, color loss/change, nutrient losses, dehydration, microbial
proliferation, senescence, gas build-up, and off-odors.

Antioxidant and mainly antimicrobial activities [23] both to Gram-negative, Gram-positive
bacteria and also fungi are well-recognized functions of the chitosan (CS). It also exhibits outstanding
biocompatibility [24] and biodegradability, being a relevant candidate in the field of biomaterials [25].
The presence of amino and hydroxyl groups in the chitosan structure offers along with antimicrobial
and antioxidant [26] activities also analgesic [25], mucoadhesive [27], and haemostatic properties [28].
Moreover, it biodegrades into non-toxic residues [29,30]. The amino groups are also able to efficiently
make complexes with various species as metal ions or natural/synthetic anionic species such as lipids,
proteins, DNA and some negatively charged synthetic polymers as poly(acrylic acid), alginate [31], etc.
being also often used to recover heavy metals [32] or for beverages (wine, juices, etc.) clarification [33].
CS was tested in many biomedical [32,34] and pharmaceutical [35] applications, as sutures, dental [36,37]
and bone implants [38–41]. It was approved by the Food and Drug Administration (FDA) for use
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in wound dressings [42] and food packaging. As already demonstrated, chitosan can inhibit the
reactive oxygen species (ROS) by donation of a hydrogen or the one pairs of electrons [43] and
prevent the lipid oxidation in food and biological systems [44]. It is known that a combination
of two or three main mechanisms can explain chitosan antibacterial and antifungal activities [45].
Briefly, the positively charged chitosan can interact with negatively charged groups at the surface
of microbial cells membranes and alter their permeability, this being the first mechanism proposed.
The created internal osmotic imbalance leads to inhibit the growth of microorganisms. The second
mechanism involves the binding of chitosan with the cell DNA via protonated amino groups inhibiting
the microbial RNA synthesis. The third mechanism is based on the chelation of metals, suppression
of spore elements and binding to essential nutrients to microbial growth [46,47]. It is possible that
all such events to occur simultaneously with different intensities. Therefore, CS accomplishes the
functions desired for multifunctional materials with various applications. The development of new
biodegradable packaging materials, such as PLA/CS films, could be an interesting alternative to
petroleum-based synthetic polymers.

Synthetic antioxidants presence in food is questionable due to potential risks and they require
strict legislative control. An alternative that is being widely studied is the use of phenolic type
natural antioxidants from plant species, including both integral extracts obtained by diverse methods
and their purified components (such as catechin, quercetin, caffeic acid, etc.). In recent years,
plant extracts have captured the attention of researchers. Spices and herbs are well-known for their
antioxidant properties because they contain phytochemicals (flavonoids, tannins, phenolic/polyphenolic
compounds, as diterpenes and acids), tocopherols, vitamin C, carotenoids, etc. They also act as
antiallergic, anti-bacterial (Gram-negative and Gram-positive species), anti-fungal, anti-inflammatory,
antiseptic, antibiotic, and anti-cancer agents [48–50]. The action of natural additives as vegetable extracts
consists in elimination of the main foodborne spoilage causes, dehydration, microbial proliferation,
off-odors, antibrowning, etc. [51].

Plant originated antioxidants have been used in oils or lipid containing foods in order to prevent
oxidative deterioration [52]. Naturally occurring compounds in rosemary plant (in all forms such as
ground, extracts, and essential oils) [53,54] have been reported to exhibit antioxidant properties greater
than butylhydroxyanisole (BHA) and equal butylhydroxytoluene BHT [52]. The rosemary extract
has antibacterial, antifungal, antiviral, antimicrobial, anti-inflammatory, astringent, and spasmolytic
activity [55] and even anticancer properties. The biological properties of rosemary are attributed to the
multiple contributions of its different bioactive compounds and to its phytochemical composition rich
in (poly)phenolic compounds, mainly diterpenoids such as carnosic acid and carnosol and also both
to the positive contribution of flavonoids and co-presence of flavonoids and diterpenes in the plant.
The major compounds contributing for antioxidant activity of rosemary can be categorized in three
groups: phenolic acids, phenolic diterpenes, and flavonoids [56–58]. Other identified active antioxidant
chemicals in rosemary plant [59] are: 1, 8-cineol, α-pinene, β-caryophyllene, β-pinene, β-sitosterol,
caffeic acid, camphene, carvacrol, carvone, epirosmanol, γ-terpinene, isorosmanol, limonene, linalool,
myrcene, p-cymene rosmadial, rosmarinic acid, terpinen-4-ol, ursolic acid and verbenone [60].
Literature reports either rosmarinic acid, an ester of caffeic acid, and 3,4- dihydroxyphenyllactic acid
or/and the phenolic diterpenes carnosol and carnosic acid as the principal antioxidative components of
the rosemary extract [60,61].

Chemical structures of some major active compounds in rosemary extracts are presented in
Figure 1:
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There are studies on the use of vegetable extracts in PLA to confer its multifunctional properties.
Three essential oils (EO), namely cinnamon, garlic, and clove have been incorporated in PLA by solvent
casting method [62], plasticized (with epoxidized jatropha oil as renewable plasticizer) PLA kenaf
biocomposites [63]. In the Valdes et al. review [17] are mentioned antimicrobials/antioxidants as:
extracts of blueberry, grape seed extracts, green tea extract, raspberry fruits and pomace, citrus extract,
grapefruit seed extracts, the combination of mint extracts or pomegranate peel extracts with chitosan
and poly(vinyl alcohol), alginate films containing three natural extracts from rosemary, and Asian and
Italian essential oils, lemon extracts, propolis extracts, olive leafs, etc. Both PEG and EOs led to the
formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg)
and mechanical properties. Cinnamon and clove oil–based PLA/PEG films exhibited a complete zone
of inhibition against Campylobacter jejuni at the maximum concentration whereas the garlic oil–based
film had the lowest activity. Improvement in mechanical properties of EO-based films requires serious
attention so the films could be processed through melt extrusion process because of loss of EOs at
high temperatures.

The depletion of additive is a major problem that determines the quality of materials for long-term
usage. Rosemary alcoholic extract in powdered form shows an efficient preservation of initial features
in comparison with other phenolic antioxidants [64]. Taking into consideration the above-mentioned
specific properties of each of the selected components and a possible synergy of their combination,
the purpose of the present study is to develop new multifunctional environmentally friendly materials
having applications both in medical and food packaging fields. In our previous paper [65] it was
demonstrated that the rosemary alcoholic extract incorporation into PLA confers good elongation at
break, rheological properties, antioxidant and antimicrobial activities, barrier properties and a good
biocompatibility. A number of studies have been carried out on physical, mechanical, and morphological
properties evaluation of PLA/CS system [65–69]. These systems show good antimicrobial properties
but they have inferior flexibility and antioxidant properties. However, no single research work has
been devoted to the blending of plasticized PLA/CS/rosemary extract (R) and the evaluation of their
mechanical and morphological features, antioxidant, antimicrobial, in vitro and in vivo biocompatibility,
and additives migration properties. Motivated by earlier work [65], the current study was carried
out to investigate the effect of CS and R on mechanical properties and morphological characteristics
of biocomposites obtained by melt mixing and to find the effect of CS/R loading on resulting
multifunctional PLA-based biocomposites for food packaging and medical applications, using an
innovative combination of CS and R as reinforcements and their antimicrobial, antioxidant activities
and biological functions.

