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Abstract
Mental disorders are associated with dysregulated metabolism, but compre-
hensive investigations of their metabolic similarities and differences and their
clinical relevance are few. Here, based on the plasma metabolome and lipidome
of subcohort1, comprising 100 healthy participants, 55 cases with anxiety, 52
persons with depression, and 41 individuals with comorbidity, which are from
WCHAT, a perspective cohort study of community-dwelling older adults aged
over 50, multiple metabolites as potential risk factors of mental disorders were
identified. Furthermore, participants with mental illnesses were classified into
three subtypes (S1, S2, and S3) by unsupervised classification with lipidomic
data. Among them, S1 showed higher triacylglycerol and lower sphingomyelin,
while S2 displayed opposite features. The metabolic profile of S3 was like that
of the normal group. Compared with S3, individuals in S1 and S2 had worse
quality of life, and suffered more from sleep and cognitive disorders. Notably, an
assessment of 6,467 individuals from theWCHAT showed an age-related increase
in the incidence of depression. Seventeen depression-related metabolites were
significantly correlated with age, which were validated in an independent
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of excellence, Grant/Award Numbers:
ZY2017201, ZYYC20007 subcohort2. Collectively, this work highlights the clinical relevance of metabolic

perturbation inmental disorders, and age-relatedmetabolic disturbancesmay be
a bridge-linking aging and depressive.
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1 INTRODUCTION

Mental disorders, also called mental illnesses or psy-
chiatric disorders, are common, although often ignored
diseases, and approximately 29% of the population suf-
fers from a mental illness at least once in their lifetime.1
Diverse types of mental disorders with distinct behaviors
and personalities have been identified.1,2 Among them,
depression and anxiety are two of the most prevalent men-
tal disorders in older adults above age 55 and belong to the
top 20 causes of disability worldwide.3 Over 50% of older
adults with depression also have concurrent symptoms of
anxiety.4,5 Comorbid anxiety-depressive disorder is usually
linked to more severe symptoms, more frequent func-
tional disability,6 higher suicide risk,7 and even a higher
mortality rate.8
The current diagnosis of anxiety, depression, and comor-

bid depressive disorder is usually based on question-
naires, in which a set of symptoms of the patients are
assessed by doctors or psychiatrists.9,10 However, due
to the unclear boundaries between mental disorders,
some people may be overdiagnosed, underdiagnosed, or
even misdiagnosed.11,12 Social support, quality of life, and
comorbid diseases were usually considered in the inter-
views, but not enough. The state-of-the-art functional
near-infrared spectroscopy (fNIRS) and machine learn-
ing have recently been used in the assessment of various
psychiatric disorders.13 Besides, molecular classification
using omics data has emerged as a robust tool for dis-
ease diagnosis and assessment.14–16 The changes in some
metabolites serve as biomarkers or driving forces of depres-
sive and anxiety disorders.17,18 For example, high-fat diet,
type 2 diabetes mellitus, obesity, and insulin resistance
are associated with the incidence and progression of men-
tal disorders, and some of these metabolic issues further
affect the antidepressant treatment.19 In addition, the alter-
ations of amino acid, energy, and lipid metabolites are also
closely linked to the depression and anxiety disorders.20–23
Therefore, metabolic classification of mental disorders
maymake the diagnosis ofmental disordersmore accurate.
Peripheral pro-inflammatory cytokines, such as inter-

leukin 6 (IL-6), interleukin 17 (IL-17), tumor necrosis
factor alpha (TNF-α) and C-reactive protein (CRP), signifi-

cantly increase in depressive patients,24,25 but dramatically
decrease after the treatment of antidepressant26. Many
studies have shown that systemic cytokine levels are
remodeled with age and tend toward a proinflammatory
phenotype called inflammaging.27 Inflammaging is one
of the main causes of many diseases, including organ
aging, cancer, neurodegenerative diseases, and psychiatric
disorders.28 It is further exacerbated by redox imbal-
ance, senescence-associated secretory phenotype (SASP)
and a decline in effective autophagy with age.29 Abnor-
mal cellular metabolism is a hallmark of aging.30 Lipid
accumulation, impaired glucose metabolism and insulin
sensitivity, decreased systemic NAD+ and sirtuin activity,
and cellular antioxidant deficiencies are known metabolic
disorders associated with aging.31 Previous studies have
shown that the metabolic disturbances are closely asso-
ciated with the incidence and progression of psychiatric
disorders.20–23,32 However, their metabolic similarities and
differences have rarely been investigated. In addition, the
associations between aging, metabolic disturbances, and
mental disorders remain largely unknown.
To answer these questions, we performedmetabolomics

and lipidomics analyses of 248 older adults in the West
China Health and Aging Trend study (WCHAT) cohort, a
prospective cohort comprising of 7,439 participants aged
over 50 years from West China,33 to disclose the poten-
tial metabolic risk factors and the metabolic subtypes of
anxiety, depression, and comorbid anxiety-depressive dis-
order. A close relationship between metabolic profiles and
clinical phenotypes was observed. In addition, we con-
firmed the association between age and depression using
6,467 individuals withmental health assessment data from
the WCHAT cohort. Besides, we screened the metabolic
changes associated with age and depressive symptoms
using subcohort1 (n = 248) from WCHAT cohort. The
association of these metabolites with age was validated
in an independent subcohort2 with 328 mental health
participants from WCHAT cohort (Figure 1). This study
clarified the metabolic similarities and differences of anx-
iety, depression, and comorbid depressive disorder, build
tighter connections between the severity of mental disor-
ders and metabolic profiles, and revealed the age-related
metabolic disturbances for depression.



