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ABSTRACT

Replication of the mitochondrial genome by DNA
polymerase y requires dNTP precursors that are
subject to oxidation by reactive oxygen species
generated by the mitochondrial respiratory chain.
One such oxidation product is 8-oxo-dGTP, which
can compete with dTTP for incorporation opposite
template adenine to yield A-T to C-G transversions.
Recent reports indicate that the ratio of undamaged
dGTP to dTTP in mitochondrial dNTP pools from
rodent tissues varies from ~1:1 to >100:1. Within
this wide range, we report here the proportion of
8-0x0-dGTP in the dNTP pool that would be needed
to reduce the replication fidelity of human DNA
polymerase y. When various in vivo mitochondrial
dNTP pools reported previously were used here in
reactions performed in vitro, 8-oxo-dGTP was read-
ily incorporated opposite template A and the result-
ing 8-o0xo-G-A mismatch was not proofread
efficiently by the intrinsic 3' exonuclease activity of
pol y. At the dNTP ratios reported in rodent tissues,
whether highly imbalanced or relatively balanced,
the amount of 8-oxo-dGTP needed to reduce fidelity
was <1% of dGTP. Moreover, direct measurements
reveal that 8-oxo-dGTP is present at such concen-
trations in the mitochondrial dNTP pools of several
rat tissues. The results suggest that oxidized dNTP
precursors may contribute to mitochondrial muta-
genesis in vivo, which could contribute to mitochon-
drial dysfunction and disease.

INTRODUCTION

Mutations in mitochondrial DNA are associated with
several diseases (1,2) and they accumulate with age (3).
Mitochondrial DNA mutations can arise from different
sources, including errors made by DNA polymerase vy
(pol v) (4), the enzyme that replicates the mitochondrial
genome (5). Replication errors are normally rare when
wild-type pol vy synthesizes DNA using undamaged
substrates (6,7), partly because an intrinsic 3’ exonuclease
can proofread mismatches made by pol y (6-9). The
biological importance of the 3’ exonuclease of pol y to
mitochondrial DNA integrity is illustrated by the fact that
mice encoding an exonuclease-deficient form of pol y have
strongly elevated rates of base substitutions in mitochon-
drial DNA (10,11).

A potentially important source of replication infidelity
is damage due to reactive oxygen species (12). The electron
transport chain on the inner mitochondrial membrane is
a rich source of reactive oxygen species capable of
damaging macromolecules. The inner mitochondrial
membrane surrounds the inner matrix that contains both
the mitochondrial DNA and the dNTP pools needed for
mitochondrial DNA synthesis. Thus, in addition to bases
in the DNA, the mitochondrial dNTP pool is also a target
of oxidation. Among several known oxidized dNTPs,
one that is particularly common and potentially highly
mutagenic is 8-0xo-dGTP (13). 8-0xo-dGTP can base pair
correctly with a template C or incorrectly with template A
(14), the latter via Hoogsteen base pairing with 8-0x0-G in
the syn conformation (15). Incorrect 8-oxo-dGTP-A base
pairing can lead to A-T to C-G transversions if the
incorporated 8-0xo-dGMP escapes proofreading and any
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subsequent repair. A variety of DNA polymerases can
incorporate 8-0xo-dGTP into DNA (16-18), including pol v,
which was demonstrated to stably misincorporate
8-0x0-dGTP opposite template A in a complete DNA
synthesis reaction in vitro (16). In that study, low-fidelity
DNA synthesis was observed despite the presence of the
intact proofreading exonuclease that strongly proofreads
undamaged mismatches. This indicated that pol y can
indeed insert 8-0xo-dGTP opposite template A, and
further suggested that the 8-oxo-GMP-A mismatch was
not efficiently proofread. Recent kinetic analyses (19) have
measured the rates at which pol y inserts and excises
8-0x0-dGMP opposite both template C and template A
and also clearly demonstrate inefficient proofreading,
further supporting the idea that 8-oxo-dGTP is potentially
a potent mitochondrial mutagen. Enzymes exist to
minimize the mutagenic potential of 8-oxo-dGTP, such
as bacterial MutT or mammalian MTH1, which hydrolyze
8-0x0-dGTP to prevent its incorporation into DNA
(14,20). In addition to its role in the nucleus, mammalian
MTHI1 also localizes to the mitochondrial matrix, where it
sanitizes the mitochondrial dNTP pool (21). Moreover,
in mouse embryonic fibroblasts that are defective in
MTHI1, mitochondrial cristae degenerate in response to
H,O, treatment, and expression of MTHI prevents
this degeneration (22), thus revealing a direct link between
8-0x0-dGTP and mitochondrial dysfunction.