2. Experimental

2.1. Materials

Poly(lactic acid) (PLA) (trade name: PLA 2002D) from Nature Works LLC, UK obtained from
renewable resources, transparent, with a melt flow index of 5–7 g/10 min (conditions 210 ◦C/2.16 kg) and a
content of 96% L-lactide and 4% isomer D was used. Average molecular weight determined by GPC was



Polymers 2019, 11, 941 5 of 28

4475 kDa. According to the literature data it has a density of 1.25 g/cm3, melting point of 152 ◦C, glass
transition temperature of 58 ◦C, the crystallinity depends on isomer content and thermal history, water
permeability at 25 ◦C is 172 g/m2 day and percentage of biodegradation/mineralization is 100%.

Chitosan medium molecular (CS) with 200–800 cP viscosity in 1% acetic acid, 75–85% deacetylation
degree and MW = 190,000–300,000 g/mol, was provided by Sigma-Aldrich and used as received.

Rosemary ethanol extract (R) in powder form was obtained in Laboratory of Radiation Chemistry,
INCDIE - ICPE CA, Bucharest, Romania following a previously reported procedure by the solvent
extraction method in a Soxhlet unit [70]. Ethanol was used as an extraction solvent. Rosemary leaves
were collected from local farms, dried at ambient temperature and subsequently milled. After collection
of the rosemary extract in an ethanol solution, the powder was separated by precipitation induced by
the addition of water. The insoluble material was filtered and washed with acetone until it was dried.
The extract was further dried under vacuum at ambient temperature. A greenish-yellow fine powder
was obtained and stored in desiccators to avoid the absorption of moisture. Its main components
are: carnosol, carnosic acid and rosmarinic acid. Its amount of total phenols was determined by
Folin-Ciocalteu’s reagent method as described by Scalbert et al. [71]. The resulted total phenolics
content was of 112.5 mg GAE (Gallic acid Equivalents)/g dw (dry weight) [65]. Total flavonoid content
was measured by the aluminium chloride colorimetric assay [72] and it was of 261.5 (mg Quercetin
Equivalents/g dw). The radical scavenging activity of the powdered ethanolic extract of rosemary was
determined by ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium radical
cation) and a IC50 (IC50 value is the concentration of the sample required to inhibit 50% of radicals) of
26 µg/mL was found. It was concluded and demonstrated [65] that it exhibits a very good antioxidant
and antibacterial activity, biological function and a good biocompatibility to PLA. Present study
intended to evidence its effect on PEG-plasticized PLA together with chitosan as the main antibacterial
agent and other important biological functions.

Poly(ethylene glycol (PEG) BioUltra 4000 (Sigma-Aldrich, Steinheim, Germany) was used as
plasticizer. Its molecular weight is 4000. It is seems that it also show some antimicrobial activity [1]
and is crystalizable [73].

2.2. Biocomposites Processing

PLA-based biocomposites were prepared using different amounts of chitosan or/and rosemary
extract by incorporation them into PLA matrix in melt state. Prior to blend preparation, PLA and the
additives were dried in a vacuum oven for 6 h at 80 ◦C. The processing of PLA/PEG/Rosemary/Chitosan
systems was performed at 165 ◦C for 10 min, at a rotor speed of 60 rpm, using a Brabender station
(Brabender® Plasti-Corder® Lab-Station/Lab-Station EC, Brabender GmbH & Co. KG, Duisburg,
Germany) due to the improvement of the flow in melt state induced by the presence of the PEG as
plasticizer. Specimens for the mechanical characterization were prepared by compression molding
using a Carver press with a pre-pressing step of 3 min at 50 atm and a pressing step of 2 min at 150 atm.
The compositions of the prepared systems are shown in Table 1.

Table 1. Designation and compositions of the prepared poly(lactic acid) (PLA)-based biocomposites.

No. Sample PLA
(wt %)

PEG
(wt %)

Chitosan (CS)
(wt %)

Rosemary Ethanolic Extract (R)
(wt %)

1 PLA/PEG 80 20 - -

2 PLA/PEG/3CS 77 20 3 -

3 PLA/PEG/6CS 74 20 6 -

4 PLA/PEG/0.5R 79.5 20 - 0.5

5 PLA/PEG/3CS/0.5R 76.5 20 3 0.5

6 PLA/PEG/6CS/0.5R 73.5 20 6 0.5
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The optimum amount of 0.5 wt % of R was established in our previous paper [65]. Now the effect
of chitosan amount and presence of two bioactive compounds on PLA properties are investigated.

2.3. Investigation Methods

2.3.1. Processing Behavior

Processing behavior was evaluated by analysis of processing characteristics following the
torque-time curves registered during blending on a Brabender mixer.

2.3.2. Scanning Electron Microscopy (SEM)

The SEM studies were performed on samples fixed on copper supports. The surface was examined
by using an Environmental Scanning Electron Microscope (ESEM) type Quanta 200 instrument,
(FEI Company, Hillsboro, TX, USA) operating at 25 kV with secondary electrons in low vacuum mode
(LFD detector).

2.3.3. ATR–FTIR Spectroscopy

The ATR–FTIR spectra were recorded on a Bruker VERTEX 70 spectrometer (Ettlingen, Germany)
with a 4 cm−1 resolution. The background and sample spectra were obtained in the 600–4000 cm−1

wavenumber range. Spectral processing was achieved with the OPUS program.

2.3.4. Stress-Strain Measurements

The stress-strain measurements were performed at room temperature on dumbbell-shaped
samples (1 mm thickness), on an Instron Single Column Systems tensile testing machine (model 3345,
Norwood, MA, USA) equipped with a 1kN load cell. The cross-head speed used was of 10 mm/min,
and gauge length of 40 mm. Young modulus, tensile strength at break and strain at break have been
evaluated according to EN ISO 527-2/2012.

2.3.5. Impact Tests

The unnotched Charpy impact strength of the composites was tested according to EN ISO 179:2000
by means of a CEAST testing machine (Impact Testing Systems—Instron, Pianezza, Italy) with a
pendulum of 50 J. Each reported value is the average of at least 5 determinations, both for tensile,
as well as for impact evaluation. Before measurements, samples were conditioned 24 h at 23 ◦C and
50% RH, the same conditions being used for tensile testing.

2.3.6. Dynamic Rheology

The rheological properties of the PLA/R composites containing or not chitosan were measured
by means of Anton Paar MCR301 rheometer (MCR301, Graz, Austria) using parallel-plate geometry
(diameter of 25 mm). Oscillatory frequency sweeps ranging from 0.05 to 500 rad/s with a fixed strain of
10% (falling in the linear viscoelasticity region) were performed at 165 ◦C for the composite samples.

2.3.7. Antioxidant Activity Evaluation by ABTS•+ (2, 2’-azino-bis 3-ethylbenzthiazoline-6-sulfonic
acid) Radical-cation Scavenging Assay

The ABTS•+ scavenging test is used to determine the antioxidant activity of both hydrophilic
and hydrophobic compounds. The stock solutions included 7 mM ABTS•+ solution and 2.4 mM
potassium persulfate solution. The working solution was then prepared by mixing the two stock
solutions in equal quantities and allowing them to react for 16 h at room temperature in the dark.
The solution was then diluted by mixing 1 mL ABTS•+ solution with 60 mL ethanol to obtain an
absorbance of 0.7–0.8 units at 750 nm using a spectrophotometer (Cary 60 UV-VIS, Agilent Technologies
Santa Clara, CA, United States). Fresh ABTS•+ solution was prepared for each assay. The reaction
between ABTS•+ and potassium persulfate directly generates the blue green ABTS•+ chromophore,
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which can be reduced by an antioxidant, thereby resulting in a loss of absorbance at 750 nm. In the
case of polymeric biocomposites the reaction mixture consisted of adding 0.4 mL of alcoholic extracts
and 2 mL of ABTS•+ radical solution and allowed to react for 6 min in a dark environment, and
then the absorbance was measured. The alcoholic extract was obtained by placing 80 mg of solid
sample in 5 mL ethanol and stirred for 24 h at room temperature (20 ◦C). The concentration of the
alcoholic extracts that produced between 20–80% inhibitions of the blank absorbance was determined
and adapted. Scavenging capacity of the composites was compared with that of a standard, namely
vitamin E (α-tocopherol), which was used in a concentration of 0.4 mg/mL (2 mg vitamin E in 5 mL
ethanol) and the same procedure described above was applied. The antioxidant capacity is expressed
as percentage inhibition, calculated using the following formula:

Inhibition(%) =

[Acontrol −Asample

Acontrol
× 100

]
(1)

where Acontrol is the absorbance of ABTS•+ radical in blank and Asample is the absorbance of an ABTS•+

radical solution mixed with extract sample/standard.

