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Abstract: A combined in silico method was developed to predict potential protein targets that
are involved in cardiotoxicity induced by aconitine alkaloids and to study the quantitative
structure–toxicity relationship (QSTR) of these compounds. For the prediction research,
a Protein-Protein Interaction (PPI) network was built from the extraction of useful information about
protein interactions connected with aconitine cardiotoxicity, based on nearly a decade of literature and
the STRING database. The software Cytoscape and the PharmMapper server were utilized to screen
for essential proteins in the constructed network. The Calcium-Calmodulin-Dependent Protein Kinase
II alpha (CAMK2A) and gamma (CAMK2G) were identified as potential targets. To obtain a deeper
insight on the relationship between the toxicity and the structure of aconitine alkaloids, the present
study utilized QSAR models built in Sybyl software that possess internal robustness and external high
predictions. The molecular dynamics simulation carried out here have demonstrated that aconitine
alkaloids possess binding stability for the receptor CAMK2G. In conclusion, this comprehensive
method will serve as a tool for following a structural modification of the aconitine alkaloids and lead
to a better insight into the cardiotoxicity induced by the compounds that have similar structures to
its derivatives.

Keywords: aconitine; quantitative structure–toxicity relationship (QSTR); docking; network; alkaloids

1. Introduction

The rhizomes and roots of aconitine species, a genus of the family Ranunculaceae, are commonly
used in treatment for various illnesses such as collapse, syncope, rheumatic fever, joints pain,
gastroenteritis, diarrhea, edema, bronchial asthma, and tumors. They are also involved in the
management of endocrinal disorders such as irregular menstruation [1,2]. However, the usefulness of
this aconitine species component intermingles with toxicity after it is administered to a diseased patient.
So far, few articles have recorded the misuse of aconitine medicinals with strong emphasis and thus
have referenced that the misuse of this medicinal can result in severe cardio- and neurotoxicity [3–7].
In our past research, it was evidenced that the aconitine component is the main active ingredient in
this species’ root and rhizome, and is responsible for both therapeutic and toxic effects [8].

This medicinal has been tested for cancerological and dermatological activities. Its application
to disease conditions proved to exhibit an activity that slowed down cancer tumor growth and to
cure serious cases of dermatosis. It was also found to have an effect on postoperative analgesia [9–12].
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However, a previous safety study has revealed that aconitine toxicity is responsible for its restriction
in clinical settings. Further studies are needed to explain the cause of aconitine toxicity as well as
to show whether the toxicity supersedes its usefulness. A combined network analysis and in silico
study was once performed to obtain insight on the relationship between aconitine alkaloid toxicity and
the aconitine structure, and it was found that the cardiotoxicity of aconitine is the primary cause of
patient death. The aconitine poison is similar to the poison created by some pivotal proteins such as the
ryanodine receptor (RYR1 and RYR2), the Gap junction α-1 protein (GJA1), and the sodium–calcium
exchanger (SLC8A1) [9–12]. However, among all existing studies about the aconitine medicinal, no one
has reported detail of its specific binding target protein linked to toxicity.

Protein–Protein Interactions (PPIs) participate in many metabolic processes occurring in living
organisms such as the cellular communication, immunological response, and gene expression
control [13,14]. A systematic description of these interactions aids in the elucidation of interrelationships
among targets. The targeting of PPIs with small-molecule compounds is becoming an essential step
in a mechanism study [14]. The present study was designed and undertaken to identify the critical
protein that can affect the cardiotoxicity of aconitine alkaloids. A PPI network built by the STRING
database is a physiological contact for the high specificity that has been established for several protein
molecules and has stemmed from computational prediction, knowledge transfer between organisms,
and interactions aggregated from other databases [15]. The analysis of the PPI network is based on nodes
and edges and is always performed via cluster analysis and centrality measurements [16,17]. In cluster
analysis, highly interconnected nodes and protein target nodes are divided and used to form sub-graphs.
The reliability of the PPI network is identified by the content of each sub-graph [18]. The variability in
centrality measurements is connected to the quantitative relationship between the protein targets and its
weightiness in the network [18]. Hence, PPI networks with protein targets related to aconitine alkaloid
cardiotoxicity must enable us to find the most relevant protein for aconitine toxicity and to understand
the mechanism at the network level. In our research, the evaluation and visualization analysis of essential
proteins related to cardiotoxicity in PPIs were performed by the ClusterONE and CytoNCA plugins in
Cytoscape 3.5, designed to find the potential protein targets via combination with conventional integrated
pharmacophore matching technology built in the PharmMapper platform.