The possibility that 8-oxo-dGTP contributes to mito-
chondrial dysfunction by competing with dTTP for
mutagenic incorporation opposite template adenine is
particularly interesting in light of recent reports on
mitochondrial dNTP pool sizes. In one study of mito-
chondrial ANTP pools from rat tissues (23), normal dGTP
was found in excess over dTTP by factors of from 10-fold
to >100-fold, depending on the tissue. A more recent
study in mice (24) reported that dNTP pools of liver
mitochondria are only slightly unbalanced, similar to
mitochondrial dNTP pools isolated from cultured cells
(25,26). Collectively, these studies (27) provide a valuable
range of in vivo dGTP to dTTP ratios that can be used to
examine how much of the dGTP pool would need to be
oxidized to 8-0xo-dGTP in order to detect an effect on the
error rate for A-T to C-G transversions generated during
DNA synthesis by pol y. To answer this question, we first
confirm that, as observed earlier with exonuclease-
proficient pol vy isolated from chicken embryos (16),
human pol v in the presence of all four correct dANTPs
does indeed misinsert 8-oxo-dGTP opposite template A,
and then fully extends the resulting mismatch, thereby
generating A-T to C-G transversions. We then compare
stable misincorporation of 8-0xo-dGTP by wild-type and
exonuclease-deficient pol v, thereby confirming in a
complete DNA synthesis reaction. The conclusion is
derived from kinetic analysis using single nucleotides
(19), i.e. that the template A-8-0x0-dGMP mismatch is
not efficiently proofread by the intrinsic 3’ exonuclease of
pol y. Most importantly, we then demonstrate the
DNA synthesis fidelity is reduced when the amount of
8-0x0-dGTP is as little as 0.06% (imbalanced pools) to
0.6% (balanced pools) of the total dGTP available to pol 7.
Finally, we confirm by direct nucleotide pool analysis that
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8-0x0-dGTP is present in some rat tissues at levels shown
by our in vitro analysis to be strongly mutagenic.

MATERIALS AND METHODS
DNA polymerase y

Hisg affinity-tagged recombinant human DNA polymerase
v catalytic (pl140) subunit (exonuclease-proficient and
exonuclease-deficient forms) and the p55 accessory sub-
unit were kindly supplied by W. Copeland (NIEHS).
These proteins were purified separately to homogeneity
and then used as described previously (28,29).

Fidelity assays

DNA polymerase vy fidelity was measured as described (7).
Briefly, pol vy was used to copy a single-stranded region of
the M13 lacZ a-complementation gene. Gap-filling reac-
tion mixtures (25 pl) contained 25 mM HEPESeKOH (pH
7.6), 2mM dithiothreitol, 2mM MgCl,, 50 ng/ml BSA,
0.1M NaCl, ~150ng gapped M13mp2 DNA, 40ng of
Exo " or Exo™ pl140 pol y and 1.3-fold molar excess of the
p55 accessory subunit, and with dNTPs and 8-oxo-dGTP
at the indicated concentrations. 8-oxo-2'-deoxyguanosine-
5'-triphosphate was purchased from TriLink Bio
Technologies Inc. (San Diego, CA, USA). Gap-filling
was complete as monitored by agarose gel electrophoresis
(30). MI13mp2 DNA products were introduced by
electroporation into the Escherichia coli host strain and
plated and replication errors were scored as described (30).
M13mp2 DNA samples from independent /acZ mutant
plaques were sequenced to determine the types of
polymerization errors, and A to C error rates were
calculated as described (30). The statistical significance
of differences was calculated using Fisher’s Exact Test as
described (31).