LIU et al. 3 of 16

Subcohort1
(n=248, age >50)

NC (n=100),  ANX (n=55),
DEP (n=52), COM (n=41)

WCHAT
(n=6467, age >50)

Molecular classification

Molecular charateristics
of subtypes

Multiple logistic
regression

NC (n=2302),  ANX (n=498),
DEP (n=448), COM (n=355)

Multiple linear regression

Age-related differential
metabolites for depression

NC (n=328)

Multiple linear regression

Overlaped

Correlation between age
and depression

Anxiety, depression and 
comorbidity-related

differential metabolites
Age-related metabolites

from subcohort1

Overlaped

Age-related metabolites

Age-related metabolites
from subcohort2

Overlaped

Subcohort2
(n=328, age >50)

Clinical charateristics
of subtypes

Depression-related
metabolites

F IGURE 1 Experimental design. A total of 576 plasma samples were selected from the West China Health and Aging Trend study
(WCHAT) cohort (> 50 years old) and divided into two subcohorts for metabolomics and lipidomics profiling. Subcohort1 included 248
individuals, 148 of whom had anxiety, depressive, or comorbid anxiety–depressive symptoms, diagnosed by two doctors based on the GDS-15
and GAD-7 questionnaires, and 100 who were mentally healthy. Subcohort2 had 328 individuals without mental disorders. NC, normal
control; ANX, anxiety; DEP, depression; COM, comorbid anxiety-depressive; GDS-15: Geriatric Depression Scale-15; GAD-7: General Anxiety
Disorder-7

2 RESULTS

2.1 Characteristics of the participants
in this study

Prevalence analysis of mental health assessments of 2,343
WCHAT participants over 65 showed that 11.74%, 11.35%,
and 9.22% of them suffered from anxiety, depression, and
comorbid anxiety-depressive disorder, respectively. The
incidence was much higher than that in the National
Health Aging Trends Study (NHATS) of the United States
(the participants aged over 65) (Figure 2).34 In addition,
people over age 65 were more likely to suffer from depres-
sive symptoms than those over age 50 (11.35% vs. 10.53%,
Figure 2). To profile the plasma metabolome associated
with anxiety, depression, and comorbid anxiety-depressive
disorder, a total of 248 (subcohort1) WCHAT partici-
pants, including 41 individuals with comorbid anxiety and
depression, 52 persons with depression, 55 cases with anx-
iety, and 100 control participants, were randomly selected.

The persons who have used antidepressants were not
included in the subcohort1. Themental health status of 248
participants was diagnosed by clinicians using the Geri-
atric Depression Scale (GDS-15) and General Anxiety Dis-
order (GAD-7) questionnaires, and the characteristics of
248 participants are summarized in Table 1. No significant
differences in age, sex, education, marital status, smoking,
or drinkingwere observed among the four groups of partic-
ipants, but the average bodymass index (BMI) of comorbid
patients was significantly lower (ANOVA test, p < 0.05),
consistent with the Hamilton Rating Scale for Depression
(HRSD).35

2.2 Metabolic risk factors for anxiety,
depression, and comorbid
anxiety-depressive disorder

To reveal the metabolic risk factors for anxiety, depres-
sion, and comorbid anxiety-depressive disorder, we next
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F IGURE 2 Prevalence of anxiety, depression, and comorbid anxiety–depressive disorder in WCHAT. The incidence of anxiety,
depression, and comorbidity in the West China Health and Aging Trend study (WCHAT) and National Health Aging Trends Study (NHATS)
cohorts

TABLE 1 Clinical characteristics of participants in this study

Subcohort1 Subcohort2
Control Anxiety Depression Comorbid Normal
(N = 100) (N = 55) (N = 52) (N = 41) p-Value (N = 328)

GDS scorea, mean (SD) 0.5 (0.5) 2.5 (1.2) 6.3 (1.6) 7.7 (2.2) < 0.001 2.0 (1.2)
GAD scorea, mean (SD) 0.1 (0.3) 7.5 (2.6) 1.9 (1.6) 8.9 (4.2) < 0.001 1.1 (1.3)
Agea, mean (SD) 68.8 (10.0) 69.6 (8.3) 68.7 (9.9) 66.1 (9.3) 0.33 68.5 (8.7)
Sexb, No. (%) 0.27
Female 62 (62.0%) 38 (69.1%) 39 (75.0%) 31 (75.6%) 201 (61.3%)
Male 38 (38.0%) 17 (30.9%) 13 (25.0%) 10 (24.4%) 127 (38.7%)

Educationb, No. (%) 0.39
Illiterate 27 (27.0%) 21 (38.2%) 21 (40.4%) 13 (31.7%) 104 (31.7%)
Primary school 40 (40.0%) 19 (34.5%) 21 (40.4%) 13 (31.7%) 129 (39.3%)
Secondary school and above 33 (33.0%) 15 (27.3%) 10 (19.2%) 15 (36.6%) 95 (29.0%)

Marital statusb, No. (%) 0.97
Married 71 (71.0%) 41 (74.5%) 37 (71.2%) 30 (73.2%) 69 (21.0%)
Unmarried/widowed/divorced 29 (29.0%) 14 (25.5%) 15 (28.8%) 11 (26.8%) 259 (79.0%)

Smokingb, No. (%) 0.44
No 79 (79.0%) 46 (83.6%) 44 (88.0%) 36 (87.8%) 251 (76.8%)
Yes 21 (21.0%) 9 (16.4%) 6 (12.0%) 5 (12.2%) 76 (23.2%)