Structural modification of a familiar natural product, active compound, or clinical drug is
an efficient method for designing a novel drug. The main purpose of the structural modification
is to reduce the toxicity of the target compound while enhancing the utility of the drug [19].
The identification of the structure–function relationship is an essential step in the drug discovery
and design, the determination of the 3D protein structures was the key step in identifying the
internal interactions in the ligand–receptor complexes. X-ray crystallography and NMR were the
only accepted techniques of determining the 3D protein structure. Although the 3D structure
obtained by these two powerful techniques are accurate and reliable, they are time-consuming and
costly [20–24]. With the rapid development of structural bioinformatics and Computer-Aided Drug
Design (CADD) techniques in the last decade, computational structures are becoming increasingly
reliable. The application of structural bioinformatics and CADD techniques can improve the
efficiency of this process [25–34]. The ligand-based quantitative structure–toxicity relationship (QSTR)
and receptor-based docking technology are regarded as effective and useful tools in analysis of
structure–function relationships [35–38]. The contour maps around aconitine alkaloids generated by
comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis
(CoMSIA) were combined with the interactions between ligand substituents and amino acids obtained
from docking results to gain insight on the relationship between the structure of aconitine alkaloids
and their toxicity.

Scores from functions were used to evaluate the docking result. The value-of-fit score in MOE
software reflects the binding stability and affinity of the ligand–receptor complexes. When screening for
the most potential target for cardiotoxicity, the experimental data was combined with the value-of-fit
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score by the NDCG (Normalized Discounted Cumulative Gain). The possibility of a protein being a
target of cardiotoxicity corresponds with the consistency of this experimental data.

Since the pioneering paper entitled “The Biological Functions of Low-Frequency Phonons” [39]
was published in 1977, many investigations of biomacromolecules from a dynamic point of view
have occurred. These studies have suggested that low-frequency (or terahertz frequency) collective
motions do exist in proteins and DNA [40–44]. Furthermore, many important biological functions in
proteins and DNA and their dynamic mechanisms, such as cooperative effects [45], the intercalation
of drugs into DNA [42], and the assembly of microtubules [46], have been revealed by studying the
low-frequency internal motions, as summarized in a comprehensive review [40]. Some scientists have
even applied this kind of low-frequency internal motion to medical treatments [47,48]. Investigation
of the internal motion in biomacromolecules and its biological functions is deemed as a “genuinely
new frontier in biological physics,” as announced in the mission of some biotech companies (see,
e.g., Vermont Photonics). In order to consider the static structural information of the ligand–receptor
complex, dynamical information should be also considered in the process of drug discovery [49,50].
Finally, molecular dynamics was carried out to verify the binding affinity and stability of aconitine
alkaloids and the most potential target. This present study may be instrumental in our future studies for
the synergism and attenuation of aconitine alkaloids and for the exploitation of its clinical application
potential. A flowchart of procedures in our study is shown in Figure 1.

Molecules 2018, 23, x FOR PEER REVIEW  3 of 24 

 

of-fit score by the NDCG (Normalized Discounted Cumulative Gain). The possibility of a protein 
being a target of cardiotoxicity corresponds with the consistency of this experimental data.  

Since the pioneering paper entitled “The Biological Functions of Low-Frequency Phonons” [39] 
was published in 1977, many investigations of biomacromolecules from a dynamic point of view have 
occurred. These studies have suggested that low-frequency (or terahertz frequency) collective 
motions do exist in proteins and DNA [40–44]. Furthermore, many important biological functions in 
proteins and DNA and their dynamic mechanisms, such as cooperative effects [45], the intercalation 
of drugs into DNA [42], and the assembly of microtubules [46], have been revealed by studying the 
low-frequency internal motions, as summarized in a comprehensive review [40]. Some scientists have 
even applied this kind of low-frequency internal motion to medical treatments [47,48]. Investigation 
of the internal motion in biomacromolecules and its biological functions is deemed as a “genuinely 
new frontier in biological physics,” as announced in the mission of some biotech companies (see, e.g., 
Vermont Photonics). In order to consider the static structural information of the ligand–receptor 
complex, dynamical information should be also considered in the process of drug discovery [49,50]. 
Finally, molecular dynamics was carried out to verify the binding affinity and stability of aconitine 
alkaloids and the most potential target. This present study may be instrumental in our future studies 
for the synergism and attenuation of aconitine alkaloids and for the exploitation of its clinical 
application potential. A flowchart of procedures in our study is shown in Figure 1. 

 
Figure 1. The whole framework of the comprehensive in silico method for screening potential targets 
and studying the quantitative structure–toxicity relationship (QSTR). 

2. Results 

The 33 compounds were aligned over, under the superimposition of the common moiety and 
Template Compound 6. The statistical parameters for database alignment—q2, r2, F, and SEE—were 

Figure 1. The whole framework of the comprehensive in silico method for screening potential targets
and studying the quantitative structure–toxicity relationship (QSTR).

