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Abstract

Severe maternal morbidity (SMM) is broadly defined as significant complications in pregnancy 

that have an adverse effect on women’s health. Identifying women who experience SMM and 

reviewing their obstetric care can assist healthcare organizations in recognizing risk factors and 

best practices for management. Various definitions of SMM have been posited, but there is no 

consensus. Existing definitions are further limited in that they 1) are often rooted in existing 

clinical knowledge (which is problematic as many risk factors remain unknown), leading to poor 

positive predictive performance (PPV), and 2) have limited scalability as they often require 

substantial chart review. Thus, in this paper, a machine learning framework was introduced to 

automatically identify SMM and relevant risk factors from electronic health records (EHRs). We 

evaluated this framework with EHR data from 45,858 deliveries at a large academic medical 

center. The framework outperformed a state-of-the-art model from the U.S. Centers for Disease 

Control and Prevention (AUC of 0.94 vs. 0.80). Specially, it improved upon PPV by 59% (CDC: 

0.22 vs. our model: 0.35). In the process, we revealed several novel SMM indicators, including 

disorders of fluid or electrolytes, systemic inflammatory response syndrome, and acidosis.
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Introduction

Severe maternal morbidity (SMM) is a physical condition that results from, or is aggravated 

by, pregnancy and has an adverse effect on a woman’s health. [1] SMM is an umbrella for 
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various phenomena, including but not limited to, cardiomyopathy, hemorrhage, organ 

failure, pregnancy-induced hypertension and embolism, pulmonary embolism sepsis, seizure 

shock, severe amniotic fluid embolism, and uterine rupture. SMM can be considered a near 

miss for maternal mortality because, without in-time identification and treatment, these 

conditions can lead to maternal death [2; 3]. Thus, SMM is utilized as a new indicator of the 

quality of maternal health. [4] Its prevalence has steadily increased in low- and middle-

income countries, as well as the developed world. [4–6] It now affects around 60,000 women 

in the U.S each year. [6] At the same time, the U.S. Department of Health Resource and 

Services Administration has increasingly focused on reducing the rate of SMM and 

improving its survival rate [7].

Identifying women who experience SMM and reviewing their obstetric charts can enable 

clinicians and healthcare organizations, more generally, to better understand the primary 

etiologies and contributing factors of SMM. In doing so, this can lead to a refinement of care 

management practices to prevent SMM or improve the quality of its management. However, 

there are major challenges in identifying SMM, which partially arise due to the lack of a 

consensus definition. For instance, the Centers for Disease Control and Prevention (CDC) 

has provided a definition based on 25 SMM indicators in the form of diagnosis and 

procedure codes [1]. The CDC definition is straightforward to specify and, thus, easy to 

implement in that International Classification of Disease (ICD) codes are readily available in 

hospital discharge data. However, it does not indicate the severity of maternal morbidity and, 

as a result, its application leads to many false positives and negatives. [8]

Another popular definition of SMM has been proposed by experts from the American 

College of Obstetricians and Gynecologists (ACOG) and the Society for Maternal-Fetal 

Medicine (SMFM). This definition is a guideline that allows for each birthing facility to 

determine their own SMM criteria [8; 9]. The guidelines are based on two primary factors: i) 

admission to an intensive care unit (ICU) or ii) transfusion of four or more units of blood. 

[7] These may be supplemented by other factors, such as intubation for at least 12 hours, 

organ system failure, and unanticipated surgical intervention [8]. Although SMM 

identification approaches built upon the guidelines can achieve high levels of performance 

[8], they have several deficiencies. First, the approach designed for one facility cannot be 

directly applied by another facility. This is because the risk factors used are often facility-

specific and are unique unto a facility. [6] Second, the process of SMM identification 

requires substantial manual effort in the form of in-depth chart reviews, which incurs a 

nontrivial amount of time and effort.

Recent studies have shown that machine learning algorithms along with data in electronic 

health records (EHR) can be leveraged to identify or predict a variety of diseases [10–11]. 