Drinking wineb, No. (%) 0.33
No 85 (85.0%) 44 (80.0%) 48 (92.3%) 34 (82.9%) 251 (76.5%)
Yes 15 (15.0%) 11 (20.0%) 4 (7.69%) 7 (17.1%) 77 (23.5%)

BMIa,
mean (SD) 23.1 (3.1) 24.1 (3.6) 23.1 (3.5) 21.8 (3.0) 0.009 1.1 (1.3)

aContinuous variables, ANOVA test.
bCategorical variables, Chi-squared test. GDS: Geriatric Depression Scale; GAD: General Anxiety Disorder; BMI: body mass index, calculated as weight in
kilograms divided by height in meters squared.

carried out untargeted metabolomics and lipidomics pro-
filing of the 248 plasma samples. In total, 576 metabolites
were identified by mass spectrometry (MS). T-SNE anal-
ysis of metabolomics data, lipidomics data, and quality
controls (QCs) indicated high data quality (Figure 3A,B).
To uncover the potential metabolic risk factors for depres-
sive symptoms, multiple logistic regression analyses were

performed on metabolomic and lipidomic data.36 Correla-
tions were measured with odd ratios (ORs). In total, 18, 50,
and 70 metabolites were identified as risk factors for anxi-
ety, depression, and comorbid anxiety-depressive disorder,
respectively (p < 0.05, Figure 3C–F). The more severe the
mental disorder was, the more metabolic risk factors were
identified.
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F IGURE 3 The metabolites with significant differences in anxiety, depression, and comorbid anxiety–depressive disorder. (A,B) T-SNE
analysis of the metabolome (A) and lipidome (B) of samples and QCs. (C) Statistics of the significantly differential metabolites of anxiety,
depression, and comorbid anxiety–depressive disorder. (D–F) Forest plots illustrate pooled log2 transformed OR and 95% CI for the main
differential metabolites (multiple logistic regression, p < 0.05) in anxiety (D), depression (E), and comorbidity (F). Logistic regression was
adjusted by age, sex, and body mass index (BMI). (G) The overlap of differential metabolites among the anxiety, depression, and comorbidity
groups. QCs, quality controls; NC, normal control; ANX, anxiety; DEP, depression; COM, comorbid anxiety–depressive; OR, odds ratio; CI,
confidence interval
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Many metabolites, including docosapentaenoic acid
(DPA, log2(OR) = −1.46, 95% CI: −2.79 to −0.2, p =

0.0259), docosahexaenoic acid (DHA, log2(OR) = −1.63,
95% CI: −2.81 to −0.52, p = 0.0052), and ergothioneine
(log2(OR)=−0.52, 95% CI:−1.01 to −0.07, p= 0.0289), are
known to benefit depressive symptoms and decrease in the
depression group (Figure 3E).37,38 In addition, amino acids
and their derivatives are the main differential metabo-
lites for depressive symptoms, such as homogentisic acid
(log2(OR) = 0.47 95% CI: 0.09–0.87, p = 0.0169), L-cystine
(log2(OR) = 2.33, 95% CI: 0.71–4.08, p = 0.0065), and
L-kynurenine (log2(OR) = 1.29, 95% CI: 0.02–2.61, p =

0.0487) (Figure 3E). In comorbid participants, hydrophilic
metabolites such as prasterone sulfate (log2(OR) = −0.94,
95% CI: −1.5 to −0.44, p = 0.0005), 1-methylnicotinamide
(log2(OR) = −1.03, 95% CI: −1.86 to −0.25, p = 0.0113),
benzenebutanoic acid (log2(OR) = −0.95, 95% CI: −1.72
to −0.26, p = 0.0102), and uracil (log2(OR) = −1.47,
95% CI: −2.67 to −0.36, p = 0.0116) were significantly
reduced (Figure 3F). Overlapping analysis revealed that
two metabolites were simultaneously reduced in anxiety,
depression, and comorbidity, including creatine (depres-
sion: log2(OR) = −1.73, 95% CI: −3.14 to −0.43, p = 0.0119;
anxiety: log2(OR) = −1.98, 95% CI: −3.42 to −0.605, p =
0.0056; comorbidity: log2(OR) = −2.26, 95% CI: −3.87 to
−0.76, p = 0.0041) and linoleic acid (depression: log2(OR)
= −4.21, 95% CI: −6.63 to −1.98, p = 0.0004; anxiety:
log2(OR) = −2.31, 95% CI: −4.57 to −0.13, p = 0.04; comor-
bidity: log2(OR) = −3.07, 95% CI: −5.89 to −0.4, p =

0.0272) (Figure 3G). Collectively, we present many poten-
tial metabolic risk factors for anxiety, depression, and
comorbid anxiety-depressive disorder.

2.3 Molecular stratification of
individuals with mental disorders

People diagnosed with different mental disorders may
have similar molecular profiles and symptoms.39 Molec-
ular classification, clustering the individuals using the
omics data, allows the identification of many disease-
related signatures that are difficult to be obtained by
logistic regression analysis, because of the heterogeneity
of the disease.40 Moreover, the patients in the same clus-
ter may benefit from the same treatments. To find the
metabolic subtypes for individuals with mental disorders,
we performed unsupervised classification with lipidomic
data, and separated the 148 participants in subcohort1 with
anxiety, depression, or comorbid anxiety-depressive dis-
order into three clusters (S1, S2, and S3) (Figure 4A and
Figure S1A–H).41 Statistics showed that subtype S2 had
more participants with comorbid anxiety-depressive disor-
der, while S3 contained more anxiety persons (Figure 4B).