2.3.8. Antimicrobial Activity

The experimental protocol for testing antimicrobial efficiency against Escherichia coli, Salmonella.
enteritidis and Bacillus cereus, consists in the following stages:

1) Sterilization of the samples, which was performed in autoclave at 110 ◦C, 0.5 bars for 20 min.
2) Preparation of ATCC cultures was done by: seeding the average pre-enrichment and incubation

at 37 ◦C for 24 h; counting the colonies in 0.1 mL culture by selective culture medium separation;
seeding of 0.1 mL bacterial culture ATCC using sterile swab samples surface;

3) Incubation of samples contaminated with the ATCC for 24 h at 25 ◦C, in the dark, in sterilized
glass containers, repeated for other 24 h incubation;

4) Identifying target germs: The following standardized methods of bacteriology procedures were
used, according to standards in force: SR ISO 16649- E. coli; ISO 7932:2004 ISO 21871:2006(en) - Bacillus
cereus, SR EN ISO 6579- Salmonella sp.

2.3.9. Migration Study of the Active Components within Powdered Rosemary Ethanol Extract into
Food Simulant from PLA/PEG/CS-based Films

Double-sided, total immersion migration tests were performed with pieces of films of ~1 cm2,
soaked in 5 mL of 50% aqueous ethanolic solution, known as a modified D1 food simulant [74] for foods
with lipophilic character, considered the most severe aqueous food simulant for alcohol containing
food products and milk. [75].

The conditions chosen for migration study simulate storage at ambient temperature for unlimited
duration. Since increasing temperature accelerates migration, the samples were kept in an oven at
40 ◦C for 14 days (minimum 10 days).

At predetermined time intervals, aliquots of ~1 mL were withdrawn from the release medium
and were analyzed using a Cary 60 UV-VIS spectrophotometer (Agilent Technologies) by scanning
from 200 to 600 nm. The active components content in the food simulant was determined by UV-VIS
spectroscopy (detection wavelength λmax = 275 nm). Samples were run in quartz cuvettes with
1 mm path length. Previously a blank test for the simulant and each type of control sample was
carried out. The released active components concentrations were calculated based on the calibration
curves previously determined for rosemary extract corresponding to the main components of this as
rosmarinic acid, carnosol and carnosic acid according to the literature data [76,77]. The corresponding
release curves were represented as time dependent plots of the cumulative percentage of active
component released.

The migration kinetics parameters were calculated based on the following Equations (2)–(5).
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First the data were fitted by the empirical model proposed by Peppas - equation 2 [78,79]:

mt/m∞ = k·tn (2)

where mt/m∞ represents the fraction of bioactive compound(s) released at time t, n is the release
exponent and k is the release rate constant.

The power law release exponent n describes the release mechanism from a thin polymer sample:
a value of n = 0.5 corresponds to Fickian diffusion mechanism, 0.5 < n < 1 to non-Fickian/anomalous
transport, n = 1 to Case II transport, and n > 1 to super case II transport [78,79].

Fitting the experimental data to first order kinetics model (Equation (3)):

ln
(
1 −

mt

m∞

)
= − k1·t (3)

the release rate constant, k1 can be calculated.
For short-term migration, defined as the time for which mt/m∞ < 0.6, a simplified migration model

derived from Fick’s second law is applied, which considers diffusion as the main process governing the
release of the active component, which occurs from both sides of the film and described by Equation (4):

mt

m∞
= 4

( Dt
πl2

)1/2
(4)

where D is the diffusion coefficient and l is the film thickness. A plot of mt/m∞ versus t1/2 should yield
a straight line from which the diffusion coefficient can be obtained.

In a two-phase food/polymer system, migrant transfer from one phase to the other one occurs to
reach thermodynamic equilibrium. The partition coefficient can be defined as the ratio of the migrant
concentration in the film (Cf,∞) to the migrant concentration in the food simulant system (Cs,∞) at
equilibrium (Equation (5)) [80]:

Kp =
C f ,∞

Cs,∞
(5)

Kp is a measure of the chemical affinity of the migrant towards the film and the food/simulant. When Kp

= 1, the migrant concentration in the food simulant system equals the concentration in the film
at equilibrium. Kp > 1 and Kp < 1 describe a higher affinity of the migrant towards the film and
respectively a higher affinity of the migrant towards the food system [80].

2.3.10. Biocompatibility Evaluation

a. In vitro biocompatibility evaluation - Contact angle (CA) and surface free energy (SFE). The static

contact angle (CA) was determined by the sessile drop method, at room temperature and controlled
humidity, within 10 s, after placing 1 µL drop of water on the film surface, using a contact angle
goniometer (CAM-200, KSV, Helsinki, Finland). Composite material surfaces may not be completely
homogenous, so the surface energies are not evenly distributed; therefore, the measurements of contact
angles on solid surfaces were taken at least on 10 points on the tested surface and the average values
recorded were used to evaluate the wettability of materials. For more details on the method, see
references [81,82]. To obtain the components of the surface free energy (SFE) and the total SFE of the
polymer films, the CA at equilibrium between the film surface and three pure liquid, twice-distilled
water, formamide and methylene iodide (as purchased at maximum obtainable purity), was measured
by fitting the drop profile using the Young-Laplace equation [82–85]. The total and the components of
SFE were calculated by using the Lifshitz-van der Waals acid/base approach of van Oss and Good [86],
which divides the total SFE into dispersive Lifshitz-van der Waals interactions (γLW

sv ) and polar Lewis
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acid-base interactions (γAB
sv ) (Equation (8)). The acid-base interactions are subdivided into electron

donor γ−sv (Lewis base) and electron acceptor γ+sv (Lewis acid) parts (Equations (6)–(8)):

(1 + cosθ)γlv = 2
(√
γLW

sv γ
LW
lv +

√
γ+svγ

−

lv +
√
γ−svγ

+
lv

)
(6)

γAB
sv = 2

√
γ+svγ

−
sv (7)

γTOT
sv = γLW

sv + γAB
sv (8)

where θ is the contact angle, γlv is the liquid’s total surface tension, and γLW
lv and γLW

sv are the apolar
(dispersive) Lifshitz–van der Waals components of the liquid and the solid, respectively, whereas γ+svγ

−

lv
and γ−svγ

+
lv are the Lewis acid–base contributions of either the solid or the liquid phase. To solve the

resulting systems of equations, it is necessary to use at least three test liquids with known γlv, γLW
lv , γ−lv

and γ+lv . The subscripts ‘lv’ and ‘sv’ denote the interfacial liquid-vapor and solid-vapor tensions.
In Table 2, the known surface free energy parameters for the three test liquids, red blood cell

membrane, and platelets [87–91] are listed.

Table 2. Surface free energy parameters (mN/m) of the liquids used for contact angle measurements [87–91].

