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Highlights
A substantial body of scientific knowl-
edge has been established from studies
on the related SARS- and MERS-CoVs,
and their respective diseases. These les-
sons have started to guide SARS-CoV-2
studies, therapeutics, and vaccinology.

The Spike (S) protein is key to CoV infec-
tion and pathogenesis. SARS-CoV-2 S
protein shows a stronger binding affinity
for the host ACE2 receptor and is
uniquely cleaved by furin. Some existing
monoclonal antibodies against SARS-
CoV S protein show cross-reactivity to
SARS-CoV-2, raising their therapeutic
potential against COVID-19.
SARS-Coronavirus-2 (SARS-CoV-2) causes Coronavirus disease 2019
(COVID-19), an infectious respiratory disease causing thousands of deaths
and overwhelming public health systems. The international spread of SARS-
CoV-2 is associated with the ease of global travel, and societal dynamics, immu-
nologic naiveté of the host population, and muted innate immune responses.
Based on these factors and the expanding geographic scale of the disease, the
World Health Organization (WHO) declared the COVID-19 outbreak a pandemic–
the first caused by a coronavirus. In this review, we summarize the current epide-
miological status of COVID-19 and consider the virological and immunological
lessons, animal models, and tools developed in response to prior SARS-CoV
and MERS-CoV outbreaks that can serve as resources for development of
SARS-CoV-2 therapeutics and vaccines. In particular, we discuss structural
insights into the SARS-CoV-2 spike protein, amajor determinant of transmissibility,
and discuss key molecular aspects that will aid in understanding and fighting this
new global threat.
Immunodominant epitopes identified in
SARS-CoV are highly conserved in
SARS-CoV-2 and have a high potential
to elicit functional T cell responses.

Viral inactivation of type I interferon re-
sponses contributes to imbalanced
host cytokine/chemokine responses
that lead to SARS- and MERS-CoV in-
fections and immunopathogenesis.
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The COVID-19 Pandemic to Date
From Emergence in Wuhan to Global Pandemic
In December 2019, a novel human coronavirus (HCoV) was identified as the causative agent of
clusters of pneumonia in China. The virus was named as SARS-CoV-2, based on its phylogenetic
and taxonomic similarity to SARS-CoV [1], which caused an outbreak of severe acute respiratory
syndrome (SARS) in 2002. TheWHO named the disease caused by SARS-CoV-2 as coronavirus
disease 2019 (COVID-19). The first confirmed SARS-CoV-2 case was found in Wuhan, China
(Figure 1A). Subsequently, medical workers and family clusters who had not visitedWuhan tested
positive for SARS-CoV-2, thus confirming human-to-human transmission [2]. SARS-CoV-2
rapidly spread to most countries and has resulted in thousands of fatalities (Figure 1B–D).
WHO declared a pandemic on 11 March 2020. As of 5 May 2020, over 3 500 000 cases have
been confirmed in over 185 countries, with over 243 000 deaths, suggesting a case fatality
rate (CFR) of 6.9% (WHO report 106) (Figure 1B–D). However, nominal CFR are strongly
influenced by the extent of testing of suspected cases and under-testing can result in higher
apparent CFR. In this review, we summarize current progress in epidemiology and detection
methods for SARS-CoV-2 and discuss findings concerning general characteristics of pathogenic
coronaviruses. These studies form the foundation for future efforts to develop vaccines and pre-
and postexposure therapeutics.

