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Machine learning for infection
risk prediction in postoperative
patients with non-mechanical
ventilation and intravenous
neurotargeted drugs

Yi Du, Haipeng Shi, Xiaojing Yang and Weidong Wu*

Department of Intensive Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical

Sciences, Taiyuan, China

Drug e�cacy can be improved by understanding the e�ects of anesthesia on

the neurovascular system. In this study, we used machine learning algorithms

to predict the risk of infection in postoperative intensive care unit (ICU) patients

who are on non-mechanical ventilation and are receiving hydromorphone

analgesia. In this retrospective study, 130 patients were divided into high and

low dose groups of hydromorphone analgesic pump patients admitted after

surgery. The white blood cells (WBC) count and incidence rate of infection

was significantly higher in the high hydromorphone dosage group compared

to the low hydromorphone dosage groups (p < 0.05). Furthermore, significant

di�erences in age (P = 0.006), body mass index (BMI) (P = 0.001), WBC

count (P = 0.019), C-reactive protein (CRP) (P = 0.038), hydromorphone

dosage (P = 0.014), and biological sex (P = 0.024) were seen between the

infected and non-infected groups. The infected group also had a longer

hospital stay and an extended stay in the intensive care unit compared to the

non-infected group. We identified important risk factors for the development

of postoperative infections by using machine learning algorithms, including

hydromorphone dosage, age, biological sex, BMI, and WBC count. Logistic

regression analysis was applied to incorporate these variables to construct

infection prediction models and nomograms. The area under curves (AUC) of

the model were 0.835, 0.747, and 0.818 in the training group, validation group,

and overall pairwise column group, respectively. Therefore, we determined

that hydromorphone dosage, age, biological sex, BMI, WBC count, and CRP

are significant risk factors in developing postoperative infections.
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Introduction

Patients in the intensive care unit (ICU) experience

varying degrees of pain, delirium, agitation, and arousal. These

conditions can lead to prolonged ICU stays and increased

morbidity and mortality (1–4). As a result, analgesia and

sedation have become part of routine ICU care, leading to

the current e-CASH (early comfort using analgesia, minimal

sedatives, and maximal humane care) sedation concept (5). The

development of clinical drugs used for analgesia and sedation

of ICU patients has been increasing in number. Assessing the

condition and determining its pharmacology can lead to better

analgesia with narcotics (6–9). In the ICU, we are more likely to

make better treatment decisions if we understand the different

effects of anesthesia on the neurovascular system (10).

Morphine is widely used internationally as a classical

neurovascular anesthetic because of its low price and significant

effects (11–13). However, repeated administration of morphine

can result in serious adverse events (14). Hydromorphone, a

new analgesic drug, is a semi-synthetic morphine derivative.

The analgesic effect is approximately 8–10 times better

than morphine, and it has fast onset of action, fewer

side effects, various routes of administration, low risk of

hallucination addiction, low risk of gastrointestinal adverse

reactions, non-toxic metabolites, and better suitability for

patients with decompensated liver and kidney function (13, 15).

Hydromorphone has been extensively validated for use in an

emergency, day surgery, and perioperativemanagement settings,

with significant advantages in reducing respiratory depression

and gastrointestinal adverse effects (15–18). However, further

studies are needed to assess the effectiveness, safety, and dosage

of this medication in the ICU.

In contrast to other analgesics, hydromorphone has been

found to reduce the incidence of postoperative pneumonia in

patients undergoing thoracic surgery; however, in general,

infection remains to be a significant complication of

hydromorphone (17, 19, 20). For one, an increased incidence of

infective endocarditis has been associated with hydromorphone

injection (20). Similarly, intrathecal targeted drug delivery

of hydromorphone may lead to device infection (21). These

complications may be problematic since inflammation and

infection have been shown to reduce the effectiveness of some

analgesics (22). Moreover, the postoperative infection has been

found to be an important risk factor affecting the survival of

patients (23, 24). These suggest that in clinical practice, the risk

of infection needs to be predicted.