Liquid γTOT
lv γLW

lv γAB
lv γ+

lv γ−lv

Water 72.80 21.80 51.00 25.50 25.50

Formamide 58.00 39.00 19.00 2.28 39.6

Methylene iodide 50.80 50.80 0.00 0.72 0.00

Red blood cells (rbc) 36.56 35.2 1.36 0.01 46.2

Platelets (p) 118.24 99.14 19.1 12.26 7.44

Blood compatibility is dictated by the manner in which their surfaces interact with blood
constituents, like red blood cells and platelets. The measurement of the surface and interfacial free
energy of a material constitute an in vitro method for determining the biocompatibility. For establishing
material’s compatibility with blood, Equation (9) was used, where Ws/rbc and Ws/p describe the work
of spreading of red blood cells and platelets [91]. When blood is exposed to a biomaterial surface,
adhesion of cells occurs, and the extent of adhesion decides the life of the implanted biomaterials;
thus, cellular adhesion to biomaterial surfaces could activate coagulation and the immunological
cascades [92].

Ws = Wa −Wc = 2
(√
γLW

sv ·γ
LW
lv +

√
γ+sv·γ

−

lv +
√
γ−sv·γ

+
lv

)
− 2γlv (9)

where Ws—work of spreading (the negative free energy associated with spreading liquid over the solid
surface); Wa—work of adhesion (defined as the work required separating the liquid and solid phases)
and Wc—work of cohesion (defined as the work required separating a liquid into two parts). [83]

b. In vivo Biological evaluation

White male Wistar rats (200–250 g) were used in the experiment. The animals were housed under
a standard laboratory environment (relative humidity 55–65%, chamber temperature 23.0 ± 2.0 ◦C
and 12 h light: dark sequence (lights on at 6:00 a.m.) and fed with a specific diet and water ad libitum,
excluding the time of the investigations. Before the assessment, the animals were positioned on a
raised wire mesh, under a clear plexiglass container and allowed 2 h to familiarize to the testing room.
Adult white male Wistar rats weighing 200–250 g from “Grigore T. Popa” University of Medicine
and Pharmacy, Iasi, Romania, bio-base were used in the research. They were kept in clean plexiglass
cages, at 23.0 ± 2.0 ◦C constant temperature, relative humidity 55–65% and light/dark cycle of 12/12 h,
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for 1 week before starting the investigations. Rats were housed in batches of two and given ad libitum
access to standard pellet diet and water, except during the period of the study.

In this experiment, 42 animals were randomly allocated into 7 groups of 6 animals each as follows:
Group 1 (C) distilled water - used as control; Group 2 - PLA/PEG; Group 3 - PLA/PEG/3CS; Group 4

- PLA/PEG/6CS; Group 5 - PLA/PEG/0.5 R; Group 6 - PLA/PEG/3CS/0.5 R; Group 7 - PLA/PEG/6CS/0.5 R.
At the beginning of the study, rats were anesthetized with 50 mg/kg body weight of ketamine,

combined with 10 mg/kg body weight of xylazine, and the tested composite films (weighting 62 mg)
were placed subcutaneous, in one side in the dorsal zone, after the skin was shaved and antisepticized
with 10% povidone/iodine aqueous solution. Sterile cotton pellet, of 62 mg weight, saturated with
distilled water (0.3 mL), was subcutaneous inserted in the animals from the first group. Rats were kept
under an aseptic environment for seven consecutive days. The implanted pellets reacted as foreign
elements inducing a progressive subacute local inflammatory reaction.

On the 8th day, the animals were anesthetized and the pellets, together with the formed granuloma
tissue, were dissected out. First of all the wet pellets were weighed, afterwards, were dried overnight
at 60 ◦C, in an incubator, until a constant weight was recorded.

The granulation tissue formation was calculated after deducing the initial weight of pellets
(moment zero—M0) from the post-implantation weight of pellets (after eight days—M1).

We estimated the in vivo biocompatibility of biocomposites by quantifying the induced
hematological, serum biochemical and immunological modifications [93] by their subcutaneous
implantation in rats.

After 24 h, respectively 7 days in the experiment, 0.3 mL of blood samples were obtained from the
retro-orbital venous plexus and the following elements were monitored: blood count, hepatic enzymes
activity (aspartate transaminase (AST), alanine aminotransferase (ALT), lactic dehydrogenase (LDH),
serum urea and creatinine values [94,95]. Serum complement level and the phagocytic capacity of
peripheral neutrophils (Nitro Blue Toluene (NBT) test), frequently used to evaluate the influence of
pharmacologic agents on the immune defense capacity of laboratory animals, were also assessed [96,97].

Data were presented as mean +/− standard deviation (S.D.). The significance of differences
between groups was analyzed using SPSS variant 17.0 for Windows 10 and ANOVA one-way method.
The values of p coefficient (probability) below 0.05 are considered as significant versus control.

The experimental protocol was approved and implemented, according to the recommendations
of the “Grigore T. Popa” Iasi University Committee for Research and Ethical Issues, concordantly with
international ethical normative of the European Directive 2010/63/EU. [98] Each animal was used once
and the duration of the experiments was maintained as short as possible. For ethical reasons, all the
animals were sacrificed at the end of the study [99].

3. Results and Discussion

3.1. Processing Behavior

Processing behavior is affected by additives (PEG, CS and R) incorporation at the beginning
of mixing. This conclusion results from the comparison of the torque—time curves recorded
during processing on Brabender plastograph. The values of the evaluated processing parameters,
namely TQmax, maximum torque; TQ1min, torque after one minute of mixing; TQmax2, maximum
torque after 1.5 min of mixing dependent on the type of additive and sometimes on their concentration
(Table 3). The CS incorporation decreases TQmax1 and TQ1min with its increasing concentration, but this
decrease only appears in samples containing 3CS in the biocomposites containing both additives.
At longer processing times, as TQfinal the differences were insignificant. The samples containing
rosemary extract present the best melt flow at the end of processing.
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Table 3. Melt processing characteristics of PEG-plasticized PLA and its composites.

Sample TQmax1 (Nm) TQ1min (Nm) TQmax2 (Nm) TQ5min (Nm) TQfinal (Nm)

PLA/PEG 12.9 0.9 - 7.3 6.5

PLA/PEG/3CS 8.8 1.7 11.0 6.5 6.0

PLA/PEG/6CS 6.6 1.4 12.1 7.6 6.2

PLA/PEG/0.5R 10.1 2.8 - 7.3 5.7

PLA/PEG/3CS/0.5R 8.7 1.5 10.6 6.1 5.9

PLA/PEG/6CS/0.5R 9.5 2.8 12.6 7.1 5.5

TQmax1, maximum torque; TQ1min, torque after one minute of mixing; TQmax2, maximum torque after 1.5 min of
mixing; TQ5min, torque after 5 min of mixing (half processing time); TQfinal, torque at the end of mixing.

3.2. SEM Results

Plasticized PLA (PLA/PEG) shows a relatively smooth surface, as seen in Figure 2, with no
significant defects and a homogeneous morphology aspect, which is also found in the case
of PLA/PEG/0.5R system (see Supplementary material) exhibiting a uniform distribution of
rosemary powder, with relatively good interfacial adhesion because of relatively strong interaction
between components. Chitosan and rosemary powder incorporation led to important changes in
morphology, mainly at high concentration (PLA/PEG/6CS/0.5R) when the biocomposites showed an
nonhomogeneous morphology with some agglomeration areas because of phase separation, which was
very evident at high magnification, as was also the presence of R in the polymeric matrix that determines
an uneven surface.
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Figure 2. SEM images of poly(lactic acid) (PLA)/polyethylene glycol (PEG) and PLA/PEG/chitosan
(CS)/rosemary extract (R) samples at different magnifications: (a) 200 µm; (b) 100 µm; (c) 50 µm and
(d) 20 µm indicated on figures.