2. Results

The 33 compounds were aligned over, under the superimposition of the common moiety and
Template Compound 6. The statistical parameters for database alignment—q2, r2, F, and SEE—were
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calculated by Sybyl X2.0 as shown in Table 1. The CoMFA model with the optimal number
of 6 components presented a q2 of 0.624, an r2 of 0.966, an F of 124.127, and an SEE of 0.043,
and contributions of the steric and electrostatic fields were 0.621 and 0.379, respectively. The CoMSIA
model with the optimal number of 4 components presented a q2 of 0.719, an r2 of 0.901, an F of 157.458,
and an SEE of 0.116, and the contributions of steric, electrostatic, hydrophobic, hydrogen bond acceptor,
and hydrogen bond donor fields were 0.120, 0.204, 0.327, 0.216, and 0.133, respectively. The statistical
results proved that the aconitine alkaloids QSTR model of CoMFA and CoMSIA under the database
alignment have adequate predictability.

Table 1. The partial least square (PLS) statistical parameters for the CoMFA and CoMSIA.

PLS Statistical Parameters CoMFA CoMSIA

q2 a 0.624 0.719
r2 b 0.966 0.901

ONC c 6 4
SEE d 0.043 0.116

F e 124.127 157.458
rpred2 f 0.903 0.894

Fraction of Field contribution g

steric 0.621 0.120
Electrostatic 0.379 0.204

Hydrophobic - 0.327
H-bond acceptor - 0.216

H-bond donor - 0.133
a Cross-validated correlation coefficient; b Non-cross-validated correlation coefficient; c Optimum number of
components; d Standard error of estimate; e F-test value; f The predictive r2 value; g Field: steric, electrostatic,
hydrophobic, hydrogen-bond acceptor, and hydrogen-bond donor.

Experimental and predicted pLD50 values of both the training set and test set are shown in
Figure 2, and the CoMFA (Figure 2A) and CoMSIA (Figure 2B) model gave the correlation coefficient
(r2) value of 0.9698 and 0.977, respectively, which demonstrated the internal robustness and external
high prediction of the QSTR models.
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Figure 2. Experimental versus predicted activity of the training and test sets based on the comparative
molecular field analysis (CoMFA) model (A) and comparative molecular similarity index analysis
(CoMSIA) model (B).

Residuals vs. Leverage Williams plots of the aconitine QSTR models are shown in Figure 3A,B.
All values of standardized residuals fall between 3σ and −3σ, and the values of leverage are less than
h*, so the two models demonstrate potent extensibility and predictability.
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(B) models.

Under MeSH (Medical Subject Headings), a total of 491 articles (261 articles were received
from Web of Science, and others were received from PubMed) were retrieved. After selecting
cardiotoxicity-related and excluding repetitive articles, 274 articles were used to extract the correlative
proteins and pathways for building a PPI network in the STRING server. The correlative proteins or
pathways are shown in Table 2. All proteins were taken as input protein in the STRING database to
find its direct and functional partners [51], and proteins and its partners were then imported into the
Cytoscape 3.5 to generate the PPI network with 148 nodes and 872 edges (Figure 4).

Table 2. Proteins related to aconitine alkaloids induced cardiotoxicity extracted from 274 articles.

Name Classification Frequency

RYR2 Ryanodine receptor 2 19
RYR1 Ryanodine receptor 1 15
GJA1 Gap junction α-1 protein (connexin43) 13

SLC8A1 Sodium/calcium exchanger 1 11
ATP2A1 Calcium transporting ATPase fast twitch 1 9
KCNH2 Potassium voltage-gated channel H2 7
SCN3A Sodium voltage-gated channel type 3, 3
SCN2A Sodium voltage-gated channel type 2 3
SCN8A Sodium voltage-gated channel type 8 2
SCN1A Sodium voltage-gated channel type 1 2
SCN4A Sodium voltage-gated channel type 4 1
KCNJ3 Potassium inwardly-rectifying channel J3 1

During the case of screening of the essential proteins in PPI network, three centrality
measurements (Subgraph Centrality, Betweenness Centrality, and Closeness Centrality) in CytoNCA
were utilized to evaluate the weight of nodes. After removing the central node “AC,” the centrality
measurements of 147 nodes were calculated by CytoNCA and documented in Table S1. The top 10%
of three centrality measurement values of all node are painted with a different color in Figure 4A.
To screen the node with the high values of each three centrality measures, nodes with three colors were
overlapped and merged into sub-networks in Figure 4B.

In the sub-networks, the voltage-gated calcium and sodium channel accounted for a large
proportion, which is consistent with our research in clustering the network (Clusters 1, 2, and 9).
All proteins in the sub-networks will be utilized to predict the results of the PharmMapper server to
receive the potential target of cardiotoxicity induced by aconitine alkaloids (in Figure 5A,B). In the
meantime, 2V7O (CAMK2G) and 2VZ6 (CAMK2A) were identified as the potential targets with higher
fit scores.
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Figure 5. (A) Common targets of three aconitine alkaloids obtained from overlapping the PharmMapper
results. (B) The potential target received from superimposing the PharmMapper and CytoNCA result.

All compounds were docked into three potential targets. The values of nDCG are shown in Table 3.
The Dock study of three proteins with an NDCG of 0.8503 and 0.9122, respectively (the detailed docking
result is shown in Table S2) proves that the result of the Dock study of 2V7O is consistent with the
Experimental pLD50, so the protein 2V7O was utilized for the ligand interaction analysis.
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Table 3. Ranking results by experimental and predicted pLD50 and fit score.