There was no significant difference in the GAD scores
among the three subtypes (Figure 4C), but the GDS scores
of individuals in S2 were significantly higher than those of
participants in S3 (Student’s t-test, p = 0.0148, Figure 4D).
Then, we used Mann–Whitney U-test to screen the

differential metabolites for each subtype compared with
normal controls. As a result, a total of 182 differen-
tial metabolites were identified, including 125 differential
metabolites for S1, 88 differential metabolites for S2, and 7
differential metabolites for S3 (Figure 4E, Mann–Whitney
U-test, p < 0.05 and FC (subtype/NC) > 1.25 or < 0.8).
Among them, 34 metabolites were differentially regu-
lated in both S1 and S2 subtypes. Further analysis showed
that 85.7% of the 182 metabolites with significant differ-
ences were lipids, of which triglycerides (TGs) and sphin-
gomyelin (SM) dominated. SM, PC, and hexosylceramides
(HexCer) decreased in S1 but dramatically increased in S2
(Figure 4F). Besides, the dynamic changes in SMwere very
interesting. The levels of SM gradually deceased as the
GDS score increased from 5.0 to 7.5, but started to increase
when the GDS score reached 7.5 and more (Figure 4G).
Unlike SMs, TGswere significantly increased in S1 but dra-
matically decreased in S2 and with no significant changes
in S3 compared with normal controls (Figure 4H), which
was further validated by blood biochemistry examination
(Figure 4I). In conclusion, molecular stratification reveals
moremetabolic characteristics ofmental disorders in older
adults.

2.4 Clinical relevance of metabolic
subtypes

To gain more insights into metabolic subtypes, we next
compared their differences in clinical indicators. Several
quality of life indicators, including the physical health
component score (PCS), mental health component score
(MCS), social support rating scale (SSRS), Pittsburgh
sleep quality index (PSQI) score and cognitive disor-
der rate, as well as blood test parameters, including red
blood cell count (RBC), hemoglobin (HGB), albumin–
globulin (A/G), TG, high-density lipoprotein (HDL), low-
density lipoprotein (LDL), and very low-density lipopro-
tein (VLDL), showed significant differences among disease
subtypes and the normal group (p < 0.05, Table 2).
For example, participants in S3, whose metabolic pro-
file and blood biochemical parameters were similar to
those of the normal group (Figure 4F and Table 2), had
the highest quality of life. Participants in S1 had lower
PCS (53.3 ± 19.0) and higher levels of TG (2.57 ± 1.55).
Moreover, more participants in S1 suffered from cognitive
disorder (42.9%). Participants in S2 had the lowest MCS
(62.5 ± 18.4), SRSS (37.5 ± 8.31), and worst sleep quality
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F IGURE 4 Molecular classification of individuals with mental illnesses. (A) Consensus matrix of k = 3 clustered by lipidomics data for
148 individuals with mental disorders. (B) The disease composition of metabolic subtypes. The y-axis represents the counts of participants
diagnosed with ANX, DEP, and COM. (C,D) The statistics of GAD score (C) and GDS score between S1 and S3 or S2 and S3. The significance
between two subtypes was tested by unpaired Student’s t-test. (E) The overlap of significantly changed (Mann–Whitney U-test, p < 0.05 and
FC (subtype/NC) > 1.25 or < 0.8) metabolites between each subtype and normal controls. (F) Heatmap of the significantly changed
metabolites showed in (E). The types of these metabolites are denoted in the left. Heatmap color represents the z score intensity of metabolites;
red indicates high relative intensity, and blue indicates low relative intensity. (G) SM trajectories with the increase of the GDS score. Plasma
SM levels were log2 transformed, and the trajectories of the 40 SMs were estimated by LOESS regression. (H) The distribution of significantly
changed TGs, showed in (E), among normal and subtypes. Test: Mann–Whitney U-test. (I) The levels of TG, measured by blood biochemical
test, in normal and three metabolic subtypes. The significance is tested by unpaired Student’s t-test. ChE: cholesterol ester; DG: diacylglycerol;
HexCer: ceramide coupling galactose series; PC: phosphatidylcholine, PE: phosphatidylethanolamine; PI: phosphatidylinositol; SM:
sphingomyelin; TG: triacylglycerol; NC, normal control; ANX, anxiety; DEP, depression; COM, comorbid anxiety–depressive

(PSQI = 8.53 ± 4.53). HGB (150 ± 16.9) and RBC (4.99 ±
0.47), potential biomarkers of major depressive disorder,
increased in S2.42 In addition, participants in S1 and S2 are
older than those in S3. These results collectively indicate
that participants with similar metabolic profiles may have
similar mental health conditions.

2.5 Age-related risk metabolites for
depressive symptoms

Interestingly, based on the statistics of 6,467 partici-
pants over 50 years old from the WCHAT cohort, we
found that individuals suffering from depression were
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TABLE 2 Clinical relevance of metabolic subtypes

Subtype
Control
(N = 100) S1 (N = 39) S2 (N = 53) S3 (N = 56) p-Value

Agea, mean (SD) 68.8 (10.0) 69.1 (9.23) 69.3 (9.43) 66.9 (8.99) 0.533
BMIa, mean (SD) 23.1 (3.12) 23.8 (3.74) 22.7 (3.69) 23.0 (3.06) 0.527
The quality of life
PCSa, mean (SD) 79.2 (13.1) 53.3 (19.0) 56.0 (19.0) 64.7 (18.8) < 0.001
MCSa, mean (SD) 83.3 (10.9) 64.2 (18.0) 62.5 (18.4) 71.2 (13.4) < 0.001
SRSSa, mean (SD) 43.3 (6.80) 38.9 (7.14) 37.5 (8.31) 40.6 (9.16) < 0.001
PSQIa, mean (SD) 5.81 (3.11) 7.54 (3.52) 8.53 (4.53) 7.93 (4.10) < 0.001