3.3. ATR-FTIR Spectroscopy Results

FTIR spectroscopy was used to monitor the absorption band shift in specific regions to determine
the interactions between functional groups of the PEG-plasticized PLA and additives CS, and R.
The corresponding spectra are shown in Figure 3. The spectra are characterized by 4 main spectral
regions: -CH stretching at 3000–2850 cm−1, C=O stretching at 1750–1745 cm−1, C-H bending at
1500–1400 cm−1 and -C-O stretching at 1100–1000 cm−1 [100], as seen in Figure 3a. The band at
3398 cm−1 corresponds to both -NH2 and -OH groups, the band at 2926 cm−1 can be attributed to
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-CH stretching, the absorption band at 1746 cm−1 is due to C=O stretching, and is present only in
systems containing CS. Additionally, the bending vibrations of the -CH3, -NH2 groups are observed at
1381 cm−1 and 1645 cm−1, respectively.
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Figure 3. FT-IR results of the plasticized PLA, PLA/PEG/3CS and 6CS, PLA/R, and PLA/PEG/CS/R:
(a) entire wavenumber region (3500–600 cm−1); and (b) 1000–1300 cm−1.

As known from the previous study [65], neat PLA exhibits a relatively sharp band with a maximum
at 1749 cm−1 assigned to carbonyl C=O stretching and at 1267 cm−1 appears the bending vibration of it.

The FTIR spectrum of the PEG-plasticized PLA clearly shows the characteristic absorption bands
in the region of 3350–3450 cm−1, 2750–3000 cm−1, and at 1645 cm−1 due to O–H bending and stretching
vibration, C–H asymmetric stretching vibration and C=O stretching of ester bonds, respectively [101].
As noticed, the C=O band of PLA shifts to a lower wavenumber in the PLA/PEG spectrum due to
the possible strong hydrogen bonding with hydroxyl end-groups of PEG. The characteristic wide
absorption band of PEG plasticized-PLA at 2730–2984 cm−1, which is mainly due to CH2-stretching
vibration in carbonyl compounds, shows multiple overlapped bands with narrow band intensity
upon incorporation of CS. It was also found that the band intensity at 2946 cm−1 decreased by the
addition of CS. In the FTIR spectrum of PLA/PEG/CS sample, the band at 1752 cm−1 assigned to
carbonyl stretching vibration is shifted to 1747 cm−1 in the spectra of the PLA/PEG/CS/R biocomposites.
Therefore, it can be implied that CS is dispersed in the PLA matrix with some levels of interaction
between them forming the PLA-CS composites. CS presents a band near 1650 cm−1 for the amide
carbonyl (overlapped). Similar result has also been reported by other researchers [102]. A significant
difference between samples was observed in 1000–1150 cm−1 region - Figure 3b - both in bands shape
and positions. CS incorporation leads to narrower 1050–1140 cm−1 band with higher intensity and
the band peak is placed at higher wavenumbers. These shifts in the absorption bands indicate the
miscibility and interaction of PLA with additives. A small amount of hydroxyl group (O–H) (band at
3400 cm−1) in the biocomposites could be attributed to the chitosan and/or terminal hydroxyl groups in
the PLA main chain. The presence of bands at 1448 cm−1 for C–H stretching in the CH3 and 950 cm−1

and 847 cm−1 for C–C single bond are assigned to PLA [103]. All these spectral modifications pointed
towards good dispersion and interaction between PLA, R, and CS, which significantly changed the
morphological characteristics of the composites as appears from SEM images and also properties of
the complex material. Interaction between components is also proved by the variation of the surface
properties of biocomposites (as seen below).

3.4. Mechanical Properties

The results on the variation of the tensile properties of the PLA-based biocomposites in dependence
on CS content are given in Figure 4. It is clear that the increase of CS amount in the plasticized
PLA increases Young modulus and decreases both tensile strength—Figure 4a—and elongation at
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break—Figure 4b. Doubling the amount of CS from 3 wt% to 6 wt% increased the Young modulus
with 20%. The decrease of the tensile strength and elongation at break for these compositions is not so
significant. In the presence of 0.5 wt% R the evolution of the mechanical properties with CS content
is totally different. The PLA/PEG/0.5R shows a slight high values for Young modulus and tensile
strength but adding CS in this composition led to a PLA/PEG/6CS/05R biocomposite with the highest
elongation at break of 52% because of a synergistic effect of these two bioactive compounds in the
ratio of 6CS/0.5R. Similar results were found by other authors [104]. In that case, the tensile strength
increased up to 5 wt % CS loading and Young’s modulus increased up to 10 wt% with the addition of CS
into the matrix, while the percent elongation at break decreased. However, when the CS content was
increased to 15 wt%, the tensile strength and tensile modulus were slightly decreased. They attributed
these improvements to a good dispersion of CS and attractive interactions between the composites
components. The literature gives different results concerning the variation of the mechanical properties
including impact ones of PLA by plasticization with PEG. Bijarimi et al. [105] found that tensile and
flexural strength, stiffness and notched Izod impact strength decreased significantly when the PEG at
2.5–10 wt% concentrations were added to the PLA matrix It was found that the PLA/chitosan composite
materials showed appropriate porosity and structure, and could keep certain shape and mechanical
properties [67]. The processing morphological, structural, thermal and mechanical performance of
electrospun biocomposites based on PLA blended with 25 wt% of poly(hydroxybutyrate) (PHB),
plasticized with 15 wt% of acetyl(tributyl citrate) (ATBC) and loaded with 1–5 wt% of chitosan or
catechin microparticles have been studied by Arrieta et al. [106]. Both fillers present a high content
of hydroxyl groups on their surfaces and there are interactions between PLA, PHB and plasticizer.
Chitosan creates bead defects in the fibers, which leads to a reduction of the mechanical performance
of biocomposites, while catechin antioxidant effect improved the thermal stability of biocomposites
and produced beads-free fibers with better mechanical performance. Other authors reported that the
incorporation of CS particles into PLA led to less rigid and less stretchable films.
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3.5. Impact Properties

Data related with impact properties of the plasticized PLA-based biocomposites are summarized
in Table 4. Both impact strength and impact energy increased with increasing CS content and
also by incorporation of alcoholic rosemary extract. Synergistic effect appears in the case of
PLA/PEG/3CS/0.5R biocomposite.
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Table 4. Impact properties of the plasticized PLA-based biocomposites containing chitosan and
alcoholic rosemary extract.

Sample Impact Strength (kJ/m2) Impact Energy (J)

PLA/PEG 2.21 0.11

PLA/PEG/3CS 3.18 0.13

PLA/PEG/6CS 21.15 0.88

PLA/PEG/0.5R 4.52 0.18

PLA/PEG/3CS/0.5R 15.20 0.62

PLA/PEG/6CS/0.5R 12.39 0.51

Anuar et al. [107] and Ghalia et al. [108] reported that impact strength of a plasticized biocomposite
is significantly improved, as compared to unplasticized biocomposite. The explanation is found in
the effect of PEG concentration and molecular weight [107]. The results revealed that PEG with high
molecular weight and increased concentration up to 20 wt% significantly improves the crystallization
capacity and impact toughness of PLA. With increasing the average molecular weight of PEG,
the crystallinity and impact strength of PLA/PEG blends first decreased and then increased.