Compounds Experimental pLD50 Fit Score (2V7O) Fit Score (2VZ6)

6 1 3 3
20 2 1 12
12 3 4 9
1 4 2 4
11 5 7 2
14 6 8 13
16 7 5 6
7 8 17 15
8 9 10 11
27 10 23 17
13 11 12 19
15 12 11 5
32 13 18 18
5 14 22 8
33 15 13 29
21 16 15 1
25 17 9 20
22 18 25 25
17 19 20 16
28 20 24 30
9 21 16 32
29 22 32 14
2 23 30 24
30 24 31 26
18 25 21 27
10 26 26 21
23 27 29 31
31 28 33 7
26 29 14 23
4 30 28 33
3 31 6 10
19 32 27 28
24 33 19 22

NDCG 1 0.9122 0.8503

3. Discussion

The 3D-QSTR contour maps were utilized to visualize the information on the CoMFA and CoMSIA
model properties in three-dimensional space. These maps used characteristics of compounds that
are crucial for activity and display the regions around molecules where the variance of activities is
expected based on physicochemical property changes in molecules [52]. The analysis of favorable and
unfavorable regions of steric, electrostatic, hydrophobic, HBD, and HBA atom fields contribute to the
realization of the relationship between the aconitine alkaloid’s toxic activity and its structure. Steric
and electrostatic contour maps of the CoMFA QSTR model are shown in Figure 4A,B, respectively.
Hydrophobic, HBD, and HBA contour maps of the CoMSIA QSTR model are shown in Figure 4C–E.
Compound 6 has the most toxic activity, so it was chosen as the reference structure for the generation
of the CoMFA and CoMSIA contour maps.

In the case of the CoMFA study, the steric contour map around Compound 6 is shown in Figure 6A.
The yellow regions near R2, R7, and R6 showed the substituents of the molecule, which proved that
these positions were not ideal for sterically favorable functional groups. Therefore, Compounds 19, 24,
and 26 (with pLD50 values of 1.17, 0.84, and 1.82, respectively), which consist of sterically esterified
moieties at Positions R2 and R7, were less toxic than Compounds 6 and 20 (with pLD50 values of 5.00
and 4.95), which were substituted by a small hydroxyl group, and Compound 3 (with a pLD50 value
of 1.44) has less toxic activity due to the esterified moiety in R6. The green regions, sterically favorable
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charges, were favorable for toxicity and are shown around R9, so the small group substituted in R9
(Compounds 23, 29, 30, and 31, with pLD50 values of 1.85, 2.29, 1.93, and 1.85, respectively) exhibited
less toxicity.

The CoMFA electrostatic contour map is shown in Figure 6B. The blue region near the R2 and R7
substitution revealed that the replacement of electropositive groups is in favor of toxicity. This can
be proven by the fact that the compounds with hydroxy in these two positions had higher pLD50

values than the compound with acetoxy or no substituents. The red region surrounding molecular
scaffolds was not distinct, which revealed that there was no connection between the electronegative
and the toxicity.

The CoMSIA hydrophobic contour map is shown in Figure 6C. The R2, R6, and R7 around
the white region indicated that the hydrophobic groups were unfavorable for the toxicity, so the
esterification of hydrophilic hydroxyl or dehydroxylation decreased the toxicity, which is consistent
with the steric and electrostatic contour map. The yellow contour map near the R12 manifested that the
hydrophilic hydroxy was unfavorable to the toxicity, which can be validated by the fact that aconitine
alkaloids with hydroxy substituents in R12 (Compound 10, with a pLD50 value of 1.88) have a lower
pLD50 value than the compounds with no substitution (Compound 1, with a pLD50 value of 4.92).
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The CoMSIA contour map of HBD is shown in Figure 6D. The cyan regions at R2, R6, and R7
represented a favorable condition for the HBD atom, which clearly validated the fact that the
compounds with hydroxy in this region show potent toxicity. A purple region was found near
R12, which proved that the HBD atom (hydroxyl) in this region has an adverse effect on toxicity.
The HBA contour map is shown in Figure 6. The magenta region around R1 substitution proved that
this substitution was favorable to the HBA atom, so Compounds 13, 15, 32, and 33 with the HBA atom
in the R1 substitution exhibit more potent toxicity (with pLD50 values of 3.52, 3.30, 3.16, and 2.84) than
compounds with methoxymethyl substituents (Compounds 19, 24, and 26 with pLD50 values of 1.17,
0.84, and 1.82). The red contour map where HBA atoms are unfavorable for the toxicity was positioned
around R2 and R6. These contours were well validated by the lower pLD50 value of compounds with
carbonyl in these substitutions.