Machine learning is currently an important means of

implementing artificial intelligence technologies, and the

application of these algorithms in clinical diagnosis and

decision-making has become a research priority in the medical

field (25–27). In non-mechanically ventilated ICU, predicting

the risk of hydromorphone infection is very challenging and

requires an accurate biological classification model utilizing

simple and effective decision rules. In relation to this, random

forest models and support vector machine models are frequently

used in classification tasks to predict treatment effects or

complications and to screen for clinically important features

related to outcomes (28). Logistic regression analysis is often

used to screen for risk factors associated with adverse outcomes,

and it can also be utilized in constructing a nomogram that

can be easily applied clinically for the accurate detection and

treatment of a disease (29, 30). In non-mechanically ventilated

ICU patients after surgery, we believe that these machine

learning tools can be used to predict the risk of infection with

hydromorphone analgesia.

The purpose of this study is to develop a validated

tool that can utilize available clinical information to predict

the risk of infection in ICU patients receiving post-surgical

hydromorphone analgesia. This will ultimately reduce hospital

stays, medical costs, and length of hospital stays post-

operatively, as well as provide guidance for future studies to

improve analgesic outcomes for ICU patients.

Method

Clinical cohort data acquisition

After institutional ethics committee approval, a group of

patients admitted to the ICU after surgical procedures and

who received analgesic treatment was enrolled in the study.

Since this study used a retrospective analysis format, patients’

informed consent was waived. The inclusion criteria used were

as follows: (1) age between 45 and 90; (2) American Society of

Anesthesiologists (ASA) physical score I to II; and (3) cardiac

left ventricular ejection fraction greater than 40%. Meanwhile,

the exclusion criteria used were as follows: (1) those with

significant preoperative heart, liver, or kidney disease; (2) those

with neurological or psychiatric diseases; (3) those with lung

conditions such as chronic obstructive pulmonary disease or

chronic bronchitis; (4) those with allergies to study drugs

such as opioid prescriptions; and (5) those with a body mass

index of 30 kg/m2. Overall, a total of 130 patients passed the

screening criteria. The general characteristics of these patients,

such as biological sex, age, height, weight, BMI, etc., were

collected through a clinical history data review. In addition,

Acute Physiology and Chronic Health Evaluation (APACHE II)

and Sepsis Related Organ Failure Assessment (SOFA) scores

were collected in full at the time of patient admission to the ICU.

Hydromorphone dosage calculation

The pumping speed of the micropump was adjusted to

achieve satisfactory analgesia. Patients were evaluated for pain
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and physiological indicators every 2 h. Patients whose daily

hydromorphone dosage exceeded 40 mg/mL were included in

the high hydromorphone dosage group, and those who did not

exceed 40 mg/mL were included in the low hydromorphone

dosage group.

Closing indicators

Physiological and biochemical indices, such as heart rate

(HR), mean artery pressure (MAP), respiratory rate (R),

C-reactive protein (CRP), white blood cell (WBC) count,

platelet (PLT), and Saturation of Pulse Oxygen (SpO2), were

recorded completely after 12 h of analgesia, from the moment

that the patient was admitted to ICU with self-administered

hydromorphone analgesia. In addition, the occurrence of

adverse reactions throughout the postoperative treatment period

was recorded. In this study, the primary outcome indicator

was defined as the occurrence of infection. Postoperative

infection was evaluated based on the following indicators:

(1) temperature >38 ◦C; (2) elevated WBC count; (3)

positive sputum culture or blood culture showing bacteria; (4)

chest X-ray showing abnormal density; and (5) diagnosis of

pneumonia, etc. (31).

Machine learning and logistic regression
analysis

Firstly, a random forest model was utilized to fit this dataset

so as to rank the importance of each clinical feature in terms

of the infection outcome (32). Subsequently, in order to screen

clinical features related to infection, Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) was applied to the

general characteristics of patients, secondary indicators for the

prediction model of infection important features screening and

model construction (33). A support vector machine (SVM)

is often used for non-linear classification, and they perform

well on small samples. The SVM-RFE technique uses iterative

iterations to remove redundant feature variables. Root Mean

Squard Error (RMSE) metrics were applied to evaluate the

accuracy of the SVM models and to determine the best

model variables based on the RMSE minimum. Furthermore,

neural networks, a common non-linear algorithmic model in

machine learning, were also used to evaluate results as previous

researches (34–38).