3.6. Rheological Properties

Plasticized PLA-based biocomposites predominantly show a viscous behaviour (G” > G′)
in the entire angular frequency region studied, as seen in Figure 5a. Storage and loss moduli
dependence on deformation frequency presents the same trend in the variation of the values of the
studied biocomposites, more obvious differences being observed at low frequencies and in G′ values.
The PLA/PEG/R biocomposite shows the lowest G′ values. Storage modulus G′ after CS incorporation is
higher and increases with CS content both in respect with PLA/PEG and PLA/PEG/R. Complex viscosity,
as presented in Figure 5b shows a significant increase for PLA/PEG/CS with increasing CS content.
The flow curve of the PLA/PEG is the lowest one due to the PEG plasticizer effect. No cross-over point
was found for the plasticized PLA-based biocomposites.

It is worth mentioning that a high increase of the viscosity was recorded when rosemary powder
was incorporated in the PLA/PEG blend, because some interactions appear between the functional
groups of the components. The presence of chitosan in the PLA/PEG system increased the values of
the parameters of the melt rheology recorded, a rigidity of the obtained samples being observed also in
melt state. On contrary, the loading with chitosan of the PLA/PEG/0.5R system significantly decreased
the dynamic viscosity. The Newtonian plateau has been extended to high frequencies for the blends
containing rosemary extract and chitosan. The obtained results are in accordance with those found by
other authors [109,110].
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3.7. Antioxidant and Antibacterial Properties

3.7.1. Antioxidant Activity Evaluation

From Figure 6, it is observed that the addition of chitosan and powdered rosemary extract imparts
antioxidant property to PEG plasticized PLA matrix.

The ABTS•+ radical inhibition activity increases by increasing the content of chitosan and rosemary
extract. It is at least two times higher than that of PLA [65] and PLA/PEG by CS incorporation and 10
or 30 times higher when rosemary extract or both active natural compounds are present in formulation.
Moreover, a synergism between chitosan and rosemary extract—the strongest antioxidant activity
being obtained for the sample PLA/PEG/6CS/0.5R, comparable with the antioxidant activity exerted by
vitamin E, is noticed. This research revealed that rosemary ethanolic extract enhances the antiradical
efficiency and the antibacterial activity (see below) of chitosan through synergistic interactions. It is
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interesting to notice that the chitosan addition into the composites matrix improves the antiradical effect.
The PLA/PEG/6CS/0.5R sample reveals the highest antioxidant activity. It is known that chitosan-based
systems show poor stability, which restricts its practical applicability. It has become a great challenge
to establish sufficient shelf-life for chitosan formulations. Improved stability can be assessed by
controlling environmental factors, manipulating processing conditions (e.g., temperature), introducing
a proper stabilizing compound, developing chitosan blends with another polymer, or modifying
the chitosan structure using chemical or ionic agents [111]. Houlihan and others [112] certified in
previous studies that some components of rosemary extracts such as rosmanol, carnosol, rosmarinic
acid, and carnosic acid can become four times more effective than BHA and BHT in in vitro conditions.
From the presented results it is seems that R is an effective agent for antioxidative stabilization both of
PLA and CS.Polymers 2018, 10, x FOR PEER REVIEW  15 of 28 
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Figure 6. ABTS•+ radical inhibition activity of the PEG-plasticized PLA containing chitosan and
powdered rosemary ethanolic extract.

3.7.2. Antibacterial Activity Evaluation

Antimicrobial properties of the studied biocomposites were tested for three bacteria: Bacillus
cereus ATCC 14579 (Gram-positive), Salmonella typhymurium ATCC 14028 (Gram-negative bacteria) and
Escherichia coli ATCC 25922 (Gram-negative)—Table 5. The CS incorporation is very effective at both
concentrations used, while adding rosemary alcoholic extract leads to greater values of percentage
inhibition for all tested bacteria. A lower activity was found against Salmonella typhymurium, however
a 100% inhibition against all three bacteria after 48 h was recorded.

Similar results were reported by other authors. PLA/chitosan fibrous membrane exhibited
excellent antibacterial capabilities with an inhibition of 99.4% and 99.5% against E. coli and S. aureus,
respectively [113].

PLA/CS composite showed significant antimicrobial activity against total aerobic and coliform
microorganisms, especially when the particle size of CS was reduced [69]. Carnosic acid and carnosol
as the major constituents of rosemary extract are found to have high antibacterial activity against
various microorganisms including Streptococcus mutans, S. salivarius, S. sobrinus, S. mitis, S. sanguinis,
and Enterococcus faecalis which initiates dental caries [114]. Rosemary extract has also been found to be
promising as a nutritional strategy for improving meat quality.
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Table 5. Antibacterial activity of the chitosan and rosemary alcoholic extract incorporated into
PLA-based materials against Bacillus cereus, Salmonella typhymurium and Escherichia coli.

Sample
Inhibition (%)

Bacillus cereus Salmonella typhymurium Escherichia coli

24 h 48 h 24 h 48 h 24 h 48 h

LDPE 6 18 3 8 7 13

PLA/PEG 45 91 29 77 69 94

PLA/PEG/3CS 86 100 58 100 73 100

PLA/PEG/6CS 86 100 58 100 73 100

PLA/PEG/0.5R 86 100 48 100 76 100

PLA/PEG/3CS/0.5R 100 100 81 100 76 100

PLA/PEG/6CS/0.5R 100 100 90 100 82 100

3.8. Migration Study of the Active Components from Powdered Rosemary Alcoholic Extract into Food Simulant
from PLA/PEG/CS/R-Based Biocomposite Films

In order to obtain the migration profiles corresponding to the investigated samples, the content of
active components from rosemary powder in the food simulant was determined by UV-VIS spectroscopy.
The registered UV-VIS spectra for the PLA/PEG and PLA/PEG/CS samples containing the rosemary
extract showed an absorption maximum at 275 nm, which is shifted with ~10 nm compared with the
maxima on the calibration curve and the one observed in our previous investigations on PLA/R samples,
at 285 nm [65]. This hypsochromic shift may occur in the absorption spectrum of molecules that
contain more chromophores due to interaction of the chromophores, chemical interactions (dissociation
or reaction with the solvent) and may give information about the intermolecular structural changes
and/or perturbation of the electronic states due to the environmental factors [115].

The UV-VIS absorption spectra of the samples under investigation were influenced by their
complex composition (the presence of both PEG and CS), with a higher number of chromophore groups
responsible for the absorption, not only the aromatic C=C from the rosemary active compounds, but
also the ester and amide C=O groups, taking into consideration that the CS content increases in the
composition of these films, while the R content is the same (0.5 wt% R). The release curves of the active
constituents of powdered rosemary alcoholic extract by migration into 50% ethanol solution at 40 ◦C,
as food simulant medium, from PLA/PEG/CS-based films prepared by melt mixing are represented in
Figure 7.

The release profiles of the active components of the R describing migration phenomenon
into selected food simulant show an overall similar release behavior from studied films.
Samples PLA/PEG/0.5R and PLA/PEG/3CS/0.5R show a fast release in the first 30 h, then after
70 h the equilibrium is reached in the case of migration from plasticized PLA and from the biocomposite
containing 3 wt% CS. At a content of 6 wt% CS the migration is much slower and a more gradual
release can be noticed for entire studied period and the equilibrium will be reached after 5 times
longer period of about 350 h, although in higher quantity until the end of the time interval of 14 days,
an amount of ~ 61% is released compared with with 47% from the plasticized PLA/PEG/0.5R sample
and 51% from PLA/PEG/3CS/0.5R sample. Thus the increase of CS content in the samples composition
favors a gradual release without reaching a plateau even up to 10–12 days.

The calculated kinetic parameters and the corresponding correlation coefficient values (R2) are
summarized in Table 6.
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Figure 7. Release profiles of the active components from rosemary powdered ethanol extract into 50%
ethanol solution as a food simulant.