The PPI network of aconitine alkaloids cardiotoxicity was divided into nine clusters using
ClusterONE. Statistical parameters are shown in Figure 5. Six clusters, namely Clusters 1, 3, 4,
5, 7, and 9, which possess quality scores higher than 0.5, a density higher than 0.45, and a p-value less
than 0.05, were selected for further analysis (in Figure 7). Clusters 1, 4, and 7 consisted of proteins
mainly involved in the effects of various calcium, potassium, and sodium channels. Cluster 1 mainly
consisted of three channel types related to the cardiotoxicity of aconitine alkaloids, Cluster 4 contained
calcium and sodium channels and some channel exchangers (such as RYR1 and RYR2), and Cluster 7
mainly consisted of various potassium channels. All of these findings are consistent with previous
research about the arrhythmogenic properties of the toxicity of aconitine alkaloids: the aconitine
binds to ion channels and affects their open state, and thus the corresponding ion influx into the
cytosol [53–55]. The channel exchangers play a crucial role in keeping the ion transportation and
homeostasis inside and outside of the cell. Cluster 9 contained some regulatory proteins that can
activate or repress the ion channels through the protein expression level. ATP2A1, RYR2, RYR1,
CACNA1C, CACNA1D, and CACNA1S mediate the release of calcium, thereby playing a key role
in triggering cardiac muscle contraction and maintaining the calcium homeostasis [56,57]. Aconitine
may cause aberrant channel activation and lead to cardiac arrhythmia. Clusters 3 and 5 consisted
of cAMP-dependent protein kinase (cAPK), cGMP-dependent protein kinase (cGPK), and guanine
nucleotide binding protein (G protein). They have not been fully studied to prove whether the
cardiotoxicity induced by aconitine alkaloids is linked to the cAPK, cGPK, and G proteins; however,
some studies have shown that cardiotoxicity-related protein KCNJ3 (potassium inwardly-rectifying
channel) is controlled by G proteins and the cardiac sodium/calcium exchanger and is said to be
regulated by cAPK and cGPK [58,59]. The result of ClusterONE indicated that the constructed network
is consistent with existing studies and that the network can be used to screen essential proteins in the
CytoNCA plugin.

The protein 2V7O belonging to the CaMKII (Calcium/Calmodulin (Ca2+/CaM)-dependent
serine/threonine kinases II) isozyme protein family plays a central role in cellular signaling by
transmitting Ca2+ signals. The CaMKII enzymes transmit calcium ion (Ca2+) signals released inside the
cell by regulating signal transduction pathways through phosphorylation. Ca2+ first binds to the small
regulatory protein CaM, and this Ca2+/CaM complex then binds to and activates the kinase, which then
phosphorylates other proteins such as ryanodine receptor and sodium/calcium exchanger. Thus, these
proteins are related to the cardiotoxicity induced by aconitine alkaloids [60–62]. The excessive activity
of CaMKII has been observed in some structural heart disease and arrhythmias [63], and past findings
demonstrate neuroprotection in neuronal cultures treated with inhibitors of CaMKII immediately
prior to excitotoxic activation of the CaMKII [64]. The acute cardiotoxicity of the aconitine alkaloids is
possibly related to this target. Based on the analysis of the PPI network above, CaMKII was selected as
the potential target for further molecular docking and dynamic simulation. The dock result of 2V7O
is shown in Figure 8A. Compound 20 has the highest fit scores, so it was selected as the template
for conformational analysis. The mechanisms of CaMKII activation and inactivation are shown in
Figure 8B. Compound 20 affects the normal energy metabolism of the myocardial cell via binding in the
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ATP-competitive site in Figure 8C. The inactive state of the CaMKII was regulated by CASK-mediated
T306/T307 phosphorylation, and this state can be inhibited by the binding of Compound 20 in the
ATP-competitive site. Such binding moves CaMKII toward a Ca2+/CaM-dependent activation active
state and a Ca2+/CaM-dependent activation through structural rearrangement of the inhibitory helix
caused by Ca2+/CaM binding and the subsequent autophosphorylation of T287 [65], which will induce
the excessive activity of CaMKII and dynamic imbalance of the calcium ions in the myocardial cell,
eventually leading to heart disease and arrhythmias.
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The information of a binding pocket of a receptor for its ligand is very important for drug design,
particularly for conducting mutagenesis studies [28]. As has been reported in the past [66], the binding
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pocket of a protein receptor to a ligand is usually defined by those residues that have at least one heavy
atom within a distance of 5 Å from a heavy atom of the ligand. Such a criterion was originally used to
define the binding pocket of ATP in the Cdk5–Nck5a complex [20], which was later proved to be very
useful in identifying functional domains and stimulating the relevant truncation experiments. A similar
approach has also been used to define the binding pockets of many other receptor–ligand interactions
important for drug design [30,31,33,67–70]. The information of a binding pocket of CaMKII for the
aconitine alkaloids will serve as a guideline for designing drugs with similar scaffolds, particularly for
conducting mutagenesis studies.