Extraction and analysis of mitochondrial ANTP pools

Methods for isolation and extraction of mitochondria
from rat tissues were similar to those described previously
(23). Briefly, adult male Wistar rats were anesthetized with
isofluorane and killed by decapitation. Organs were
rapidly removed and chilled in 0.9% sodium chloride on
ice. Organs were weighed, minced, homogenized and
subjected to differential centrifugation as described pre-
viously (23). Each mitochondrial pellet was then washed
by re-suspension in mitochondrial isolation buffer.
Mitochondria were aliquoted and stored at —20°C as
centrifugal pellets, with each aliquot representing about
one gram of the original tissue.

For nucleotide analysis, one pellet from each mitochon-
drial preparation was suspended in cold 60% aqueous
methanol, with each suspension having a volume slightly
>2.0ml. Each suspension was subdivided into two 1.0 ml
portions, with the remainder saved for assay of total
protein. To one portion was added 500 pmol of authentic
8-0x0-dGTP, for subsequent correction for incomplete
nucleotide recovery during extraction. Both portions were
held at —20°C for 2 h, with occasional shaking. Next, both
suspensions were placed in a boiling water bath for 3 min,
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then chilled and centrifuged. The supernatants were taken
to dryness in a Speed-Vac centrifugal concentrator. Each
residue was dissolved in 200 pl of MilliQ water and any
remaining insoluble material was removed by
centrifugation.

Nucleotides were resolved by reversed-phase HPLC
with ion pairing, as described previously (32). The HPLC
system used was a Hitachi model D-7000, with dual-
channel detection. One channel monitored UV absor-
bance, while the other monitored the output from an ESA
Coulochem II electrochemical detector set at +425mV.
Measurement of the canonical ANTP pools (dATP, dTTP,
dCTP and dGTP) was carried out by the DNA
polymerase-based enzymatic assay, as described pre-
viously (23). We thank Linda J. Wheeler of the Mathews
laboratory for carrying out these analyses.

RESULTS

Measuring the rate of stable misincorporation
of 8-0x0-dGTP into DNA

In this study, the error rate for misincorporation of §8-oxo-
dGTP opposite template adenine was determined using
the M13mp2 forward mutation assay (30). The human
pol v holoenzyme (pl40 catalytic subunit plus p55
accessory subunit) was used to fill a 407-nt single-stranded
DNA gap in M13mp2 DNA, and DNA synthesis errors
were scored as light blue or colorless plaques (see
Materials and methods section). The number of A-T to
C-G transversions among total sequence changes was then
determined by sequencing DNA samples prepared from
independent /acZ mutants. This proportion and the lacZ
mutant frequencies were then used to calculate the average
rate for A-T to C-G changes, expressed as errors per
detectable adenine copied (see Materials and methods
section). Scoring an error in this way requires both
misinsertion of 8-0xo-dGTP (or dGTP) opposite any of 19
different template adenines in the /acZ template where this
error leads to a change in plaque color, and then multiple
additional correct incorporation events to embed the
8-0x0-G-A mismatch into duplex DNA. The A to C error
rates described here are for complete synthesis reactions in
the presence of all four normal dNTPs plus 8-0x0-dGTP,
and therefore differ from kinetically determined rates of
misinsertion and mismatch extension, which are typically
performed using a single correct or incorrect dANTP.

Effect of 8-0x0-dGTP equimolar with dGTP
on the fidelity of wild-type pol y

In the absence of 8-oxo-dGTP, DNA synthesis by wild-
type (i.e. exonuclease proficient) pol v is highly accurate,
as evidenced by a lacZ mutant frequency (11 x 104,
Table 1, Experiment 1, line 1) that is close to the back-
ground mutant frequency of the assay (5 to 7 x 10°%).
In this reaction containing only the four undamaged
dNTPs at equimolar concentration (I mM each dNTP),
sequence analysis of 127 lacZ mutants revealed no A to C
substitutions. From this, we calculate that the average
error rate for A to C substitutions that would result from
undamaged dGMP pairing with template adenine is

Table 1. Effect of equimolar 8-0xo-dGTP on the fidelity of wild type
and exonuclease-deficient pol y

Exo-deficient pol y Wild-type pol y

Experiment 1: normal dNTPs only®

Mut. Freq. (x 107%) 62 11
Total sequenced mutants 140 127
Mutants with A to C 0 0
A to C rate (x 107°) <0.53 <0.1
Experiment 2: normal dNTPs + 8-oxo-dGTP

Mut. Freq. (x 107% 720 500
Total sequenced mutants ND 20
Mutants with A to C ND 18
A to C rate (x 107°) ND 400

“Taken from (23).