Transmissibility of SARS-CoV-2
The spread of an infectious disease is dependent on the transmissibility of the causative
pathogen. The basic reproduction number, R0, is used to measure the potential transmission
of a disease and is defined as the average number of people who will catch a disease from one
contagious person [3]. A higher CFR is generally associated with lower transmissibility
(Figure 1E,F) [4]. Although COVID-19 has a lower mortality risk than SARS and Middle East
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Figure 1. Timeline of Major Events for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), Total Numbers of Coronavirus Disease
2019 (COVID-19) Cases, and Basic Reproduction Number (R0) and Mortality Rate of Select Viruses. (A) Timeline of events, (B) cumulative confirmed
cases, (C) reported deaths, and (D) countries with reported cases. Squares indicates the total number of COVID-19 cases reported worldwide. Circles and triangles
indicate the number of COVID-19 cases reported in China and in other countries, respectively. Data from WHO as of May 5 2020. (E) R0 value indicates the number of
people (colored in blue) infected from one contagious person (colored in red). (F) Case fatality rate (CFR) of select viruses. aCFR is based on patients not receiving therapy.
bData on SARS-CoV-2 are derived from WHO. Abbreviations: Cryo-EM, Cryogenic electron microscopy; ICTV, International Committee on Taxonomy of Viruses; PHEIC,
public health emergency of international concern; WHO, World Health Organization.
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respiratory syndrome (MERS), its rapid spread and higher R0 of ~3 contributed to the WHO
designation of COVID-19 as a pandemic. The transmission of SARS-CoV-2 from infected,
yet asymptomatic, carriers has been reported [5]. A metapopulation model simulation estimated
606 Trends in Microbiology, August 2020, Vol. 28, No. 8
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that the transmission rate by asymptomatic persons or persons with mild symptoms is 55% [6],
which adds to the difficulties in preventing transmission of SARS-CoV-2.

Clinical Manifestations of COVID-19
The most common symptoms of COVID-19 are fever (89.5%), cough (73.4%), dyspnea (38.5%),
and myalgia (31.3%), similar to SARS and MERS (Table 1). The median time from disease onset
to dyspnea in COVID-19 is 8 days (range, 5–13 days) [7]. Another study of 291 patients with
COVID-19 for whom the exposure date was known showed that the median incubation period
was 4 days, with an interquartile range of 2–7 [8].

In patients having confirmed SARS-CoV-2 infection, 15–42% have severe symptoms and some
progress to acute respiratory distress syndrome (ARDS), which can be fatal [8,9]. COVID-19 is
suggested to cause more severe illness in older people and patients with underlying diseases,
such as hypertension, cardiovascular disease, or diabetes [7,10]. The CFR increased consider-
ably among patients aged between 60 and 80 years (30%) and reached 36% in patients older
than 80 years of age [11].

SARS-CoV-2 can also infect younger individuals, including children. Among 731 individuals
younger than 15 years of age with confirmed SARS-CoV-2 infection, 12.9% were asymp-
tomatic, 84% had mild to moderate disease symptoms, and b3% of cases had severe
or life-threatening symptoms [12]. However, SARS-CoV-2 infection in children can still be
fatal. [13].

Interspecies Transmission of CoVs
CoVs have been found to infect humans and a wide variety of domestic and wild vertebrates
[14]. Most CoV infections in animals cause mild to severe gastrointestinal or respiratory
Table 1. Clinical Features of COVID-19, SARS, and MERS
Symptom COVID-19 SARS MERS

Studya

1
(n = 62)
[91]

2
(n = 1099)
[8]

3
(n = 138)
[92]

4
(n = 140)
[9]

5
(n = 41)
[7]

6
(n = 99)
[10]

Range
(average)

7
Range
[93]

8
Range
[94]

Fever 77.4 88.7 98.6 91.7 97.6 82.8
77.4–98.6
(89.5) 99–100 98

Cough 80.6 67.8 59.4 75.0 75.6 81.8
67.8–86.2
(73.4) 62–100 83

Dyspnea – – 31.2 36.7 55.0 31.3
31.2–55.0
(38.5) – –

Myalgia 51.6 14.9 34.8 – 43.9 11.1
11.1–51.6
(31.3) 45–61 32

Panting 3.2 – – – 29.3 – 3.2–29.3 (16.2) – –

Headache 34.4 13.6 6.5 – 7.9 8.1 6.5–34.4 (14.1) 20–56 11

Sore throat – 13.9 17.4 – – 5.1 5.1–17.4 (12.1) 13–25 14

Nausea/vomiting – 5.0 6.3-10 22.3 – 1.0 2.0–22.3 (9.4) 20–35 21

Diarrhea 4.8 3.8 10.1 12.9 2.6 2.0 2.0–12.9 (6.1) 20–25 26

Rhinorrhea – – – – – 4.0 4.0 (4.0) 2–24 6

Abdominal pain – – 2.2 5.8 – – 2.2–5.8 (4.0) – –

aPercentage of study subjects that experienced the indicated symptom; for fields without values, this symptom was not evaluated.
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infections [14]. In humans, CoV infections also cause respiratory illnesses. Four human CoVs,
HCoV 229E, OC43, NL63, and HKU1 are associated with the common cold and have low mor-
bidity [14].