Univariate and multifactorial logistic regression analyses

were also applied to assess the risk ratio of each clinical factor

on infection outcome (39). In the first step, we performed

univariate logistic regression analysis sequentially and analyzed

the characteristics of the patients based upon P < 0.05.

Those variables that were subjected to multifactor logistic

regression analysis were then screened according to P <

TABLE 1 Comparison of baseline characteristics between the two

hydromorphone consumption groups.

Characteristic Hydromorphone consumption P-value

groups

High

(n= 65)

Low

(n= 65)

Biological Female 20 (30.77) 26 (40.00) 0.271

sex (%) Male 45 (69.23) 39 (60.00)

Age, years 64.23± 8.97 61.18± 10.14 0.072

Weight, kg 65.98± 10.47 65.29± 10.96 0.713

Height, cm 170.26± 14.51 168.23± 13.77 0.415

BMI, kg/m2 22.74± 2.33 23.00± 1.98 0.491

Hypertension No 60 (92.31) 54 (83.08) 0.109

(%) Yes 5 (7.69) 11 (16.92)

Diabetes (%) No 58 (89.23) 51 (78.46) 0.095

Yes 7 (10.77) 14 (21.54)

APACHE_II 24.98± 5.75 24.09± 6.80 0.421

SOFA 4.15± 1.03 4.09± 1.03 0.734

APACHE II, acute physiology and chronic health evaluation II; BMI, body mass index;

SOFA, sepsis related organ failure assessment.

0.2 to identify the variables obtained from logistic analysis.

Based on the odds ratios (ORs) and 95% confidence intervals

(95% CIs) for each variable, we calculated how much each

characteristic was associated with infection risk.We then applied

univariate logistic regression to determine which variables were

independent risk factors.

Identification of important characteristics

Intersection analysis was conducted to confirm the shared

characteristics between the variables screened using the Support

Vector Machine-Recursive Feature Elimination (SVM-RFE)

model and those screened using logistic regression analysis

(40–45). To determine the amount of information that

these shared features can contain about the outcomes, PCA

(principle component analysis) is applied to downscale them.

In addition, neural network models with multilayer network

structures are continuously used in several fields. Furthermore,

these shared important features are also passed into the

neural network model as input features to measure the

classification performance of the variables under the neural

network model.

Construction of nomogram model

For the construction of infection prediction models,

a multi-factor logistic regression model was used based
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TABLE 2 Comparison of clinical outcomes between the two

hydromorphone consumption groups.

Characteristic Hydromorphone

consumption groups

P

High

(n= 65)

Low

(n= 65)

HR, min−1 95.77± 10.83 98.31± 11.38 0.195

MAP, mmHg 76.78± 7.47 76.89± 6.80 0.932

R, min−1 19.42± 3.61 20.52± 3.66 0.085

WBC, 109/L 12.89± 5.11 11.23± 3.71 0.036*

PLT, 109/L 231.58± 62.70 228.45± 43.61 0.741

CRP, mg/L 76.32± 31.25 74.38± 34.21 0.736

SpO2 , % 96.43± 1.97 96.37± 2.43 0.874

ICU stay, day 2.25± 0.71 2.14± 0.61 0.354

LOH, day 9.66± 1.28 9.26± 1.12 0.06

Nausea No 57 (87.69) 62 (95.38) 0.115

(%) Yes 8 (12.31) 3 (4.62)

Infection No 47 (72.31) 58 (89.23) 0.014*

(%) Yes 18 (27.69) 7 (10.77)

CRP, C-reactive protein; HR, heart rate; ICU, intensive care unit; MAP, mean artery

pressure; WBC, white blood cell; PLT, platelet; R, respiratory rate; *P < 0.05.

on these important characteristics. By comparing the

predicted probability values of the model to the actual

results, the calibration curve further evaluates the

accuracy of the model. A decision curve analysis (DCA)

was used to evaluate the clinical safety of this clinical

prediction model by measuring the yield at different

prediction probability thresholds (46). The infection

prediction model was then plotted using the “rms”

package to obtain a clinical visualization tool to facilitate

clinical translation.