<0.1 x 10° (Table 1, Experiment 1). Inclusion of an
equal amount of 8-0xo-dGTP in the DNA synthesis
reaction (Table 1, Experiment 2) increased the overall
mutant frequency by more than 45-fold (to 500 x 10%)
and increased the average error rate for A to C
substitutions to 400 x 10>, This 4000-fold increase
(P<0.001) clearly demonstrates that human pol y can
indeed stably incorporate 8-oxo-dGTP into DNA oppo-
site template adenine. This conclusion with the human
enzyme is consistent with our initial study of avian pol y
(16), and with more recent kinetic studies of 8-oxo-dGTP
misinsertion and mismatch extension by human pol y (19).

8-0x0-dGTP-dependent errors using highly imbalanced
dNTP pools as found in the rat heart mitochondria

The above polymerization reactions can be viewed as
‘proof-of-principle’ experiments, as they contained equi-
molar concentrations of 8-0xo-dGTP and the four
undamaged dNTPs, a situation that is unlikely to be
physiologically relevant for at least two reasons. First,
the ratio of 8-0x0-dGTP to the undamaged dNTPs is
likely to be low in vivo, at least partly due to hydrolysis of
8-0x0-dGTP by MTHI1 (20,33). Secondly, the concentra-
tions of the four undamaged dNTPs in mitochondria are
reported to differ from one another (23,24,27). The most
extreme case is for mitochondrial dNTP pools from
subsarcolemmal rat heart tissue (23), where the dGTP
concentration was estimated at 110 uM. This high dGTP
concentration provides a large target for potential
oxidation to 8-0xo-dGTP. In contrast, the concentration
of dTTP, the nucleotide that competes with 8-oxo-dGTP
for incorporation opposite template adenosine, was
estimated to be only 0.7uM. Thus, oxidation of a
relatively small proportion of the dGTP pool could yield
sufficient 8-0x0-dGTP to effectively compete with dTTP
for incorporation opposite template adenine.

To test how little 8-0x0-dGTP is needed to reduce pol y
fidelity under such a highly imbalanced dNTP conditions,
we performed reactions that contained the biased dANTP
pools observed in subsarcolemmal rat heart mitochondria
[110uM dGTP, 0.7uM dTTP, 13uM dCTP and 3.6 uM
dATP, from (23)], either without 8-0xo-dGTP (Table 2,
Experiment 1) or with 8-0xo-dGTP at 110 uM (equimolar
to dGTP, Experiment 2), 0.7uM (0.6% of dGTP,



Table 2. 8-0xo-dGTP effects with the highly imbalanced rat heart
mitochondrial ANTP pools

Exo-deficient pol y Wild-type pol y

Experiment 1: normal dNTPs only®

Mut. Freq. (x107%) 160 23
Total sequenced mutants 38 23
Mutants with A to C 1 1

A to C rate (x107°) 44 0.98
Experiment 2: dNTPs + equimolar 8-0xo-dGTP (110 uM)
Mut. Freq. (x10%) 5200 7700
Total sequenced mutants 24 69
Mutants with A to C 23 68

A to C rate (x107°) 4900° 7400°
Experiment 3: dNTPs + 0.6% 8-oxo-dGTP (0.7 uM)

Mut. Freq. (x107%) 520 390
Total sequenced mutants ND 23
Mutants with A to C ND 23

A to C rate (x107) ND 380
Experiment 4: normal dNTPs + 0.06% 8-oxo-dGTP (0.07 uM)
Mut. Freq. (x107%) 330 97
Total sequenced mutants 37 14
Mutants with A to C 17 11

A to C rate (x107°) 160 62

Y4 =3.6uM, T=0.7pM, C = 13puM, G = 110 pM [from (23)].
"These two values are not statistically different by Fisher’s Exact Test.