Table 6. Kinetic parameters of the bioactive compounds release from plasticized PLA based materials
containing CS and rosemary extract.

Samples
Peppas/Power Law Model First Order

Kinetic Model Diffusion Model
KP

n R2 k × 103

(h−n)
R2 k1 × 103

(h−n)
R2 D × 10−13

(m2/s) R2

PLA/PEG/0.5R 0.37 0.99 85.12 0.98 5.20 0.84 1.7 0.98 1.06

PLA/PEG/3CS/0.5R 0.23 0.98 147.78 0.99 5.17 0.81 2.05 0.97 0.95

PLA/PEG/6CS/0.5R 0.38 0.99 72.92 0.99 3.7 0.92 1.05 0.99 0.64

The n and k kinetic parameters values obtained by fitting the data with equation 2 indicate a
migration behavior with tendency towards Fickian diffusion, especially for sample PLA/PEG/6CS/0.5R
(n = 0.38) as suggested also by the release profiles (Figure 7). The release rate constant values, k, show a
slower release on the first interval (up to 120 h) also for sample PLA/PEG/6CS/0.5R, with the lowest
k = 72.92 h−n.

By fitting the experimental data to equation 3, significantly lower values of the correlation
coefficient (R2) were obtained, showing that the first order kinetic model is not the most appropriate to
describe the migration process from these samples. The calculated k1 values are similar for samples
PLA/PEG/0.5R and PLA/PEG/3CS/0.5R and the lowest value was obtained for PLA/PEG/6CS/0.5R,
highlighting the slowest release mechanism for this sample, as evidenced by power law model. A good
linear fit was obtained for all samples by fitting the data to Equation (4), with correlation coefficients
(R2 values) ranging between 0.97–0.99, suggesting that experimental data are well described by the
diffusion model for short-range times.

It can be seen, that the best fitting of equation 4 corresponds to sample PLA/PEG/6CS/0.5R,
which also shows the lowest D value (1.05 × 10−13 m2/s), taking into consideration that kinetic
calculations are based on the first interval of release, for a short-term migration.

The partition coefficient values, KP show that up to 14 days studied interval, for samples
PLA/PEG/0.5R and PLA/PEG/3CS/0.5R the migrant concentration in the food simulant system equals
the concentration in the film (KP ~ 1)—which can be explained by their similar behavior, with ~50% R
released. For PLA/PEG/6CS/0.5R sample the KP = 0.64 value (Kp < 1) corresponds to a higher affinity
of the migrant towards food system, which is preferred in functional films with “positive migration”
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where additives incorporated into the film are expected to provide a controlled release into the food
system for shelf life extension [80,116].

The overall migration levels obtained were of 19.2 mg/kg for PLA/PEG/0.5R, 14.1 mg/kg for
PLA/PEG/3CS/0.5R and 18.4 mg/kg for PLA/PEG/6CS/0.5R. It can be noticed that all the values are
much lower than the overall migration limits for food contact materials of 60 mg/kg of food simulant,
established by the current legislation for food packaging materials in both non-polar and polar
simulants [74,117,118].

3.9. Biocompatibility Study

3.9.1. In Vitro Biocompatibility Evaluation by Contact Angle Measurements—Determination of
Wettability, Surface Free Energy, and Work of Spreading

Wettability of the composites was evaluated by the contact angle measurements. In Figure 8
are presented the results obtained for the plasticized PLA biocomposites with or without powdered
rosemary ethanolic extract containing different ratios of chitosan.
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Figure 8. Contact angle variation for plasticized PLA, PLA/CS biocomposites with or without rosemary
ethanolic extract.

Chitosan has a polar nature and by adding it to hydrophobic materials such as PLA produces
increased surface free energy, which leads to decreased contact angle with water, as revealed in Figure 8.
For both sets of samples with or without rosemary ethanolic extract (R) containing chitosan was noticed
that the water contact angle values decreased with the increase in chitosan content, which indicates the
increase of hydrophilicity of the material. In contrast, in the case of total free surface energy (γTOT

sv ) is
observed that it increases proportional with the chitosan content (Table 7) for the samples without R
and it decreases for the samples containing R.

This may be due to the presence of an excess of polar groups from chitosan on the surface of
the composites without R and by adding R in the PLA/PEG/CS composites some polar groups from
chitosan are involved in different interactions with complementary groups from rosemary extract (such
as carboxyl, hydroxyl, carbonyl groups) hence no longer available at the composite surface (solid-air
interface). This behavior is evidenced also by variation of the polar component of SFE (γAB

sv ) which
increases proportional with the chitosan content in the samples without rosemary ethanolic extract,
the major contribution to it being brought by the Lewis base component (γ−sv, electron donor groups
such as -OH, -NH2), as revealed by the data listed in Table 7. For all the samples, the γ−sv parameter is
higher than γ+sv indicating monopolar behavior, more specifically, a Lewis base character.



Polymers 2019, 11, 941 20 of 28

Table 7. Surface free energy (mN/m) of PLA/PEG-based samples containing chitosan and powdered
rosemary ethanolic extract and work of spreading (Ws) for red blood cells (rbc) and platelets (p).

Sample Code γLW
sv γAB

sv γ+
sv γ−sv γTOT

sv Ws/rbc Ws/p

PLA/PEG 39.17 1.92 0.03 34.91 41.09 4.54 −69.58

PLA/PEG/3CS 41.94 6.98 0.25 49.47 48.92 14.42 −49.46

PLA/PEG/6CS 42.76 20.34 1.54 67.30 63.10 22.22 −43.83

PLA/PEG/0.5R 33.64 13.95 1.27 38.25 47.59 12.27 −71.51

PLA/PEG/3CS/0.5R 31.61 3.90 0.08 45.87 35.51 −1.14 −75.52

PLA/PEG/6CS/0.5R 30.07 7.72 0.30 49.53 37.78 0.81 −75.01

γTOT
sv —total surface tension; γLW

sv —apolar Lifshitz-van der Waals component; γAB
sv —polar Lewis acid-base interaction;

γ+sv—electron acceptor (Lewis acid) component; γ−sv—electron donor (Lewis base) component; Ws/rbc and Ws/p—work
of spreading for red blood cells and platelets, respectively.

Work of spreading for red blood cells (Ws/rbc) has positive values except for PLA/PEG/3CS/0.5R
sample and work of spreading for platelets (Ws/p) has negative values. This means that when PLA/CS/R
samples come in contact with blood, they cause an increase in the work of cohesion for platelets,
therefore the aforementioned blood cells will not adhere easily onto surface of biomaterial, avoiding
occurrence of thrombosis, which is an unwanted event for blood-contacting applications. [119,120]

3.9.2. In Vivo Biocompatibility

PLA surgical sutures are a new type of absorbable sutures that can be degraded and absorbed in
the body. High hydrophobicity of the PLA sutures surface leads to poor biocompatibility and cellular
affinity. Enhanced surface hydrophilicity of polylactic acid sutures treated by lipase and chitosan
is reported in literature [121]. The sutures were etched by lipase and then grafted with chitosan.
Chitosan significantly improved the hydrophilicity of PLA-based materials. This improvement is very
important for medical applications as sutures.

In this study none of the animals died during the seven days surveillance period after the pellets
implantation. No behavioral changes, such as the decrease in food uptake and lethargy, were observed,
in rats with the biocomposite implants.

The subcutaneous implantation of PLA/PEG, PLA/PEG/3CS, PLA/PEG/3CS/0.5R, PLA/PEG/6CS,
PLA/PEG/6CS/0.5R films, did not considerable influence the animal’s body weight (Table 8), nor the
granuloma’s tissue weight (Figure 9), compared to the control group, after seven days in the experiment.