In Figure 8A, four top fit scores—Compounds 1, 6, 12, and 20—generated similar significant
interactions with amino acid residues around the ATP-competitive binding pocket. Four compounds
formed with many Van Der Waals interactions within the noncompetitive inhibitor pocket through
amino acid residues such as Asp157, Lys43, Glu140, Lys22, and Leu143. The ligand–receptor interaction
showed that the hydroxy in R2 formed a side chain donor interaction with Asp157. In addition,
the hydroxy in R6 and R7 also formed a side chain acceptor interaction with Glu140 and Ser26,
respectively (the docking result of Compounds 6 and 12 in Figure 8A). These results correspond to the
CoMFA and CoMSIA contour maps. However, the small electropositive and hydrophilic group in R2,
R6, and R7 possess a certain enhancement function to toxicity.

There were aromatic interactions between the phenyl group in R9 and amino acid residues.
The phenyl group in R9 formed aromatic interactions with Leu20, Leu142, and Phe90, while the small
group hydroxyl did not form any interaction with Asp91, which demonstrate that bulky phenyl group
is crucial to this binding pattern and toxicity. This was mainly equal to the CoMFA steric contour
map, where R9 was ideal for sterically favorable groups. The methoxymethyl R1 generated backbone
acceptor with Lys43, which correspond to the CoMSIA HBA contour map, where R1 was favorable for
the HBA atom.Molecules 2018, 23, x FOR PEER REVIEW  12 of 24 
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Figure 8. (A) The interactions between the four compounds and amino acids are shown by the
ligand interaction function in MOE software. (B) The mechanisms of the CaMKII activation state and
inactivation state. (C) The dock result of Compound 20. Compound 20 docked into 2V7O, and the
ATP-competitive pocket was painted green; the T287, T307, and T308 phosphorylation sites were
painted green, orange, and yellow, respectively; the inhibitory helix was painted red.

The result of MD simulation is shown in Figure 9. The red plot represented the RMSD values of
the docked protein. The values of RMSD reached 2.41 Å in 1.4 ns and then remained between 2 and
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2.5 Å throughout the simulation for up to 5 ns. The averaged value of the RMSD was 2.06 Å. The MD
simulation demonstrated that the ligand was stabilized in the active site.
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Finally, we combined the ligand-based 3D-QSTR analysis with the structure-based molecular
docking study to identify the necessary moiety related to the cardiotoxicity mechanism of the aconitine
alkaloids (in Figure 10).Molecules 2018, 23, x FOR PEER REVIEW  13 of 24 
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Figure 10. Crucial requirement of cardiotoxicity mechanism was obtained from the ligand-based
3D-QSTR and structure-based molecular docking study.

4. Materials and Methods

4.1. Network Analysis

To build the PPI network of aconitine alkaloids, literature from 1 January 2007 to 31 February 2017 was
retrieved from PubMed (http://pubmed.cn/) and Web of Science (http://www.isiknowledge.com/)
with the MeSH word “aconitine” and “toxicity” and without language restriction. All documents
about cardiotoxicity caused by aconitine alkaloids were collected. The proteins related to the aconitine
alkaloids cardiotoxicity of this decade were gathered and taken as the input protein in the STRING
(https://string-db.org/) database [51,71], used to search for related proteins or pathways that had been

http://pubmed.cn/
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https://string-db.org/
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reported. Finally, all the proteins and its partners were recorded in Excel in order to import information
and build a PPI network in Cytoscape software.

Cytoscape is a free, open-source, Java application for visualizing molecular networks and
integrating them with gene expression profiles [71,72]. Plugins are available for network and molecular
profiling analyses, new layouts, additional file format support, making connections with databases,
and searching within large networks [71].

ClusterONE (Clustering with Overlapping Neighborhood Expansion) of Cytoscape was utilized
to cluster the PPI network into overlapping sub-graphs of highly interconnected nodes. ClusterONE
is a plugin for detecting and clustering potentially overlapping protein complexes from PPI data.
The quality of a group was assessed by the number of sub-graphs, p-values, and density. The cluster
was discarded when the number of sub-graphs was smaller than 3, the density was less than 0.45,
the quality was less than 0.5, and the p-value was under 0.05 [73]. The clustering results of the
ClusterONE are instrumental to understanding how the reliability of the PPI network relates to
aconitine alkaloids’ cardiotoxicity.

CytoNCA is a plugin in Cytoscape integrating calculation, evaluation, and visualization analysis
for multiple centrality measures. There are eight centrality measurements provided by CytoNCA:
betweenness, closeness, degree, eigenvector, local average connectivity-based, network, subgraph,
and information centrality [74]. The primary purpose of the centrality analysis was to confirm
the essential proteins in the pre-built PPI network. The three centrality measurements in the
CytoNCA plugin—subgraph centrality, betweenness centrality, and closeness centrality—were used
for evaluating and screening the essential protein in the merged target network.