Experiment 3) or 0.07 uM (0.06% of dGTP, Experiment 4).
When 8-0x0-dGTP was equimolar to dGTP, the rate of
A to C substitution increased by >1000-fold (P <0.001)
(Experiment 2) compared to the control reaction lacking
8-0x0-dGTP (Experiment 1). Similar rates were observed
for wild-type and exonuclease-deficient pol vy, again
indicating inefficient proofreading of 8-oxo-dGMP-A
mismatches. When 8-0xo-dGTP was present at 0.7 uM
(Experiment 3), which is only 0.6% of dGTP but
equimolar to dTTP, wild-type pol vy generated A to C
substitutions at a rate of 380 x 10>, about 400-fold
higher (P <0.001) than in the control reaction lacking
8-0x0-dGTP (0.98 x 10>, Experiment 1). Finally, when
8-0x0-dGTP was present at an even 10-fold lower
concentration (0.07 uM, Experiment 4), exonuclease-
deficient and wild-type pol y generated A to C
substitutions at rates of 160x 10~ and 62x 107,
respectively. Thus, as little as 70nM 8-oxo-dGTP
promotes A to C transversions at rates that are much
higher than when 8-0xo-dGTP is absent.

8-0x0-dGTP-dependent errors using slightly imbalanced
dNTP pools as found in mouse liver mitochondria

The degree to which mitochondrial dNTP pools are
imbalanced varies depending on the rodent tissue exam-
ined. For example, while the pools in rat heart and skeletal
muscle are highly imbalanced, those in rat liver are less
imbalanced (23). Moreover, a recent study of mitochon-
dria isolated from mouse liver (24) reported that no dNTP
was in excess over any other by >2.8-fold. To determine
how little 8-0xo-dGTP is needed to reduce pol vy fidelity
under the latter, more balanced conditions, we performed
reactions that contained the dNTP pool observed
in mouse liver mitochondria (0.4puM dGTP, 0.53uM
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Table 3. 8-0xo-dGTP effects on the fidelity of wild-type and
exonuclease-proficient pol y using slightly imbalanced dNTP pools
reported in rodent liver

Condition Wild-type pol y
Experiment 1: normal dNTPs only*

Mut. Freq. (x107% 12

Total sequenced mutants 19

Mutants with A to C 0

A to C rate (x1075) <05
Experiment 2: dNTPs + 60% 8-0xo-dGTP (0.24 uM)
Mut. Freq. (x107%) 160

Total sequenced mutants 33

Mutants with A to C 29

A to C rate (x107%) 120
Experiment 3: dANTPs + 6% 8-0xo-dGTP (0.024 uM)
Mut. Freq. (x107% 27

Total sequenced mutants 29

Mutants with A to C 16

A to C rate (x107%) 13

Experiment 4: dNTPs + 0.6% 8-0xo-dGTP (0.0024 M)
Mut. Freq. (x107%) 22

Total sequenced mutants 23

Mutants with A to C 4

A to C rate (x107%) 33
“4=087uM, T=053uM, C=1.1uM, G =04uM [adapted
from (24)].

dTTP, 1.1 uM dCTP and 0.87 uM dATP), either without
8-0x0-dGTP (Table 3, Experiment 1) or with §-oxo-dGTP
at 0.24 uM (60% of the dGTP concentration and 45% of
the dTTP concentration, Experiment 2), or a 10-fold
(Experiment 3) or a 100-fold (Experiment 4) lower
concentration of 8-0xo-dGTP. Compared to the rates of
A to C substitutions seen in the absence of 8-oxo-dGTP
(0.5 x 10 ), 8-0x0-dGTP reduced fidelity at all concen-
trations tested, including by 6.6-fold (P <0.05) when
as little as 2.4nM 8-oxo-dGTP was present.