In 2003, the SARS outbreak drew extensive attention to HCoVs. Fever is the most common
clinical sign for SARS-CoV infection [14] and lower respiratory tract symptoms develop several
days after disease onset. Of patients infected with SARS-CoV, 10–20% progressed to respira-
tory failure after initial symptoms failed to resolve [14]. During the SARS outbreak there were
8096 reported cases worldwide and the CFR was 10% (Figure 1F). The human-to-human
transmission of SARS-CoV was controlled by public health measures shortly after the virus
emerged and no infections in humans have been reported since 2004. Another HCoV-
associated respiratory disease caused by MERS-CoV was identified in 2012. Similar to
SARS-CoV, the clinical signs of MERS-CoV infection include fever, cough, and/or shortness
of breath. To date, there have been 2494 laboratory-confirmed MERS-CoV cases, with a
40% CFR (Figure 1F).

Evolution in Host Species and Genetics of Virus–Host Shifts
RNA viruses accumulate substitutions in their genomes due to the low fidelity of viral RNA
polymerases [15]. A typical mutation rate of 1 in 104 results in quasispecies diversity that can
promote viral adaptation and potentially virulence [16]. CoVs undergo substitutions/mutations
that drive CoV evolution [17]. Recombination events also provide another opportunity for the
acquisition or modification of genes by CoVs. Thus, genomic RNA of CoVs can be modified
via several pathways to promote rapid evolution and the ability to spill over into new host
species [17].

Genetic studies revealed molecular evidence indicating that SARS-CoV likely originated from
bats, with civet cats as an intermediate host [17]. MERS-CoV, however, was found to be trans-
mitted to humans via camels [18]. Genetic studies indicate that SARS-CoV-2 likely originated
from a bat CoV [19]. Current reports demonstrated that CoVs from pangolin showed the highest
homology with SARS-CoV-2 in the receptor binding domain in S protein [20,21] and suggest that
the pangolin could be an intermediate host.

Genomic Comparison of SARS-CoV-2 with SARS-CoV and MERS-CoV
The SARS-CoV-2 genome is 29 903 nucleotides, which contains 14 open reading frames
(ORFs) [22] (Figure 2A). ORF1a and 1b encode the polyproteins pp1a and pp1ab, the latter
through a ribosomal frameshifting mechanism at the 1a-1b gene boundary. These polyproteins
are cleaved by viral proteases into 16 nonstructural proteins (nsp). Four ORFs encode structural
proteins such as the spike (S), envelope (E), membrane (M), and nucleocapsid (N) genes.
Between these structural genes, a series of accessory genes encode accessory proteins,
which regulate infection but do not incorporate into the virion (ORFs 3a, 3b, 6, 7a, 7b, 8b,
9b, and 14) (Figure 2A).

The SARS-CoV-2 genome shares 79% and 50% sequence identity with SARS-CoV and
MERS-CoV genome, respectively [19]. The gene arrangement of SARS-CoV-2 is similar
to SARS-CoV, with some variations (Figure 2A). The viroporin 8a protein is present in
SARS-CoV but absent in SARS-CoV-2. This protein was also lost during the SARS pan-
demic in 2003, demonstrating that it is not essential for the virulence [23]. Meanwhile,
the 8b protein is 17 amino acids longer in SARS-CoV-2 than in SARS-CoV and the 3b
protein of SARS-CoV-2 is only 22 amino acids as compared with 154 amino acids for
SARS-CoV.
608 Trends in Microbiology, August 2020, Vol. 28, No. 8
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(A)

(B)