Table 8. The influence of biocomposite implants on the animals body weight after seven days.

Groups Variation of the Mean Animal’s Weight (g)

C +8.2

PLA/PEG +8.1

PLA/PEG/3CS +7.6

PLA/PEG/6CS +7.9

PLA/PEG/0.5R +8.0

PLA/PEG/3CS/0.5R +7.3

PLA/PEG/6CS/0.5R +7.7

Comparative analysis between the effects of the studied groups, revealed a slight tendency
of PLA/PEG/3CS/0.5R and PLA/PEG/3CS to reduce the animal’s weight, as well as to decrease the
granuloma’s tissue weight, but statistically insignificant than those of R, PLA (presented in a previous
paper [65] and control groups, during the test (Table 8). The effects of PLA/PEG/3CS/0.5 R were
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more intense than of PLA/PEG/3CS, probably due to the presence of R incorporated into PLA matrix.
The accentuated actions of PLA/PEG/3CS/0.5R compared with those of PLA/PEG/6CS/0.5 R, can be
attributed to the different concentrations of CS, but also to the particular ways of releasing the active
compounds from the existing matrix.
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Table 9. The influence of biocomposite implants administration on the elements of the leucocyte
formula. Values were presented as mean ± S.D. for six animals in a group.

Groups Leucocyte Formula (% Values)

PMN Ly E M B
24 h 29.5 ± 0.83 66.3 ± 2.11 0.6 ± 0.08 3.4 ± 0.10 0.2 ± 0.10

Control 7 days 29.7 ± 0.47 65.9 ± 1.93 0.7 ± 0.10 3.5 ± 0.10 0.2 ± 0.05

PLA/PEG 24 h 29.8 ± 0.89 65.7 ± 1.39 0.7 ± 0.10 3.6 ± 0.05 0.2 ± 0.04
7 days 29.9 ± 0.55 65.5 ± 1.63 0.7 ± 0.05 3.7 ± 0.12 0.2 ± 0.05

PLA/PEG/3CS 24 h 29.1 ± 0.37 66.7 ± 2.14 0.6 ± 0.08 3.4 ± 0.05 0.2 ± 0.05

7 days 29.4 ± 0.98 66.1 ± 1.33 0.8 ± 0.1 3.5 ± 0.08 0.2 ± 0.05

PLA/PEG/6CS 24 h 29.3 ± 0.72 66.3 ± 1.55 0.7 ± 0.05 3.5 ± 0.08 0.2 ± 0.04

7 days 29.5 ± 0.65 66.1 ± 2.04 0.7 ± 0.08 3.5 ± 0.05 0.2 ± 0.05

PLA/PEG/0.5R 24 h 29.8 ± 0.27 65.7 ± 1.98 0.6 ± 0.10 3.7 ± 0.10 0.2 ± 0.05

7 days 29.9 ± 1.63 65.4 ± 1.47 0.8 ± 0.13 3.7 ± 0.05 0.2 ± 0.05

PLA/PEG/3CS/0.5R 24 h 29.5 ± 0.45 66.1 ± 1.39 0.7 ± 0.08 3.5 ± 0.1 0.2 ± 0.04

7 days 29.2 ± 0.69 66.2 ± 1.72 0.8 ± 0.05 3.6 ± 0.08 0.2 ± 0.05

PLA/PEG/6CS/0.5R 24 h 29.6 ± 0.33 66.0 ± 1.89 0.8 ± 0.1 3.4 ± 0.08 0.2 ± 0.05

7 days 29.7 ± 0.47 65.9 ± 1.37 0.7 ± 0.08 3.5 ± 0.1 0.2 ± 0.05

*PMN—polymorphonuclear neutrophils, Ly—lymphocytes, E—eosinophils, M—monocytes, and B— basophils.

No substantial changes in the percentage values of polymorphonuclear neutrophils (PMN),
lymphocytes (Ly), eosinophils (E), basophils (B) and monocytes (M) between R, PLA, (see ref. [65])
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PLA/PEG/3CS, PLA/PEG/3CS/0.5R, PLA/PEG/6CS, PLA/PEG/6CS/0.5R groups and control group,
were noted after 24 h, nor the 7th day (Table 9).

Laboratory analysis did not identify significant alterations of AST, ALT and LDH activity, between
groups with biocomposite/plasticized PLA implants, and control, after 24 h and seven days the tested
substances administration (see Table S1 in Supplementary Material).

The use of PLA/PEG/3CS, PLA/PEG/3CS/0.5R, PLA/PEG/6CS, PLA/PEG/6CS/0.5 R implants
was not accompanied by significant variations of the blood urea and creatinine values compared
to the groups treated with control, R, respectively with PLA (see Reference [65] and Table S2 in
Supplementary Material).

The implantation of PLA/PEG/3CS, PLA/PEG/3CS/0.5R, PLA/PEG/6CS, PLA/PEG/6CS/0.5R films
did not induce noticeable changes in the serum complement levels and the phagocytic capacity of
peripheral neutrophils, compared to plasticized PLA and control group, after 24 h, as well as seven
days in the experiment (see Table S3 in Supplementary Material).

4. Conclusions

New plasticized PLA-based multifunctional materials containing additives derived from natural
resources were obtained by melt mixing. They show satisfactory mechanical properties and also
superior thermal properties (as it will be presented in the next paper).

The developed powdered rosemary ethanol extract/chitosan-incorporated into plasticized
polylactide films exhibited good flexibility, antioxidant and antimicrobial activity against both
Gram-negative and Gram-positive bacteria. Migration of bioactive components into D1 food simulant
is slower for PLA/PEG/6CS/0.5 R biocomposites and occurred by a diffusion controlled mechanism.
The biocomposites show a high hydrophilicity and good in vitro and in vivo biocompatibility.
When PLA/CS/R samples come in contact with blood they cause an increase in the work of cohesion for
platelets, therefore the aforementioned blood cells will not adhere easily onto surface of biomaterial,
avoiding occurrence of thrombosis, which is an unwanted event for blood-contacting applications.

In our experimental conditions, the subcutaneous implantation of biocomposite films induced
hematological, biochemical and immunological modifications comparable with control group. The use
of implants based on PLA/PEG, PLA/PEG/3CS, PLA/PEG/6CS, PLA/PEG/0.5R, PLA/PEG/3CS/0.5R and
PLA/PEG/6CS/0.5R compositions showed a good in vivo biocompatibility in rats, thus indicates that,
these films represent valuable materials for biomedical implants, and also for the design of innovative
drug delivery systems. Also, the developed biocomposites could be a potential nature-derived active
packaging with controlled release of antimicrobial compounds, and such films could potentially be
used in retail food packaging to control pathogens commonly associated with various foods, such as
poultry meat.

Although the studied biocomposites show good features required for biomedical and
food-packaging fields, they are not recommended for long-term applications because of the PLA
degradability (however it is well-known that the degradability is an advantage for many applications,
see above). In addition, a strong acidic environment could limit them because of increased solubility of
the chitosan in such conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/6/941/s1,
Figure S1. SEM images of PLA/PEG/CS/R samples at different magnifications: 200 µm (A); 100 µm (B); 50 µm (C),
and 20 µm (D) indicated on figures. Table S1. The influence of biocomposites administration on the AST, ALT
and LDH activity. Values were presented as mean ± S.D. for 6 animals in a group. Table S2. The influence of
biocomposites administration on the serum urea and creatinine concentration. Values were presented as mean ±
S.D. for 6 rats in a group. Table S3. The influence of biocomposites administration on the serum complement level
and the NBT test.
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