Estimation of intramitochondrial 8-0xo0-dGTP
concentrations

The data above demonstrate that even low concentrations
of 8-0x0-dGTP can significantly affect replication error
rates when present with the canonical dNTPs at their
approximate intramitochondrial concentrations. Is 8-oxo-
dGTP present within mitochondria at concentrations
comparable to those shown here to be mutagenic?
Previous attempts to detect and quantitate 8-oxo-dGTP
in extracts of E. coli used HPLC with electrochemical
detection. The instrument used contained an ampero-
metric detector, with a lower detection limit for 8-oxo-
dGTP of about 6 pmol. With that instrument Tassotto
and Mathews (32) were unable to detect 8-0xo-dGTP. To
improve sensitivity, here we used a coulometric detector
that can detect 0.5 pmol or less of 8-0xo-dGTP and which
gave a linear response over a several 100-fold concentra-
tion range (data not shown). With this instrument it was
possible to detect in extracts of rat tissue mitochondria
as little as 0.3 pmol of 8-0xo-dGTP. Panels A and B in
Figure 1 depict analysis of rat liver and heart mitochon-
drial extracts, respectively. A peak appearing at about
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Figure 1. Resolution and detection of 8-0xo-dGTP by HPLC. The four panels depict HPLC elution profiles monitored by electrochemical detection.
(A) Analysis of a rat liver mitochondrial extract. (B) Analysis of rat heart mitochondria. (C) Analysis of a rat liver mitochondrial extract; identical to
panel A, except that 100 pmol of authentic 8-0xo-dGTP was present, after addition of standard to the mitochondria prior to extraction and analysis.
(D) Analysis of rat skeletal muscle mitochondria. Each arrow points to a species eluted at about 40.2 min, identified as 8-oxo-dGTP by virtue of its

coelution with the standard nucleotide.

40 min coincides with authentic 8-oxo-dGTP, which was
added to a liver mitochondrial extract and run under
identical conditions, as shown in panel C. An extract of
rat skeletal muscle revealed little or no such material
(Panel D).

Using this procedure, we detected 8-0xo-dGTP in
mitochondrial extracts from rat liver, heart, brain, skeletal
muscle and kidney and compared these data with
measurements of the four canonical dNTPs in the same
extracts. The estimated concentrations of the oxidized
nucleotide in liver, heart and kidney were in the 1-2 uM
range (Table 4), while comparable measurements in brain
and muscle mitochondria gave lower values, approaching
our limits of detection. As reported previously (23), the
pools for the four canonical dNTPs were highly asym-
metric, with dGTP being the most abundant, followed by
dCTP and dATP and then dTTP. Since publication of our
previous report (23), Ferraro et al. (24) have questioned
the wvalidity of our measurements, based upon the
possibility that cells and mitochondria were anaerobic
during harvesting and extraction of the organs. Keys to
evaluating this possibility are the levels of adenine
nucleotides in the mitochondrial extracts. Because the

HPLC instrument has dual-channel detection, it was
possible to determine these levels from the UV absorbance
trace that was generated simultaneously with the electro-
chemical signal used to quantify 8-oxo-dGTP. Figure 2
shows the UV trace for one of the liver extracts analyzed.
Peaks corresponding to ATP, ADP and AMP were
identified and quantified with respect to standards. In
the experiment shown, ATP, ADP and AMP comprised
44, 35 and 21%, respectively, of the total adenine
nucleotide pool, and the intramitochondrial ATP concen-
tration was estimated to be 2.6 mM. Due to incomplete
resolution of the ATP and ADP peaks, these values are
only estimates. However, they are comparable to adenine
nucleotide pool data reported by Ferraro et al. (24) for
mouse liver mitochondria, and they suggest that the ANTP
asymmetries that we reported (23) and confirm here are
not an artifact of ATP depletion during isolation and
extraction of mitochondria. Our data reveal that in most
of the tissues analyzed the estimated intramitochondrial
concentration of 8-oxo-dGTP is comparable to that of
dTTP, such that it could compete effectively for incor-
poration opposite template A. On the other hand,
competition with dGTP for incorporation opposite



Table 4. Estimated intramitochondrial concentrations of dNTPs
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Tissue Estimated intramitochondrial concentration, uM £+ SD

dATP dTTP dCTP dGTP 8-0x0-dGTP
Liver 1.7+1.1 1.7+1.5 3.94+0.7 12.1+£5.9 1.2+04
Heart 2.1£1.5 3.2+24 5.6+2.8 69.3+£8.2 1.5+1.2
Brain 3.54+2.1 0.5+0.2 2.84+0.3 39.04+0.2 04+0.2
Skeletal muscle 1.6+0.3 1.6+2.5 454338 28.44+5.8 0.2+0.1
Kidney 24+1.4 33+38 57+34 69.0+63.8 1.7+£1.2

Data are averages of measurements with three adult male Wistar rats, with the exception of brain, which involved two measurements.
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Figure 2. Estimation of adenine nucleotide levels in a rat liver mitochondrial extract. The figure shows an ultraviolet absorption profile (260 nm)
obtained simultaneously with the electrochemical detection profile of a rat liver mitochondrial extract. The peaks corresponding to ATP, ADP and

AMP were identified by analysis of standard nucleotide solutions.

template C would be expected to be ineffective because of
the high concentration of dGTP.