Figure 2. Genomic Distribution of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) and
SARS-CoV. (A) The genomes of SARS-CoV (upper panel) and SARS-CoV-2 (lower panel) are shown as lines and the
open reading frames (ORFs) are represented by gray and colored boxes to indicate those that have similar and different
lengths, respectively. The atomic structure for some of the SARS-CoV-2 proteins is shown in surface representation; main
protease 3CLpro or nonstructural protein 5 (nsp5) with unliganded active site in pink, nsp9 RNA binding protein in cyan,
nsp15 endoribonuclease in marine blue, nsp16–nsp10 complex in green, prefusion spike glycoprotein in gray, and
nucleocapsid protein N terminal RNA binding domain in deep turquoise. For visual clarity, the length of the boxes is not
proportional to the real sequence length and the atomic structures are not proportional to their molecular weight.
(B) Percentage identity matrix for the alignment of SARS-CoV and SARS-CoV-2 amino acids. Abbreviations: PDB, Protein
Data Bank.
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Among the structural proteins E, M, N, and S, the E protein has the highest similarity between
SARS-CoV-2 and SARS-CoV (96% identity) (Figure 2B). The sequence conservation of E could
be due to its critical role in the virus life cycle and, as a transmembrane protein, E is relatively
protected from immune surveillance [24]. The S glycoprotein of SARS-CoV-2 has the largest
sequence divergence (76% identity with SARS-CoV) [25], which likely reflects increased immune
pressure. Indeed, the SARS-CoV-2 S protein has 380 amino acid sequence substitutions
compared with other SARS-like viruses [26].
Trends in Microbiology, August 2020, Vol. 28, No. 8 609
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CoV Life Cycle
The CoV life cycle (Figure 3) begins with interactions between S on the virion surface and specific
virus receptors. HCoV-NL63 [27], SARS-CoV [28], and SARS-CoV-2 use angiotensin converting
enzyme 2 (ACE2) as a receptor [29]. The entry of the virus is through receptor-mediated endocy-
tosis, followed by fusion of viral and host cell membranes [30]. A fusion event also occurs
between viral particles and the plasma membrane on the cell surface [31]. Exposure to low pH
in the endosome activates host proteases, such as cathepsin L and TMPRSS2, that cleave the
S protein [30]. This cleavage induces a conformational change in the S protein that promotes
fusion between virus and cell membranes and subsequent release of viral genomic RNA into
the cytoplasm. Viral genomic RNA serves as an mRNA for translation [32]. Two viral proteases,
nsp3 (PLpro) and nsp5 (3CLpro), cleave the polyproteins that comprise mature nsps [32].
nsp3, nsp4, and nsp6 also modify the endoplasmic reticulum (ER) membrane to yield unique
membrane structures termed double-membrane vesicles (DMVs) [33–35]. Viral RNA transcription
is carried out in the DMV, where viral RNAs are protected from host pattern recognition receptors
[33]. The N protein interacts with genomic RNA to form the ribonucleoprotein complex [36], which
is recruited to the viral assembly site, the ER–Golgi intermediate compartment where viral parti-
cles are formed [37]. Following viral assembly, the newly formed viral particles are transported
to the cell surface in vesicles and released by exocytosis [30].

Structural Insights into SARS-CoV-2 S-Receptor and -Antibody Interactions
Unique Furin Cleavage Site in the SARS-CoV-2 S Protein
The SARS-CoV-2 S protein has 1273 amino acids and can be divided in two domains, S1 and S2
(Figure 4A). S1 contains the receptor-binding domain (RBD) and facilitates attachment of the virus
to host cells. S2 drives fusion of viral and host membrane and contains the fusion peptide [38],
two heptad repeat regions, and the transmembrane domain that anchors S in the viral membrane
[39]. The SARS-CoV-2 S protein trimerizes to form a metastable prefusion spike [Protein Data
Bank (PDB): 6vsb] [40]; Figure 4A) in which S1 stabilizes S2, including the fusion peptide.
Under this conformation, SARS-CoV-2 S1 and S2 domains are separated by a flexible loop con-
taining a cleavage site that is exposed and accessible to host proteases (Figure 4A). Cleavage
triggers irreversible conformational changes that are required for membrane fusion to occur
[31,41,42].