Statistical analysis

Software R (version 4.0.2) was used for all analyses

and graphs. Training and evaluation of the individual

prediction models were conducted by dividing the

entire dataset into a training and a test set. The receiver

operating characteristic curve (ROC) and the area under

the curve (AUC) were used to evaluate the predictive

performance of the model. PROC was used to plot ROC

curves (47). Pearson’s chi-square test or Fisher’s exact

test were used for the difference test analysis on the

count data. The measurement data were analyzed using

the Wilcoxon rank sum test or unpaired Student’s t-

test. We considered a significance level of p 0.05 to be

statistically significant.

TABLE 3 Clinical characteristics between the infected and uninfected

groups.

Characteristic Infection P

No

(n= 105)

Yes

(n= 25)

Age, years 61.58± 9.55 67.44± 8.79 0.006**

Weight, kg 66.22± 10.32 63.20± 12.01 0.205

Height, cm 168.92± 13.33 170.60± 17.34 0.596

BMI, kg/m2 23.16± 2.14 21.64± 1.80 0.001**

APACHE_II 24.34± 6.30 25.36± 6.32 0.47

SOFA 4.10± 1.05 4.20± 0.96 0.679

HR, min−1 97.22± 11.48 96.28± 9.75 0.706

MAP, mmHg 76.75± 7.00 77.20± 7.74 0.779

R, min−1 19.96± 3.69 20.00± 3.65 0.963

WBC, 109/L 11.61± 4.26 13.96± 5.18 0.019*

PLT, 109/L 232.17± 50.04 220.96± 67.91 0.351

CRP, mg/L 72.46± 30.39 87.52± 39.23 0.038*

SpO2 , % 96.40± 2.33 96.40± 1.61 1

Group (%) High 47 (44.76) 18 (72.00) 0.014*

Low 58 (55.24) 7 (28.00)

Biological sex (%) Female 42 (40.00) 4 (16.00) 0.024*

Male 63 (60.00) 21 (84.00)

Hypertension (%) No 57 (87.69) 62 (95.38) 0.532

Yes 8 (12.31) 3 (4.62)

Diabetes (%) No 47 (72.31) 58 (89.23) 0.218

Yes 18 (27.69) 7 (10.77)

APACHE II, acute physiology and chronic health evaluation II; BMI, body mass index;

CRP, C-reactive protein; HR, heart rate; MAP, mean artery pressure; PLT, platelet; SOFA,

sepsis related organ failure assessment; *P < 0.05, **P < 0.01.

Results

Comparison of general characteristics
and outcomes of patients between the
two hydromorphone dosage groups

In the clinical study of 130 patients admitted to the ICU after

surgery, 65 patients received an average daily hydromorphone

dosage of more than 40 mg/mL and were included in the

high hydromorphone dosage group; the remaining 65 patients

were included in the low hydromorphone dosage group. An

overview of the patients’ baseline clinical information is given

in Tables 1, 2. Hydromorphone dosage groups did not differ

statistically in terms of biological sex, age, weight, height, BMI,

hypertension, diabetes, APACHE II, and SOFA scores. However,

the high hydromorphone dosage group had a high WBC count

(P = 0.036) and a high infection risk (P = 0.014). This

suggests that high hydromorphone dosagesmay increase the risk

of infection.
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FIGURE 1

Feature ranking and filtering process for Random Forest and SVM-RFE models. (A) Bar chart showing a random forest model’s importance

ranking of each variable. PLT, age, MAP, CRP, and HR are the top five variables identified. (B) ROC curves showing the classification ability of the

random forest model. (C) The feature screening process of SVM-RFE results in the model with the lowest RMSE when 16 variables are selected.