Cognitive disorderb,
No. (%) <0.001
No 95 (95.0%) 24 (57.1%) 39 (78.0%) 44 (78.6%)
Yes 5 (5.00%) 18 (42.9%) 11 (22.0%) 12 (21.4%)

Blood parameters
RBCa, mean (SD) 4.77 (0.55) 4.70 (0.56) 4.99 (0.47) 4.59 (0.59) 0.002
HGBa, mean (SD) 144 (14.7) 142 (18.6) 150 (16.9) 138 (17.5) 0.004
A/Ga, mean (SD) 1.60 (0.23) 1.55 (0.25) 1.52 (0.20) 1.64 (0.24) 0.048
TGa, mean (SD) 1.78 (1.16) 2.57 (1.55) 1.32 (0.76) 1.75 (1.21) < 0.001
HDLa, mean (SD) 1.35 (0.36) 1.13 (0.24) 1.52 (0.34) 1.26 (0.25) < 0.001
LDLa, mean (SD) 2.62 (0.79) 2.44 (0.63) 2.85 (0.91) 2.43 (0.68) 0.019
VLDLa, mean
(SD)

0.81 (0.53) 1.17 (0.71) 0.60 (0.35) 0.80 (0.55) < 0.001

aContinuous variables, ANOVA test.
bCategorical variables, Chi-squared test. BMI: body mass index, calculated as weight in kilograms divided by height in meters squared; PCS: physical health com-
ponent score;MCS:mental health component score; SRSS: social support rating scale; PSQI: Pittsburgh sleep quality index; RBC: red blood cell; HGB: hemoglobin;
A/G: albumin-globulin; TG: triglyceride; HDL: high-density lipoprotein; LDL: low-density lipoprotein; VLDL: very low-density lipoprotein.

significantly older than normal people (Student’s t-test, p
= 0.028, Figure 5A). To identify whether the depression-
associated metabolites were age-correlated, we applied
multiple linear regression to identify metabolites whose
levels were correlated with age in subcohort1 and iden-
tified 155 significantly correlated metabolites (p < 0.05).
To confirm these results, we used another independent
subcohort2 containing 328 mental health individuals from
WCHAT cohort. Multiple linear regression analysis identi-
fied 188 age-associatedmetabolites (p< 0.05). Overlapping
analysis revealed that 17 age-associated metabolites were
identified as potential risk factors for depressive symp-
toms (Figure 5B and Table S1), of which five metabolites
had a lower OR for depressive symptoms and were posi-
tively correlated with age, including creatine (β1 = −0.013,
p < 0.0001; β2 = −0.007, p = 0.0160), ergothioneine (β1 =
−0.026, p = 0.0007; β2 = −0.036, p < 0.0001), DHA (β1 =
−0.011, p = 0.0006; β2 = −0.01, p < 0.0001), DPA (β1 =
−0.007, p= 0.013; β2 =−0.006, p= 0.017), and linoleic acid
(β1 = 0.055, p < 0.0001; β2 = 0.055, p < 0.0001, Figure 5C).
Of the 17 age-associated risk metabolites for depressive
symptoms, 12 had a higher OR for depressive symptoms,
and their levels were positively correlated with age, such

as p-cresol sulfate (log2(OR) = 0.28, 95% CI: 0.01–0.58, p
= 0.0484; β1 = 0.055, p < 0.0001; β2 = 0.055, p < 0.0001),
L-cystine (β1 = 0.014, p < 0.0001; β2 = 0.016, p < 0.0001),
homogentisic acid (β1 = 0.040, p < 0.0001; β2 = 0.022, p
= 0.0156), D-Arabitol (β1 = 0.013, p = 0.0103; β2 = 0.021, p
< 0.0001), and L-kynurenine (β1 = 0.012, p < 0.0001; β2 =
0.014, p < 0.0001, Figure 5D).
To explore whether the above 17 age- and depression-

associated metabolites were differentially regulated
in three metabolic subtypes, overlapping analysis
between the 17 metabolites and the 255 metabo-
lites that significantly varied among the three
subtypes (Kruskal–Wallis test, p < 0.05) was performed.
As a result, seven metabolites including linoleic acid,
Cer(d34:1), butyrylcarnitine, N-alpha-acetyllysine, L-
kynurenine, D-arabitol, and deoxyribose were obtained
(Figure 6A and Table S2). Linoleic acid is reduced in
depression and higher in S3, but the other six metabo-
lites showed the opposite trend (Figure 6B–H). For
example, Cer(d34:1), which has a higher risk in people
with depression (log2(OR) = 1.66, 95% CI: 0.19–3.23, p =
0.0308) and is positively associated with age (β1 = 0.006,
p = 0.0120; β2 = 0.006, p = 0.0083), was significantly
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F IGURE 5 Age-related metabolites for depressive symptoms. (A) Age distribution of normal, anxiety, depression, and comorbidity in
individuals aged over 50 fromWest China Health and Aging Trend study (WCHAT). The significance was calculated by unpaired Student’s
t-test. (B) Overlap of the differential metabolites for depression and age-related metabolites (multiple linear regression, p < 0.05) in the two
subcohorts. The linear regression model for subcohort1 was adjusted by mental disorder, sex and body mass index (BMI), and for subcohort2
was adjusted by sex and BMI. (B) Seventeen depression-associated metabolites were correlated with age in the two subcohorts. (C,D)
Metabolite trajectories with age. Five metabolites with lower ORs were negatively associated with age (C), and 12 metabolites with higher ORs
were positively correlated with age (D). DM_DEP, differential metabolites between normal and depression; Lm, multiple linear regression;
NC, normal control; ANX, anxiety; DEP, depression; COM, comorbid anxiety–depressive.
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F IGURE 6 Age-related metabolites for metabolic subtypes. (A) Overlap of 17 age- and depression-related metabolites, and 255
differential metabolites among three subtypes (Kruskal–Wallis test, p < 0.05). (B–H) The distribution of linoleic acid (B), Cer(d34:1) (C),
butyrylcarnitine (D), N-alpha-acetyllysine (E), L-kynurenine (F), D-arabitol (G), and deoxyribose (H) among three metabolic subtypes. Test:
Kruskal–Wallis test