Both SARS-CoV-2 S and SARS-CoV S are activated by enzymatic cleavage at two sites: S1/S2
and S2′. The S2′ cleavage sites are similar, but the S1/S2 cleavage sites differ. The earlier SARS-
CoV encodes a single arginine [43] while SARS-CoV-2 encodes PRRAR [44]. Both viral S proteins
are primed by the serine protease TMPRSS2 in human cells [29], while SARS-CoV-2 can
additionally be cleaved by furin at its unique RRAR site. It has been hypothesized that furin-
mediated precleavage at the S1/S2 site is important for subsequent S activation by TMPRSS2,
as demonstrated previously for other CoVs [29,31]. The proline inserted before the RRAR
cleavage site could promote addition of O-linked glycans [45]. However, the importance of this
proline and any associated glycans are not yet understood. The S2′ cleavage site for SARS-
CoV and SARS-CoV-2 (Arg 797 and Arg 815, respectively) is further required to mediate mem-
brane fusion and entry [41]. Replication-defective vesicular stomatitis virus particles displaying
either SARS-CoV-2 or SARS-CoV S proteins can infect the same range of cell lines, suggesting
that the addition of a new cleavage site and proline do not change virus tropism [29].

SARS-CoV-2-S and ACE2 Interaction
The ability of SARS-CoV to infect a variety of species is linked to changes in the RBDs that affect
ACE2 binding activity [46]. The RBDs of SARS-CoV-2 and SARS-CoV are 76% identical [47] and
structurally very similar (Figure 4B), with similar binding interfaces between ACE2 and SARS-CoV
610 Trends in Microbiology, August 2020, Vol. 28, No. 8
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Figure 3. Coronavirus (CoV) Life Cycle and Host Immune Response. The CoV life cycle initiates with the binding of spike proteins on the virion surface to their specific
receptor [e.g., ACE2 for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)] on target cells. Following receptor binding and endocytosis, S protein undergoes a
conformational change and viral genomic RNA is released into the cytoplasm. Viral genomic RNA functions as mRNA, which is translated into polyproteins (pp) pp1a and
pp1ab, which are then proteolytically cleaved into mature nonstructural proteins (nsps). Many nsps synergize to modify the endoplasmic reticulum (ER) membrane to form double
membrane vesicles (DMVs) where transcription of genomic and subgenomic RNA occurs. The truncated subgenomic RNA of the 5′-ends are used as templates to translate struc-
tural (S, E,M, andN) and accessory proteins. S, E, andM assemble together with nucleocapsid (one copy of viral genome encapsulated byN proteins) at the ER–Golgi intermediate
compartment (ERGIC) and viral progeny are released by exocytosis. Host immune responses are triggered by danger signals from infected cells or free virions, which are recognized
by innate immune cells. Elevated proinflammatory cytokines and chemokines can be seen in asymptomatic to mild cases. Exuberated cytokine production resulting in cytokine
storm exacerbates the severity of coronavirus disease 2019 (COVID-19). Lymphopenia (T and B cells) and neutrophil infiltration into infected sites contribute to the pathogenesis
of COVID-19. Several CoV proteins have been reported to be capable of inhibiting the type I IFN signaling pathway. Figure created with BioRender (biorender.com).
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(PDB: 2AJF) [46] and SARS-CoV-2 (Figure 4B) (PDB: 6M17) [48], however, the binding affinity of
SARS-CoV-2 for ACE2 is 10–20-fold higher than SARS-CoV [40]. Structural studies captured the
SARS-CoV-2 RBD in two different conformations: ‘opened’ when the RBDs are exposed and
Trends in Microbiology, August 2020, Vol. 28, No. 8 611
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Figure 4. Atomic Structure of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) Receptor-
Binding Domain (RBD). (A) Schematic architecture of the SARS-CoV-2 spike glycoprotein. Degree of protein surface
conservation between trimeric SARS-CoV-2 and SARS-CoV spike protein. A color range is shown with green
and magenta representing not conserved and highly conserved, respectively. The atomic position of the cleavage
site is indicated by an arrow. (B) Cartoon representation of a structural alignment of the SARS-CoV (gray) and

(Figure legend continued at the bottom of the next page.
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ready for the interaction with the receptor and ‘closed’ when the RBDs are buried in the
interacting interface of the protomers and not accessible to the receptor [49] (Figure 4C).