For example, supervised machine learning algorithms were applied to identify different 

types of cancers and their progression pathways [11]. Another example [10] is the 

application of deep learning algorithms to predict Alzheimer’s disease in its early stage. To 

identify SMM during delivery hospitalizations, we introduce a machine learning framework 

that incorporates data in EHRs. This framework has several notable benefits in that 1) it 

leverages standardized clinical terminologies as inputs, and thus models developed under the 

framework can be applied in EHRs of other facilities; 2) it can deal with over a thousand 
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clinical concepts with reduced manual effort; and 3) it allows for the discovery of novel 

factors to identify SMM.

Methods

We begin this section with a description of the data workflow as shown in Figure 1. First, 

before feeding data into the classification model, we annotate EHRs as SMM cases and 

controls. The classification model is then evaluated in terms of area under the receiver 

operating characteristic (ROC) curve (AUC). Lastly, risk factors are ranked according to 

odds ratios and their contributions to the performance of the classification models.

Dataset

We collected 13 years of data (2005 to 2018) from the Vanderbilt University Medical Center 

(VUMC) EHR system, which includes 45,858 deliveries for obstetric inpatients. This dataset 

includes patient demographics (e.g., age and race), admission notes, discharge summaries, 

and clinical concepts in the form of diagnoses (ICDs) and procedures (CPTs). A summary of 

the medical concepts and demographics are provided in Tables 1 and Table 2, respectively. 

We note that the diagnosis and procedure codes were transformed into standard 

terminologies defined under the Observational Medical Outcomes Partnership (OMOP) 

common data model, operated by the Observational Health Data Sciences and Informatics 

(OHDSI) consortia [12]. All these codes in this study are called medical concepts.

In Table 1, it can be seen that deliveries with SMM have more assigned diagnoses and 

procedures than those without SMM. This implies that deliveries with SMM are more 

complicated. There was a total 3,972 unique diagnosis concepts and 1,581 unique procedural 

concepts. In Table 2, it can be seen that there was a greater percentage of black women 

experiencing SMM (24%) than those without (18.5%).

Cohort construction

We use the criteria four or more units of blood transfusion or ICU admission developed by 

the ACOG to identify SMM candidates [8]. Using this criterion, 594 SMM candidates were 

identified. Obstetricians then reviewed the charts for these candidates and excluded 182 

candidates who did not experience SMM. Our final cohort contained 412 SMM cases (0.9% 

of all deliveries). We assume that all of the remaining deliveries were controls. We 

acknowledge that the controls may contain a small number of SMM cases that cannot be 

captured by the ACOG criteria. A recent study [8] shows the number of missed cases is 

likely too small to impact the performance of identification models.

SMM identification models

Feature engineering—For each instance, we extract their assigned diagnoses and 

procedures represented by medical concepts using the OMOP common data model. Each 

medical concept is treated as a binary feature, where 1 indicates a patient was assigned the 

concept during the delivery and 0 otherwise.
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Since the number of diagnoses (3,972) and procedures (1,581) is substantially larger than the 

number of positive instances, which may influence the performances of machine learning 

models. As such, we aim to do feature selection before applying machine learning models. 

To orient the system to be more generalizable, we adopt a filter feature selection algorithm 

without using class information (i.e., SMM vs. Non-SMM) and machine learning models. 

The feature selection algorithm ranks the concepts according to their frequency occurring in 

the investigated patient population. We incrementally add top ranking features into the 

machine learning models. Specifically, we train models using the top 10%, 20%, 40%, 80% 

and 100% of the features

Balanced versus unbalanced cohorts—As noted earlier, the dataset is highly 

imbalanced - less than 1% of the women experienced SMM. As such, learning models based 

on the observed case to control ratio could lead to bias in the model. To mitigate this 

problem, we randomly sample controls (Non-SMM) from the data to investigate case:control 

ratios in the form of 1:1, 1:4, 1:16 and 1:64. In addition, we evaluated how the ratio impacts 

the performance of machine learning models to identify SMM from the natural case:control 

ratio.

Regularized logistic regression models

We train four types of models: M0: 〈CDC-25, no learning〉 The CDC model, which 

leverages 25 indicators to identify SMM. This model is considered as the baseline.