increased in S2, which indicates that the increase in
Cer(d34:1) may be an important signature for geriatric
depression (Figure 6C). Together, we identified some age-
related metabolites as potential risk factors for depressive
symptoms.

3 DISCUSSION

In this study, based on a prospective multi-center cohort
WCHAT, we investigated the association between dysregu-
latedmetabolism andmental disorders and the connection
between age and depression. Several interesting findings
were gained. First, we presented the potential metabolic
risk factors for anxiety, depression, and comorbid anxiety-
depressive disorder for older adults in Western China.
The more severe the mental disorders were, the more
dysregulated metabolites, especially lipids, were in their
blood. Second, we disclosed that individuals with differ-
ent mental disorders but close metabolic profiles most
likely had similar clinical phenotypes, and the metabolic
profile might serve as a progression indicator of mental
illnesses. Third, we confirmed that patients who suffered
from geriatric depression were older than normal peo-
ple, and 17 age-associated metabolites were identified as
potential risk factors for depressive symptoms. Among
them, five metabolites negatively correlated with age
showed a lower risk for geriatric depression, including cre-
atine, ergothioneine, DHA, DPA, and linoleic acid. Twelve

metabolites, such as p-cresol sulfate, homogentisic acid,
D-arabitol, Cer(d34:1), and kynurenine, were positively
associated with age and showed a higher risk for geriatric
depression.
Inflammaging is associated with many age-related dis-

orders, including geriatric depression, probably induced
by pronounced and prolonged immune responses.43,44
The imbalance of many endogenous proinflammatory and
anti-inflammatory chemicals is associated with mental
disorders. For example, benzenebutanoic acid ameliorates
lipopolysaccharide-induced anxiety and depressive-like
behavior by reducing oxidation stress and the neuroin-
flammatory cascade.45,46 1-Methylnicotinamide, a main
metabolite of nicotinamide, is anti-inflammatory and can
ameliorate chronic unpredictable mild stress (CUMS)-
induced depression.47,48 In addition, polyunsaturated
fatty acids (PUFAs) are important in regulating redox
balance. Dietary supplementation with omega-3 PUFAs,
such as linolenic acid, EPA, DHA, and DPA, can prevent
geriatric depression,49 probably by binding to mediators
of inflammation, such as PPARγ, resolvins, and GPR120.50
A previous study demonstrated that a high level of serum
linoleic acid, an omega-6 PUFA, may be protectively asso-
ciated with depression.51 In the present study, a reduction
in plasma linoleic acid was not only a potential risk factor
for geriatric depressive symptoms but also for anxiety and
comorbid anxiety-depressive symptoms. The mechanism
by which linoleic acid protects mental health may require
more investigation. In addition, the antidepressants
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and horticultural therapy are also useful methods to
reduce proinflammatory cytokines and improve mental
health.28,52
Unlike hydrophilic metabolites,21,53 the relevance of

lipid imbalance to mental illnesses is still less under-
stood. Metabolic classification in this study discloses
obvious lipid dysregulation occurring in severe mental
disorders. Comparative analysis revealed that S1 and S2
are metabolism-associated subtypes with severe mental
illnesses, while S3 is metabolism-independent with mild
mental disorders. SM is a major sphingolipid that is
specifically enriched in membranes of mammalian cells.54
Dysregulated transformation of SM to ceramide (Cer) may
induce mental disorders.55 The antidepressants amitripty-
line and fluoxetine can reduce the activity of ASM and
the concentration of Cer in the hippocampus.56 In this
study, we found that the abundance of SMs were distinct
in metabolic subtypes and changed in a wave-like man-
ner in participants as GDS score increased. In the early
stage of depression, SM decreases, and the production of
myelin becomes less sufficient, which may impair cogni-
tion. As the progression of depression worsens, SM starts
to increase, leading to increased downstream metabolites
such as HexCer and Cer(d34:1), which may further accel-
erate mental illness. Moreover, increased SM may also
induce the occurrence of other comorbid diseases, such as
CAD, reducing people’s quality of life.57 Therefore, due to
distinct profiles of SM and Cer in patients, precise treat-
ment by inhibiting the activity of ASM to reduce Cermight
be more effective in patients with high Cer.
TG is another kind of lipid showing distinct levels

among metabolic subtypes. The levels of blood TGs in
S1 participants were very high, while the situation was
reversed in S2. People in the S1 subgroup had higher GDS
scores, worse physical health, and suffered more from
cognitive impairment, which may be associated with the
abnormal increase in TGs. Elevated levels of TGs in blood
are associated with unstable blood sugar levels and insulin
resistance, both of which are risk factors for diabetes.58
Diabetes and mental health are tightly connected and
interact,59,60 and both type 1 and type 2 diabetes can
increase the risk of depression. Moreover, elevated serum
concentrations of TGs are also risk factors for cognitive
impairment associated with leptin resistance.61,62
People with mental disorders usually have psychoso-