(D) ROC curves showing training, test, and overall classification performances of the SVM model.

Comparison of characteristics of infected
and uninfected groups

Twenty-five patients developed postoperative infections,

while the other 105 did not. Table 3 summarizes the clinical

characteristics of the infected and uninfected patients.

The occurrence of infection was associated with age (P =

0.006), BMI (P = 0.001), WBC count (P = 0.019), CRP

(P = 0.038), hydromorphone dosage (P = 0.014), and

biological sex (P = 0.024). Infected patients were older,

had a lower BMI, higher WBC counts, higher CRP, and

used more hydromorphone than non-infected patients.

These results suggest that together with hydromorphone

use, multiple clinical characteristics can be associated

with the occurrence of postoperative infections in

surgical patients.
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TABLE 4 Univariate and multivariate logistics regression analysis.

Variables Univariate Multivariate

OR (95% CI) P value β OR (95% CI) P value

Group (High vs. Low) 3.17 (1.27–8.76) 0.018* 0.83 2.3 (0.79–7.32) 0.137

Age 1.07 (1.02–1.12) 0.008** 0.06 1.07 (1.01–1.13) 0.02*

Biological sex (Male vs. Female) 3.5 (1.23–12.64) 0.031* 1.1 3.02 (0.9–12.59) 0.094

Weight 0.97 (0.93–1.01) 0.205

Height 1.01 (0.98–1.04) 0.593

BMI 0.7 (0.55–0.87) 0.002** −0.38 0.68 (0.51–0.88) 0.005**

Hypertension (Yes/No) 1.48 (0.38–4.73) 0.534

Diabetes (Yes/No) 0.39 (0.06–1.49) 0.232

APACHE_II 1.03 (0.96–1.1) 0.467

SOFA 1.1 (0.71–1.68) 0.676

HR 0.99 (0.95–1.03) 0.704

MAP 1.01 (0.95–1.07) 0.777

R 1 (0.89–1.13) 0.963

WBC 1.12 (1.02–1.24) 0.023* 0.14 1.15 (1.02–1.31) 0.031*

PLT 1 (0.99–1) 0.349

CRP 1.01 (1–1.03) 0.042* 0.01 1.01 (1–1.03) 0.094

SpO2 1 (0.82–1.23) 1

APACHE II, acute physiology and chronic health evaluation II; BMI, body mass index; CRP, C-reactive protein; HR, heart rate; MAP, mean artery pressure; PLT, platelet; R, respiration;

SOFA, sepsis related organ failure assessment; SpO2, Saturation of Pulse Oxygen; WBC, white blood cell; *P < 0.05, **P < 0.01.

Ranking features based on machine
learning

Based on a random forest model analysis, PLT, age, MAP,

CRP, and HR were the top five clinical features associated

with infection (Figure 1A). According to Figure 1B, the ROC

curves for training and test sets had AUCs of 1.00 and 0.61,

respectively, suggesting that the model was overfitted. After

using the SVM-RFE method, we found that the model had

the smallest Root Mean Square Error (RMSE) value when

16 variables were included (Figure 1C). AUCs of the SVM

model based on these 16 variables were 0.822, 0.853, and

0.830, respectively, for the training, test, and overall datasets

(Figure 1D). In the test set, SVM showed better classification

ability than random forest model, according to the results of

the appeal.

Risk factors associated with infection

Risk factors associated with infection were identified

using univariate and multifactorial logistic regression

analyses. Univariate logistic regression analysis revealed

an association between hydromorphone dosage, group (P

= 0.018), age (P = 0.008), biological sex (P = 0.031), BMI

(P = 0.002), WBC (P = 0.023), and CRP (P = 0.042).

Furthermore, multifactorial logistic regression analysis

revealed that age (P = 0.042), BMI (P = 0.005), and WBC

(P = 0.031) were independent risk factors for infection

(Table 4). Furthermore, a multifactorial logistic regression

analysis with P < 0.2 as a filter identified Hydromorphone

dosage group, age, biological sex, BMI, WBC count, and

CRP as clinically important factors that contribute to

infection risk.