Neutralizing Antibodies Compete for Binding at the RBD
The S glycoprotein is the main target for the protective humoral immune response (Figure 3).
Antibodies against S are predicted to neutralize infection by blocking ACE2 binding to the RBD
[50]. The crystal structure of SARS-CoV S RBD in complex with the human monoclonal antibody
396 (m396) illustrated that the antibody footprint overlaps with that of the receptor on the RBD
[51]. m396 does not crossreact to SARS-CoV-2 since two critical residues, Ile 489 and Tyr
491, that are key to m396 binding, are not conserved. However, crossreactivity is noted for an-
tibody CR3022 [52] and antibody 47D11 that target highly conserved epitopes in the RBD [53].

Host Immune Responses to SARS-CoV and MERS-CoV
Innate Immunity
Innate immunity serves as the first line of virus clearance and initiates adaptive immunity via cyto-
kine/chemokine secretion. Dysregulation of cytokine production resulting in a cytokine storm is
believed to be associated with disease severity. Elevated secretion of cytokines, particularly inter-
leukin (IL)-2, IL-6, IL-10, IP-10, G-CSF, MCP-1, MIP1α, and TNFα were found in severe COVID-
19 patient (Figure 3) [7,54,55]. Similarly, increased level of serum cytokines was found in SARS
[56,57] and MERS patients [58]. Meanwhile, both signal transduction and production of type I in-
terferon (IFN), the cytokine that limits viral spread by elevating neighboring cells to antiviral status,
were delayed in SARS [57] and MERS patients [58]. Delayed IFN responses permit robust viral
replication, accumulation of cytokine/chemokine-producing monocytes/macrophages, and in-
crease in disease severity in SARS-CoV [59] and MERS-CoV [60] infected mice. Similarly,
MERS-CoV M, ORF 4a, ORF 4b, and ORF 5 antagonized IFN pathways and, in turn, diminished
type I IFN production [61]. Impaired type I IFN response and uncontrolled inflammatory response
subsequently contribute to adverse disease outcomes. In fact, different type I IFNs have been
shown to have antiviral effects against both SARS-CoV [62] and MERS-CoV [63] in vitro.
However, there is no clear evidence that type I IFN therapies had direct benefit for SARS and
MERS patients [62,64].

Adaptive Immunity
The second arm of host immunity against viral infection is adaptive immunity that involves T cell
and B cell responses. CD4 T cells promote development of antibody responses, whereas
CD8 T cells can directly kill virus-infected cells. Immunogenic CD4 and CD8 T cell epitopes in
SARS and MERS patients were found to localize mainly to structural proteins, particularly the S
protein [65,66]. Several T cell epitopes for SARS-CoV-2 have been predicted by computational
analysis [25,67], although these predictions require additional validation in terms of their
immunodominance in human populations. A summary of the experimentally confirmed
immunodominant epitopes and their HLA-restrictions identified for SARS-CoV that could be
used for eliciting crossreactive T cell responses against SARS-CoV-2 is shown in Table 2.
These epitopes are highly conserved between SARS-CoV-2 isolates. We aligned 93 S protein
sequences and 103 N protein sequences from SARS-CoV-2 isolates. Among the 20 epitopes
(Table 2), only two viral isolates contained a single amino acid substitution at two different
SARS-CoV-2 (green) RBDs interacting with ACE2 receptor (orange) shown in surface representation. Corresponding
footprints of SARS-CoV RBD and SARS-CoV-2 RBD overlaid on the ACE2 receptor are colored in gray and green
respectively, to illustrate overlap between both interaction sites. A differential loop between SARS-CoV-2 and SARS-CoV
is indicated with a dashed circle. (C) Closed and opened conformation of the SARS-CoV-2 S with one of the RBD
domains buried or exposed, respectively (yellow). Abbreviations: FP, Fusion peptide; HR, heptad repeat regions; RRAR
unique furin cleavage site; SP, signal peptide; TM, transmembrane domain.
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Table 2. Immunodominant T Cell Epitopes Identified in SARS-CoV
T cell epitopes Protein Peptide position Sequencea HLA-restriction Refs