cial functioning limitations, poor physical function, and
diminished quality of life.63 However, questionnaires such
as the GDS-15 or GAD-7 underestimate these issues.64
Based on the clinical statistics of metabolic subtypes, indi-
viduals in S1 and S2 suffer greatly from these issues, while
individuals in S3 have a much better quality of life, which
indicates that metabolic changes could reflect the sever-
ity of mental disorders. If a person is diagnosed with mild

mental illness but his/her metabolic profile is similar to
that of the population with more severe mental disor-
ders, doctors should pay more attention to his/her overall
health. In a word, similar metabolic profiles are associated
with close clinical phenotypes such as quality of life, social
support, sleep quality, and cognitive levels in participants
with mental disorders. The severer the mental disorder is,
the more dysregulated metabolites could be found. The
mental health assessment may be more accurate if the
metabolic profile of an individual is considered.
Some metabolites that increase with age, such as p-

cresol sulfate, homogentisic acid, and kynurenine, are
proinflammatory chemicals associated with a higher risk
of geriatric depression.65–68 The increase in homogentisic
acid, a metabolic disorder that ultimately prompts the
development of inflammatory arthritis by generating O2

−,
H2O2, and •OH by autoxidation,69 may contribute to high
oxidation stress and exacerbate depressive symptoms in
older adults. Homogentisic acid oxidase is an enzyme
involved in the catabolism of homogentisic acid. Increas-
ing the enzyme activity of homogentisic acid oxidase
may be beneficial for alleviating depressive symptoms.70
Besides, there is growing evidence indicating that the
kynurenine pathway is involved in the pathophysiology
of depression.71 Kynurenine is a metabolite of trypto-
phan catalyzed by tryptophan 2,3-dioxygenase (TDO)
and indoleamine 2,3-dioxygenase (IDO1).72 Inflammation-
induced activation of IDO1 by proinflammatory cytokines
may lead to an age-related increase in kynurenine.72 An
imbalance in the kynurenine metabolic pathway is associ-
ated with the incidence of depression. In major depressive
disorder, peripheral kynurenine is preferentially converted
to neurotoxin and quinolinic acid rather than neuroprotec-
tive kynurenic acid.73 p-Cresol sulfate is a protein-bound
uremic toxin derived from tyrosine and phenylalanine in
the liver and gut. Because of the albumin-binding capacity,
the gut microbiota metabolite p-cresol sulfate accumu-
lates in the blood during renal function decrease and
aging.74,75 Circulating p-cresol sulfate increases oxidative
stress and neuroinflammation, which may be a cause of
depression.76
There are still some limitations that should be noted

in this study. First, the metabolic disturbance that iden-
tified in mental disorders should be validated in another
geriatric population. Second, metabolic disturbance iden-
tified in this study for mental illness should be further
confirmed in brain tissues, which could promote the inves-
tigation of their functions for the development of disease.
Third, more examination should be concentrated on the
application of metabolic classification for the assessment
of mental illness. Besides, many other metabolites also
increased with age and were associated with a higher risk
of depressive symptoms, such as D-arabitol, deoxyribose,
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and N-alpha-acetyllysine, but their roles and mechanisms
in the development of depression are unclear.

4 MATERIALS ANDMETHODS

4.1 Participants and study design

WCHAT is an ongoing population-based cohort study of
community-dwelling older adults aged over 50 in Western
China. The depressive and anxiety symptoms of partici-
pants were assessed by two doctors through the GDS-15
and GAD-7 questionnaire, respectively, with a threshold
score of 5.77–79 The demographic and clinical variables
assessed by two doctors using the structured question-
naire, included age, sex, smoking, drinking wine, PCS,
MCS, SSRS, and PSQI. Height and weight were measured
on a height scale (CSTF-5000) and bioelectrical impedance
analysis (Inbody 770), respectively. BMI was calculated
as weight in kilograms divided by height in meters
squared.
A total of 6,467 participants met the inclusion criteria:

(1) age > 50 years; (2) no missing data on depression or
anxiety; and (3) having human plasma samples at baseline
in the WCHAT study. Among them, 248 WCHAT partic-
ipants, including 41 individuals with comorbid anxiety-
depressive disorder (GAD score> 5 and GDS score> 5), 52
personswith depression (onlyGDS score> 5), 55 caseswith
anxiety (only GAD score > 5), and 100 control participants
(GDS score and GAD score are less than 1), without tumor
and other severe disease, were randomly selected for this
study. To validate age-related metabolites, we sampled an
additional 328 mentally healthy individuals, which were
alsowithout tumor and other severe disease, fromWCHAT
(GDS score < 5 and GAD score < 5).
Fasting blood samples were collected in EDTA-coated 10

ml tubes. Plasma was isolated by centrifugation at 1600 ×g
for 10 min at 4◦C. The supernatant was divided into equal
volumes, transferred into liquid nitrogen for 3 min, and
finally stored at −80◦C until LC–MS/MS analysis.