Variables associated with infection
outcome identification

According to the intersection analysis of SVM-RFE and

logistic regression analysis, six variables were coinciding

with the SVM-RFE and logistic regression analysis,

including hydromorphone dosage group, age, biological

sex, BMI, WBC count, and CRP (Figure 2A). These six

variables have sufficient information to predict infection

occurrence according to principal component analysis (PCA)

(Figure 2B). According to ROC curve analysis, age (AUC

= 0.681), biological sex (AUC = 0.620), BMI (AUC =

0.706), dosage group (AUC = 0.636), WBC count (AUC

= 0.626), and CRP (AUC = 0.608) were all predictive of

infection (Figures 2C–H). Supplementary figure 1 illustrates
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FIGURE 2

SVM-RFE as well as logistic regression models are used for screening important clinical features. (A) Venn diagram showing six features

associated with infection prediction. (B) PCA showing that based on these six characteristics, a better distinction can be made between infected

and uninfected patients. (C–H) ROC curves showing the predictive performance of (C) age, (D) biological sex, (E) BMI, (F) hydromorphone

concentration grouping, (G) WBC, and (H) CRP on infection.

the training process of the neural network model based

on these infection-related variables. In both the training

and validation sets, the neural network model accurately

predicted infection. However, the neural network model only

performed 0.539 accurately in the test set. It is possible that this

deficiency is due to the small number of patients included in

this study.

Construction and evaluation of the
nomogram prediction model

Based on the six identified clinical variables, a multifactorial

logistic regression algorithm was applied to construct a

prediction model to detect the occurrence of infection

in relation to the clinical use of hydromorphone. Table 4
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FIGURE 3

A nomogram based on six factors is constructed and its accuracy is assessed. (A) The ROC curves for the logistic regression model constructed

based on the six identified clinical factors for infection in training, validation, and overall pairwise column sets demonstrate better classification

performance in all three datasets. (B) The nomogram was constructed using a logistic regression model. (C) Calibration plot showing the

predicted values of the model are roughly consistent with the true labels, indicating that the model is reasonably accurate. (D) Clinical decision

curve showing the prediction results in an overall pairwise column.

shows the coefficients of the multifactor logistic regression

model based on these six clinical characteristic variables. In

the training group, validation group, and overall pairwise

column, respectively, the ROC curves showed an AUC of

0.835, 0.818, and 0.747, indicating the model has good

predictive ability (Figure 3A). Based on the multifactor logistic

regression model, a nomogram was constructed (Figure 3B)

to facilitate its clinical application. The correction curves

show that the predicted values of the infection prediction

model and the true label are in general agreement, further

supporting the good predictive power of the model (Figure 3C).

Clinical decision curves show that the predictions from the

prediction model have clinical value for patients (Figure 3D).

Projecting the basic characteristics of the patients and

hydromorphone use onto this nomogram allows for the

easy calculation of the probability of infection risk, thus

guiding hydromorphone use and patient testing in the

clinical setting.

In addition, infected patients spent more time in the

intensive care unit and hospital overall than their non-

infected counterparts (Figure 4). Infections in intensive care

units can prolong the stay in the unit, resulting in increased

healthcare costs.

Discussion

A machine learning approach was used to predict the risk

of infection among non-mechanically ventilated ICU patients

receiving hydromorphone analgesia after surgical procedures.

According to the study, different factors are associated with

the occurrence of postoperative infections in surgical patients
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FIGURE 4

Compared between infected and non-infected patients,

duration of ICU stay and hospitalization. In the infected group,

the hospital stay and ICU stay were longer than in the

non-infected group.

based on a cohort study. We identified significant risk factors

affecting the development of postoperative infections in patients

based on these data, including hydromorphone dosage, age,

biological sex, BMI, WBC count, and CRP. Logistic regression

was used to construct a predictive model for detecting infection.