CD4 T cell immunodominant epitopes

Spike 159–171 CTFEYISDAFSLD HLA-DRB1*0401 and HLA-DRB1*0701 [95]

Spike 166–178 DAFSLDVSEKSGN HLA-DRB1*0401 [95]

Spike 358–374 STFFSTFKCYGVSATKL HLA-DR [96]

Spike 427–444 NIDATSTGNYNYKYRYLR HLA-DR [96]

Spike 449–461 RPFERDISNVPFS HLA-DRB1*0401 [95]

Spike 729–745 TECANLLLQYGSFCTQL HLA-DR [96]

Spike 1083–1097 SWFITQRNFFSPQII HLA-DRB1*0401 [95]

Nucleocapsid 346–362 N.A.b N.A. [97]

CD8 T cell immunodominant epitopes

Spike 411–420 KLPDDFMGCV HLA-A*02:01 [98]

Spike 787–795 ILPDPLKPT HLA-A*02:01 [99]

Spike 940–948 ALNTLVKQL HLA-A*02:01 [100]

Spike 958–966 VLNDILSRL HLA-A*02:01 [101]

Spike 978–986 LITGRLQSL HLA-A*02:01 [102]

Spike 1042–1050 VVFLHVTYV HLA-A*02:01 [99]

Spike 1167–1175 RLNEVAKNL HLA-A*02:01 [103]

Spike 1174–1182 NLNESLIDL HLA-A*02:01 [100]

Spike 1203–1211 FIAGLIAIV HLA-A*02:01 [102]

Nucleocapsid 216–225 GETALALLLL HLA-B*40:01 [104]

Nucleocapsid 223–231 LLLDRLNQL HLA-A*02:01 [99]

Nucleocapsid 227–235 RLNQLESKV HLA-A*02:01 [99]

Nucleocapsid 317–325 GMSRIGMEV HLA-A*02:01 [99]

Nucleocapsid 331–347 N.A. N.A. [97]

Nucleocapsid 346–362 N.A. N.A. [97]

aUnderlined sequences indicate identical amino acids between SARS-CoV (GenBank accession number: NC_004718.3) and SARS-CoV-2 (GenBank accession
number: MN908947.3).
bPeptide sequence was not included in the original article.
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epitopes (see the supplemental information online). Polyfunctional virus-specific CD8 T cells
can be sustained in SARS patients for more than 1 year after recovery [68]. However,
in terms of clinical features, COVID-19 (63%), SARS (80%), and MERS (34%) patients often
exhibit lymphopenia with reduced numbers of CD4 and CD8 T cells (Figure 3) [7,69]. MERS-
CoV-infected T cells undergo apoptosis mediated by both intrinsic and extrinsic pathways
[70]. Further investigation is required to determine whether lymphopenia seen in severe
COVID-19 patients is correlated with lymphocyte apoptosis. Moreover, MERS-CoV, but not
SARS-CoV, can infect both CD4 and CD8 T cells from human blood and lymphoid organs
via DPP4 receptor binding [71].

Neutralizing antibodies against SARS-CoV S can prevent viral entry and protect against SARS-
CoV challenge [72]. In addition, passive transfer of convalescent sera from recovered SARS-
CoV patients decreased viral burden in recipient SARS patients [73] and is being advanced as
a potential treatment for COVID-19 [74,75]. The mean time for seroconversion in SARS patients
was around 2weeks after disease onset [76]. Whether neutralizing antibodies can offer protection
614 Trends in Microbiology, August 2020, Vol. 28, No. 8



Outstanding Questions
Which viral and host factors contribute
to SARS-CoV-2 transmissibility and
infectivity?

Which cells are permissive to SARS-
CoV-2 infection?

Does prior SARS-CoV-2 infection pro-
tect against subsequent infection?

What are the magnitude and quality of
innate immune responses to SARS-
CoV-2?

What are the magnitude and quality
of adaptive immune responses to
SARS-CoV-2?