4.2 Extraction of metabolites and lipids

Hydrophilic metabolites were extracted from plasma
using four volumes of methanol, and lipids were
extracted with liquid–liquid extraction by adding
dichloromethane/methanol (v/v = 2:1). Untargeted
metabolomics and lipidomics were carried out at the
Facility Center of Metabolomics and Lipidomics of
Tsinghua University.80–82
The plasma samples were centrifuged at 14,000 ×g

for 20 min at 4◦C, and then 90 μl of plasma was used

for the extraction of hydrophilic metabolites and lipids.
QC samples consisted of mixed plasma samples. 13C

6
L-Lysine hydrochloride powder (Silantes) and 13C

6
15N4 L-

arginine hydrochloride powder (Silantes) were added as
the internal standards for the hydrophilic metabolites. PE
(16:0-d31-18:1) was added as the internal standard for the
lipids.
Polar metabolites were extracted using prechilled

methanol (MS grade) according to the method of Yuan
et al.83 After adding 360 μl of methanol, the samples
were vortexed and stored at −80◦C for 1 h and then
centrifuged at 14,000 ×g for 10 min. Equal volumes of
supernatant were collected and transferred to a new tube
and finally dried in a vacuum centrifuge. To monitor the
performance of data acquisition, Gln-N15, inosine-4N15,
and Trp-D5 were added as internal standards for the
positive mode, and cholic acid-D4, inosine-4N15, stearic
acid-D35, succinate-D4, and Trp-D5 were added as inter-
nal standards for the negative mode before LC–MS/MS
analysis.
Lipids were extracted according to the method of

Bligh and Dyer.84 The plasma was extracted by adding
360 μl of prechilled dichloromethane/methanol mixture
(v:v = 2:1, MS grade). After enough vortex, the sam-
ples were centrifuged at 300 rpm for 15 min at 4◦C.
Subsequently, the lower dichloromethane layer was col-
lected and transferred to a new tube. Then, prechilled
water (MS grade) (1/5 volume of dichloromethane) was
added for re-extraction and centrifuged at 10,000 rpm
for 20 min at 4◦C. The lower dichloromethane layer
containing lipids was collected and dried in speedvac-
uum. D31-Cer(d18:1_16:0), DG(14:0_14:0), PC(14:0_14:0),
PE(14:0_14:0), D31-PE(16:0_18:1), and PS(14:0_14:0) were
added as internal standards before LC–MS/MS analysis.

4.3 Mass spectrometry analyses of polar
metabolites and lipids

Mass spectrometry analyses of polarmetabolites and lipids
were carried out by the Facility Center of Metabolomics
and Lipidomics of Tsinghua University, according to the
method described by Tang et al.85 Metabolomics analy-
sis was performed using a BEH Amide column (Waters,
USA) in the positive ion mode and a BEH C18 column
(Waters, USA) in the negative ion mode. Lipidomics was
performed using a CORTECS C18 column (Waters, USA).
PooledQCs formetabolomics and lipidomicswere inserted
for every 15–20 injections of plasma samples. Polarmetabo-
lites were assigned using TraceFinder (Thermo, CA) based
on an in-house database. Standard MS/MS spectra of over
1,500 metabolites were included in the database. Lipids
were identified using Lipidsearch (Thermo, CA) software.
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Only lipids with reliable MS/MS were considered in the
subsequent statistical analysis.

4.4 Statistical analysis

After filtering themetabolites undetected in> 20% of sam-
ples and with a coefficient of variation (CV) of QCs >
30%, we normalized the total intensities of all samples. The
missing values were imputed by K-nearest neighbor algo-
rithms (Rpackage:NormalizeMets). T-distributed stochas-
tic neighbor embedding (t-SNE) analysis was applied to
evaluate the quality of the data. To determine the differen-
tial metabolites between normal and anxiety, depression,
or comorbid anxiety-depressive disorder, we built a multi-
ple logistic regression model shown below:

Mental disorder ∼ 𝛼 + 𝛽1metabolite level + 𝛽2 age

+𝛽3 sex + 𝛽4BMI.

We defined metabolites with p < 0.05 between psy-
chiatric patients and normal individuals as significantly
changed metabolites.
Then, we used multiple linear regression to explore the

age-related metabolites for the two subcohorts. The mod-
els are shown below. Subcohort1, Metabolite level ∼ α+ β1
mental disorder + β2 age + β3 sex + β4 BMI; subcohort2,
metabolite level∼ α+ β1 age+ β2 sex+ β3 BMI.We defined
metabolites with p < 0.05 as those significantly associated
with age.
Consensus clustering of lipidomics data was carried out

to determine the metabolic subtypes of participants with
anxiety and/or depression and to seed random (R package:
ConsensusCluster Plus).86 The top 150 lipids that varied
among the 148 individuals were used for k-means cluster-
ing. Up to eight clusters were tested, and the distance was
measured by Euclidean distance. The consensus matrices
for k = 2–8 are shown in Figure S1A–G. Clustering with
k = 3 had the lowest proportion of ambiguous clustering
(PAC), and subtypes were separated clearly, which means
k = 3 is the optimal cluster. In addition, the cumulative
distribution function (CDF) curve showed that when k =
3, the descent gradient was the minimum (Figure S1H).
Taken together, metabolic subtypes of mental disorders
were defined by k-means consensus clustering with an
optimal k = 3.
Normality tests revealed that the metabolites were

almost skewed in the distribution. Therefore, the signifi-
cance of metabolites between subtypes and normal were
tested by the Mann–Whitney U-test. Significantly differ-
ent metabolites in metabolic subtypes were screened with
p < 0.05. FC (subtype/NC) > 1.25 or < 0.8. In addition,

we applied the Kruskal–Wallis test to identify the signifi-
cantly changedmetabolites among the three subtypes (p<
0.05). Clinical information and blood biochemical indexes
for participants were normally distributed and tested by
parametric tests. Unpaired Student’s t-test and one-way
ANOVA test were used for the continuous variables of
two groups and multiple groups, respectively. Classified
variables were tested by the Chi-squared test.
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