To assist physicians in assessing the risk of postoperative

infections in surgical patients, a nomogramwas created based on

this model.

In postoperative surgical patients, infections are common

adverse effects of opioid analgesics, which can reduce their

quality of life, and prolong their length of stay (48–51). A high

hydromorphone dosage was associated with a higher incidence

of postoperative infections in this study. It has been shown

that patients on hydromorphone have less than normal immune

system defenses, which may allow bacteria and viruses to

infiltrate the body and multiply (20, 52). It has also been shown

that hydromorphone, as an opioid analgesic, can cause adverse

effects, such as excessive sedation and respiratory depression,

pulmonary atelectasis, and infection (53–55). Additionally,

hydromorphone promotes bacterial translocation by breaking

endothelial tight junctions via the Toll-like receptor 2 (20).

Opioids increase intestinal bacterial translocation, dysregulated

immune responses, and intestinal barrier permeability, thereby

increasing the risk of intestinal infections (56). We also found

that the WBC count and CRP after 12 h of analgesia were

higher in the high hydromorphone dosage group than in the low

hydromorphone dosage group. Clinical parameters such as these

have been shown to be risk factors for postoperative infection

in this study. Infections are more likely to occur in the high

hydromorphone dosage group, according to these findings.

Among patients admitted to the ICU after surgery and

receiving analgesic treatment, old age was an independent risk

factor for infection development. There may be an important

correlation between this finding and low immunity in the elderly

(57). Similarly, low BMI was identified as an independent risk

factor for infection, possibly due to findings that low BMI

correlates with worse nutritional status, postoperative recovery,

and greater susceptibility to infection (58–60). Furthermore,

males had a higher proportion of infections in postoperative

ICU admissions than females. Different sex hormones induce

different gene expression and immune responses in males and

females, which may contribute to different susceptibility to

infection (61). Estradiol appears to confer protective immunity,

while progesterone and testosterone suppress anti-infection

responses (62). Occupational differences and lifestyle differences

may also play a role. Therefore, post-analgesic infections should

be closely monitored in patients over the age of 65, those

with low body mass indexes, and those admitted to the ICU

after surgery.

According to our analysis, patients in the infected

group spend more time in the ICU and in the hospital,

resulting in higher costs and more resource utilization.

Infection is a common adverse effect of opioid analgesics

in postoperative surgical patients (48, 49). Postoperative

infection can negatively impact the patient’s prognosis,

which negatively impacts their recovery (50, 51). Patients

will benefit medically and economically from the early

detection and timely treatment of infections after surgery in

the ICU.

Despite the higher risk of infection associated with high

doses of hydromorphone, postoperative pain control can

improve patient recovery. There is evidence that timely

and effective relief of postoperative pain enhances recovery,

leads to fewer complications, and shortens hospital stays

(63). Hydromorphone is commonly used as a bout of pain

medication; however, its use also introduces a range of side

effects. In order to identify infection-related factors, we used

logistic regression to construct infection prediction models

and developed an easy-to-use clinical infection prediction

nomogram. The tool will help physicians evaluate the risk of

infection in surgical patients using hydromorphone for analgesia

promptly andmay enable earlymedical intervention, as required

by precision medicine. Pain control contributes to the recovery

of surgical patients, and timely detection and reduction of

analgesic medication use can reduce adverse effects and decrease

ICU and hospital stays. A patient-centered big medical data

set should be constructed in future studies by collecting all

manner of basic patient information, treatment information,

and outcomes indicators with the aid of various machine

learning predictive models. It is important to design prospective

cohort studies to further validate this model, as well as to expand
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the study population to include different types of surgical and

postoperative infections in order to achieve precision medicine.

Conclusion

This study explores and clarifies hydromorphone’s efficacy

and safety in the ICU. Hydromorphone dosage, age, biological

sex, BMI, WBC count, and CRP have been found to be

significant risk factors for developing postoperative infections in

non-mechanically ventilated patients in the ICU after surgery.

Based on these six clinical variables, infection prediction

models have good predictive power and can be used to guide

hydromorphone use more safely.
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