DISCUSSION

The 8-0xo-dGTP-dependent A to C error rate reported
here with human pol y (Table 1) and earlier with avian
pol v (16) is observed despite the fact that wild-type pol y
has an intrinsic 3’ exonuclease activity that strongly
proofreads natural base—base mismatches made by the
polymerase (6,9), e.g. undamaged dGMP inserted oppo-
site template thymine (7). This suggests that the exonu-
clease activity of human pol y does not efficiently
proofread 8-oxo-dGMP misinserted opposite adenine, a
conclusion also reached from elegant kinetic analysis of
insertion and mismatch extension by pol y performed in
the presence of individual dNTPs (19). Like Hanes et al.
(19), we conclude that once 8-oxo-dGMP is incorporated
opposite adenine by pol vy it is preferentially extended
rather than excised, which increases its mutagenic
potential. Inefficient proofreading of 8-oxo-dGMP oppo-
site adenine by pol vy, an A family DNA polymerase, is
reminiscent of the inefficient proofreading of the same
mismatch in the opposite symmetry, i.e. dAMP inserted
opposite template 8-oxo-guanine, by another A family

enzyme, T7 DNA polymerase (34,35). In that case,
structural studies indicate that the damaged mismatch,
when present at the primer terminus, has geometry and
minor groove interactions with the polymerase that are
similar to those of normal Watson—Crick base pairs and
therefore largely escape proofreading.

Our data indicate that at levels that are detected
in mitochondrial dNTP pools, 8-0xo-dGTP promotes
pol v replication infidelity. This is readily explained by
8-0x0-G-A mismatch mimicry of a correct base pair,
thereby degrading the two main mechanisms by which
pol v normally achieves high-fidelity, high-nucleotide
selectivity and exonucleolytic proofreading. Thus, mis-
incorporation of 8-oxo-dGTP, and by extrapolation,
possibly other oxidized dNTPs, should contribute to
mitochondrial genome instability in vivo, which may in
turn contribute to aging and mitochondrial diseases. For
example, two studies (10,11) have shown that mice with a
homozygous defect [but not a heterozygous defect (36)] in
the exonuclease activity of pol y age prematurely, and
mutations in the motifs encoding the exonuclease as well
as the polymerase activities of human pol y are both
linked to mitochondrial diseases (5,37). In fact, several of
these disease-associated mutant pol y’s have been demon-
strated to have reduced nucleotide selectivity. Among
these, the Y955C mutant pol vy is particularly interesting.
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The Y955C substitution in pol v is clearly linked to severe
autosomal dominant progressive external opthalmoplegia,
with significant cosegregation of Parkinsonism and in
some cases, with symptoms of premature ovarian failure.
The Y955C polymerase itself has strongly reduced
nucleotide selectivity yet retains the ability to efficiently
proofread natural base—base mismatches (37). However,
we show here that the 8-oxo-dGMP-A mismatch is
refractory to proofreading, while a recent study has
shown that Y955C pol y has 100-fold reduced discrimina-
tion against misinsertion of 8-oxo-dGTP opposite tem-
plate adenine (38). This may explain why transgenic mice
that specifically express Y955C cDNA in heart have
increased levels of 8-0xoG in heart mitochondrial DNA
(39). These transgenic mice have decreased mitochondrial
DNA and aberrant mitochondria and they exhibit
cardiomyopathy. The analogous mutation in the gene
encoding yeast pol y results in loss of mitochondrial DNA,
a high frequency of petite mutants, and increased levels of
lesions in mitochondrial DNA that are consistent with
Y955C-associated oxidative stress (40,41).
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