Which host factors allow for durable,
protective immunity following SARS-
CoV-2 infection?

Is there antibody-dependent enhance-
ment of SARS-CoV-2 infection?

Which viral and host factors contribute
to disease severity?

What are the immune response
profiles in COVID-19 patients and do
these profiles correlate to disease
severity?

What are the mechanisms and
sources of SARS-CoV-2 cytokine
storm?

What are the most immunocompetent
and relevant mouse models of
COVID-19?

Can a peptide vaccine for SARS-CoV-2
be designed based on identification of
immunodominant epitopes?

How do the differences in amino acid
sequence, such as furin cleavage site,
make differences between SARS-CoV-2
and other human coronaviruses?

Trends in Microbiology
from or limit the spread of SARS-CoV-2 infection is currently unclear. In rhesus macaques
reinfected with SARS-CoV-2 28 days after prior challenge, no viral replication was observed
and the animals exhibited no clinical signs, but the animals showed increasing titers of neutralizing
antibodies after rechallenge [77]. These results suggest that prior SARS-CoV-2 infection could
elicit protective immunity against subsequent virus exposure, although the long-term protection
offered by neutralizing antibodies requires further study.

Vaccine Strategies
Vaccination with adenovirus-delivered SARS-CoV proteins, including N and the S protein S1
fragment can induce virus-specific neutralizing antibodies and nucleocapsid-specific T cell
responses in rhesus macaques [78]. Immunization with vaccinia virus carrying full-length
SARS-CoV-S reduced viral titer in BALB/c mice after SARS-CoV challenge [79]. For
MERS-CoV, immunization with full-length MERS-CoV S protein delivered using recombinant
vaccinia virus induced high levels of neutralizing antibodies and virus-specific IFNγ-producing
CD8+ T cell responses [80]. The MERS-CoV RBD protein, specifically the S358-588
fragment, induced high immunogenicity and elicited a strong neutralizing antibody response
in vaccinated mice and rabbits [81,82]. A recent review summarizes current vaccine studies
for SARS-CoV and MERS-CoV [83]. Future vaccine efforts could be focused on enhancing
mucosal immunity in the respiratory tract using optimized administration routes, antigens,
and adjuvants to evaluate how vaccine-induced immune responses in the lungs correlate
with protection.

Animal Models for Antiviral Discovery and Vaccine Development
To date, the most commonly used animal models for SARS are older (i.e., 12–14-month-old)
BALB/c mice [84] and transgenic mice (K18-hACE2) that express the SARS-CoV receptor
human ACE2 under the control of an epithelial cell-specific promotor on a C57BL/6 back-
ground. SARS infections in these mice are lethal [85]. Several other mouse strains, including
C57BL/6, 129S Sv/Ev, and STAT1–/– mice have been reported to be susceptible to SARS-
CoV infection [86]. Additionally, the use of a virus adapted to mice (SARS-MA15, SARS-CoV
passaged 15 in BALB/c mice) produces clinical disease in young (6–8-week-old) BALB/c
mice [87] that is similar to ARDS observed in humans [88]. For MERS, transgenic mice
encoding human DPP4 showed viral replication with interstitial pneumonia [89]. Thus, older
BALB/c mice, hACE2 transgenic mice, mice lacking one or more components of the IFN
system, and mouse-adapted viruses will likely be important tools for developing mouse models
of SARS-CoV-2 infection and disease. In fact, a recent study has already shown that hACE2
transgenic mice with SARS-CoV-2 infection reproduce the clinical symptoms of disease,
supporting virus replication in lung tissue [90].

Concluding Remarks
SARS-CoV-2 represents the third HCoV, after MERS-CoV and SARS-CoV, to emerge in the

21st century. Although these viruses have had a marked impact on public health and the econ-
omy, no effective vaccine or treatment is available. The virological and immunological lessons
from prior CoV outbreaks can guide us in understanding, treating, and eventually preventing
COVID-19. In particular, evaluation of S protein molecular structures, neutralizing antibody
responses, and immunodominant epitopes that elicit strong T cell responses will all be critical
for the development of comprehensive vaccine strategies to fight emerging CoVs (see
Outstanding Questions).
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