M1: 〈diagnoses, ridge logistic regression〉 The features are diagnosis concepts and ridge 

logistic regression (L2) is used as machine learning models. Under this category, we train 

regression models using top 10%, 20%, 40%, 80% and 100% of the diagnosis codes, and 

datasets with case:control ratios as 1:1, 1:4, 1:16 and 1:64.

M2: 〈procedures, ridge logistic regression〉 The features are procedural concepts and ridge 

logistic regression is used as machine learning models. We use the same strategy in M1 to 

train the regression models.

M3: 〈diagnoses and procedures, ridge logistic regression〉 The features are diagnosis and 

procedural concepts and ridge logistic regression is used as machine learning models. We 

use the same strategy in M1 to train regression models.

For each model, we apply 10-fold stratified cross-validation. The performance of models is 

measured in terms of sensitivity (SN), specificity (SP), positive predictive value (PPV), and 

AUC.

Medical concept ranking algorithm—To determine which medical concepts play more 

important roles in identifying SMM, we use the following equation to rank concepts:

Fimp
j = ∑i = 1

10 AUCi
∑l = 1

10 AUCi
βi

j,
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where Fimp
j  is the overall importance of the jth concept and βi

j is the coefficient of the jth 

concept for the ith cross-validation model. The medical concept importance is adjusted by 

the model performance (AUC) and the importance of a concept within a model (coefficient). 

The larger the value of Fimp
j  is, the more important the jth concept is. For instance, imagine 

we train two models m1 and m2 on two medical concepts c1 and c2, such that the AUC of the 

models was 0.8 and 0.9, respectively. It was found that the coefficients of the two concepts 

in m1 and m2 was (0.6, 0.4) and (0.8, 0.2) respectively. According to our approach, the 

importance of medical concept c1 is (0.8 / (0.8 + 0.9)) × 0.6 + (0.9 / (0.8 + 0.9)) × 0.8, or 

0.71.

We learn a logistic regression model based on the medical concepts with the largest 

importance scores, along with age and race. Odds ratios are calculated for each feature in the 

SMM and non-SMM classes along with their corresponding p-values. The OR was adjusted 

for age and race and the p-value was subject to a Bonferroni correction.

Results

Influence of the number of features

We use the natural proportion of cases to controls to train and validate models using the top 

10%, 20%, 40%, 80% and 100% of concepts. The performance (in terms of AUC, SN, SP, 

and PPV and the corresponding 95% confidence interval) is depicted in Figure 2.

In Figure 2(a), it can be seen that M1, M2, and M3 outperform the baseline M0. Their 

performance improves as more features are added into these models, with an increase in 

AUC from 0.919 to 0.937. At each percentage of features, model M3 exhibits the best 

performance of all three models. Model M3 with 80% of features achieves the best AUC of 

0.937, which is 18.6% better than M0 (0.790).

Figures 2(b) and 2(c) show the specificity and sensitivity with respect to the percentage of 

features considered. It is observed that the best specificity is achieved at 10% of the features 

for M1, improving by about 1% over the baseline model M0, while the sensitivity improves 

by 25% from 0.614 for M0 to 0.765 for M3 (which occurs when 80% of the features are 

used). Figure 2(d) shows the PPV for the models. The PPV clearly improves through M1, 

M2, and M3, where M2 has the best PPV 0.347 (which occurs when 80% of the features are 

used), which is 57% better than that achieved by the baseline M0.

Influence of the case:control ratio

Figure 3 shows the identification performance under different case:control ratios with all the 

features. It is notable that the performance does not always improve as the sampling ratio 

increases. M1 and M3 achieve the best AUC for the 1:64 sampling ratio while M2 achieves 

the best AUC at 1:4.

Important concepts

We rank features using M3 with 80% of concepts because it exhibits the best AUC under a 

natural ratio of cases and controls. Out of 5,553 concepts, the top 10 positive concepts are 
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reported in Table 3. The ranks of these features are reported, along with their concept names 

and odds ratios.

The concepts in Table 3 can be categorized into three groups. The first group is respiratory-

related, including the 4th concept. This has face value as patients with acute respiratory 

failure may need to be intubated or are dependent on ventilation. This leads to the second 

group, which includes the 1st, 2nd, and 5th concepts. These concepts indicate that most of the 

patients who are intubated or need ventilation assistance experience SMM. The procedural 

concept “Critical care, evaluation and management of the critically ill or critically injured 
patient” (3rd concept) is positively associated with SMM.