The subgraph centrality characterizes the participation of each node in all subgraphs in a network.
Smaller subgraphs are given more weight than larger ones, which makes this measurement an
appropriate one for characterizing network properties. The subgraph centrality of node “u” can
be calculated by [75]

CS(u) = ∑∞
l=0

µl(u)
l!

= ∑N
v=1(v

u
v)

2eλv.

µl(u) is the uth diagonal entry of the lth power of the weight adjacency matrix of the network. v1,
v2, . . . , vN is be an orthonormal basis composed of RN composed by eigenvectors of A associated to
the eigenvalues λ1, λ2, . . . , λNvu

v , which is the uth component of vv [75].
The betweenness centrality finds a wide range of applications in network theory. It represents the

degree to which nodes stand between each other. Betweenness centrality was devised as a general
measure of centrality. It is applicable to a wide range of problems in network theory, including
problems related to social networks, biology, transport, and scientific cooperation. The betweenness
centrality of a node u can be calculated by [76]

CB(u) = ∑
s 6=u 6=t

ρ(s, u, t)
ρ(s, t)

.

ρ (s, t) is the total number of shortest paths from node s to node ρ (s, u, t), which is the number of
those paths that pass through u.

Closeness centrality of a node is a measure of centrality in a network, calculated as the sum of the
length of the shortest paths between the node and all other nodes in the graph. Thus, the more central
a node is, the closer it is to all other nodes. The closeness centrality of a node u can be calculated by [77]

CC(u) =
|NU | − 1

∑V dist(u, v)
.

|Nu| is the number of node u’s neighbors, and dist (u, v) is the distance of the shortest path from
node u to node v.
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PharmMapper serves as a valuable tool for identifying potential targets for a novel synthetic
compound, a newly isolated natural product, a compound with known biological activity, or an
existing drug [78]. Of all the aconitine alkaloids in this research, Compounds 6, 12, and 20 exhibited
the most toxic activity and were used for the potential target prediction. The Mol2 format of three
compounds was submitted to the PharmMapper server. The parameters of Generate Conformers and
Maximum Generated Conformations was set as ON and 300, respectively. Other parameters used
default values. Finally, the result of the ClusterONE and PharmMapper will be combined together to
select the potential targets for the following docking study [78].

4.2. QSTR Research

Comparative molecular field analysis (CoMFA) and comparative molecular similarity index
analysis (CoMSIA) are efficient tools in ligand-based drug design and are in use for contour map
generation and identification of favorable and unfavorable regions in a moiety [52,79]. The CoMFA
consists of a steric and electrostatic contour map of molecules that are correlated with toxic activity,
while the CoMSIA consists of hydrophobic field, hydrogen bond donor (HBD)/hydrogen bond
acceptor (HBA) [80], and steric/electrostatic fields that are correlated with toxic activity. The CoMFA
and CoMSIA have been utilized to generate a 3D-QSTR model [81]. All molecule models and the
generation of 3D-QSTR were performed with SYBYL X2.0. Alkaloids in mice with LD50 values
listed in Table 4 were extracted from recent literature [70]. The LD50 values of all aconitine alkaloids
were converted into pLD50 with a standard TRIPOS force field. These pLD50 values were used
as a dependent variable, while CoMFA and CoMSIA descriptors were used as an independent
variable. The SKETCH function of Sybyl X2.0 was utilized to illustrate structure and charges, and was
calculated by the Gasteiger–Huckel method. Additionally, the tripose force field was utilized for energy
minimization of these aconitine alkaloid molecules [81]. The 31 molecules were divided into a ratio of
3:1. The division was done in a way that showed that both datasets are balanced and consist of both
active and less active molecules [81]. The reliability of the 3D-QSTR model depends on the database
molecular alignment. The most toxic aconitine alkaloids (Compound 6) was selected as the template
molecule, and the tetradecahydro-2H-3,6,12-(epiethane [1,1,2] triyl)-7,9-methanonaphtho[2,3-b]azocine
was selected as the common moiety.

PLS (partial least squares) techniques are associated with field descriptors with activity values
such as [80] Leave One Out (LOO) values, the optimal number of components, the Standard Error of
Estimation (SEE), cross-validated coefficients (q2), and the conventional coefficient (r2). These statistical
data are pivotal in the evaluation of the 3D-QSTR model and can be worked out in the PLS method [81].
The model is said to be good when the q2 value is more than 0.5 and the r2 value is more than 0.6.
The q2 and r2 values reflect a model’s soundness. The best model has the highest q2 and r2 values,
the lowest SEE, and an optimal number of components [80,82,83]. In the case of CoMFA and CoMSIA
analysis, the values of the optimal number of components, SEE, and q2 can be worked out by LOO
validation, with USE SAMPLS turned on and components set to 5, while in the process of calculating r2,
the USE SAMPLS was turned off and the column filtration was set to 2.0 kcal mol−1 in order to speed
up the calculation without the need to sacrifice information content [81–84]. Therefore, components
were set to 6 and 4, respectively, which were optimal numbers of components calculated by performing
a SAMPLS run. SEE and r2 were utilized to assess the non-cross validated model.
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Table 4. Structure of Aconitine alkaloids with toxic activity.
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4 509-18-2 methoxymethyl-H-hydroxy-methoxy-hydroxy-hydroxy-H-methoxy-methoxy-H-H-H-ethyl 1.76 
5* 466-24-0 methoxymethyl-hydroxy-methoxy-methoxy-H-hydroxy-hydroxy-methoxy-benzoxy-H-hydroxy-H-ethyl 3.00 
6 2752-64-9 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-methy 5.00 
7 4491-19-4 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-H-methoxy-benzoxy-H-hydroxy-H-ethyl 4.33 
8* 6900-87-4 methoxymethyl-H-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-methy 4.33 
9 1356-52-1 H-H-methoxy-H-H-hydroxy-H-methoxy-benzoxy-H-H-hydroxy-H-ethyl 2.55 