In addition, three novel risk factors (7th, 8th, and 9th concepts) were found to be associated 

with SMM in this study. Most of the patients that were assigned these concepts experienced 

SMM. To the best of our knowledge, these concepts have not been reported in the literature 

nor are they in the CDC definition.

Discussion and Conclusions

SMM often leads to adverse outcomes, including prolonged length of stay and an increased 

rate of postpartum readmission. The machine learning-based framework introduced in this 

paper can enable the automatic identification of SMM events, based on diagnosis, 

procedural and demographic features, and provide intuition into risk factors associated with 

SMM. In particular, this work has two notable findings.

First, the framework shows that the machine learning approach outperforms the baseline 

model (CDC criteria) in terms of AUC, positive predictive value and sensitivity. As such, we 

believe that a greater number of SMM cases can be identified through our framework, with a 

smaller false positive rate, than that is currently achieved through current best practice. This 

should substantially reduce the amount of manual effort to identify SMM instances. In 

addition, since we rely on the OMOP common data model, the proposed framework is likely 

to be generalized to other institutions.

Second, our model uncover potentially novel concepts that are positively associated with 

SMM. 85% (23 of 27) patients diagnosed with fluid and/or electrolytes disorder experienced 

SMM during their delivery hospitalization. Similarly, 82% (23 of 28) patients diagnosed 

with systemic inflammatory response syndrome developed SMM.

Despite these findings, it should be recognized that this is a pilot study and there are several 

limitations that need to be addressed as this line of research moves forward.

First, we assumed that our constructed control group does not contain any SMM cases; 

however, this is not guaranteed. It is challenging to solve such a limitation in a pilot study. 

This is because it would require substantial effort to review all 45,446 control instances to 

identify missed SMM cases. A recent study indicates that there may exist 1 SMM cases per 

10,000 samples in the control group [9]. Still, given to the small missed-case:control ratio 

(1:10000), this situation likely has little impact on the performance of the SMM 

identification models.
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Second, we only applied the simplest machine learning algorithm-logistic regression in this 

study and many other advanced machine learning algorithms are missing. We anticipate 

adding neural networks, decision tree, support vector machine (SVM), and gradient boosting 

classifier in our next-step study to improve SMM identification performances.

Third, more advanced feature selection algorithms can be used to preselect candidate 

features feeding the machine learning models. In this study, we preselected candidate 

features feeding machine learning models based on their frequency occurring in the patient 

population, which does not consider correlations between features. The performance of 

machine learning models can be improved by removing duplicated features.

Fourth, we only considered diagnosis and procedural features and neglected many other 

important features including laboratory variables, medications, and vital signs, which may 

be related to SMM.

Fifth, the concepts assigned to patients were considered in an atemporal fashion. It can 

potentially boost identification performance to model temporal relation between concepts. 

Yet chronological information between concepts reflects how SMM develops and is handled. 

Such information would be useful for characterizing how at-risk patients were managed.
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Figure 1–. 
Data workflow
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Figure 2–. 
SMM recognition performance as a function of the number of features in the logistic 

regression model
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Figure 3–. 
AUC performance as a function of SMM case:control ratio
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Table 1–

Summary statistics of diagnosis and procedural concepts assigned to patients

Class Statistiscs # of Diagnoses Assigned # of Procedures Assigned

SMM Mean 31.3 22.7

Median 27 20.5

IQR 22 16

Non-SMM Mean 9.7 8.1

Median 8 8

IQR 6 5

IQR: inter-quartile range
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Table 2–

Summary statistics of patient demographics

Class Age (years) Race (%)

SMM Mean 28.1 White 259 (62.9%)

Median 28 Black 99 (24.0%)

Q1 23 Asian 13 (3.1%)

Q3 33 Other 41 (10.0%)

No evidance of SMM Mean 28.1 White 30,626 (67.4%)

Median 28 Black 8,396 (18.5%)

Q1 24 Asian 2,316 (5.1%)

Q3 32 Other 4,108 (9.0%)

Q1: first quartile; Q3: third quartile
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