10 6836-11-9 methy-H-methoxy-acetoxyl-dioxolane-H-H-methoxy-methoxy-H-H-hydroxy-ethyl 1.88 
11 8006-38-0 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-ethyl 4.78 
12* 20501-56-8 methoxymethyl-H-methoxy-H-H-hydroxy-H-methoxy-hydroxy-H-H-H-ethyl 4.94 
13 21019-30-7 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate ethyl-H-methoxy-methoxy-hydroxy-hydroxy-H-methoxy-methoxy-H-H-H-ethyl 3.52 
14 41849-35-8 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-hydroxy-ethyl 4.66 
15 26000-16-8 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate ethyl-H-methoxy-methoxy-a-H-H-methoxy-methoxy-H-H-H-ethyl 3.3 
16 77181-26-1 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-ethyl 4.4 
17 71402-60-3 methoxymethyl-hydroxy-methoxy-methoxy-H-hydroxy-hydroxy-methoxy-benzoxy-H-hydroxy-H-trimethylethanaminium 2.59 
18 67806-02-4 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-acetoxyl-methoxy-benzoxy-H-acetoxyl-H-ethyl 1.9 
19 85031-25-0 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-acetoxyl-methoxy-acetoxyl-H-acetoxyl-H-ethyl 1.17 
20 71425-64-4 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-trimethylethanaminium 4.95 
21* 63238-67-5 methoxymethyl-hydroxy-methoxy-methoxy-H-hydroxy-hydroxy-methoxy-benzoxy-H-hydroxy-H-methy 2.68 
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24 82144-73-8 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-H-methoxy-benzoxy-H-hydroxy-H-ethyl 0.84 
25 82144-74-9 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-H-methoxy-benzoxy-H-acetoxyl-H-ethyl 2.66 
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10 6836-11-9 methy-H-methoxy-acetoxyl-dioxolane-H-H-methoxy-methoxy-H-H-hydroxy-ethyl 1.88
11 8006-38-0 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-ethyl 4.78
12* 20501-56-8 methoxymethyl-H-methoxy-H-H-hydroxy-H-methoxy-hydroxy-H-H-H-ethyl 4.94
13 21019-30-7 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate ethyl-H-methoxy-methoxy-hydroxy-hydroxy-H-methoxy-methoxy-H-H-H-ethyl 3.52
14 41849-35-8 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-hydroxy-ethyl 4.66
15 26000-16-8 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate ethyl-H-methoxy-methoxy-a-H-H-methoxy-methoxy-H-H-H-ethyl 3.3
16 77181-26-1 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-ethyl 4.4
17 71402-60-3 methoxymethyl-hydroxy-methoxy-methoxy-H-hydroxy-hydroxy-methoxy-benzoxy-H-hydroxy-H-trimethylethanaminium 2.59
18 67806-02-4 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-acetoxyl-methoxy-benzoxy-H-acetoxyl-H-ethyl 1.9
19 85031-25-0 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-acetoxyl-methoxy-acetoxyl-H-acetoxyl-H-ethyl 1.17
20 71425-64-4 methoxymethyl-hydroxy-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-trimethylethanaminium 4.95
21* 63238-67-5 methoxymethyl-hydroxy-methoxy-methoxy-H-hydroxy-hydroxy-methoxy-benzoxy-H-hydroxy-H-methy 2.68
22 71402-61-4 methoxymethyl-hydroxy-methoxy-methoxy-H-hydroxy-hydroxy-methoxy-benzoxy-hydroxy-H-H-trimethylethanaminium 2.62
23 38146-89-3 methoxymethyl-hydroxy-methoxy-methoxy-H-hydroxy-H-methoxy-hydroxy-H-hydroxy-H-ethyl 1.85
24 82144-73-8 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-H-methoxy-benzoxy-H-hydroxy-H-ethyl 0.84
25 82144-74-9 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-H-methoxy-benzoxy-H-acetoxyl-H-ethyl 2.66
26 38146-91-7 methoxymethyl-acetoxyl-methoxy-methoxy-H-acetoxyl-H-methoxy-acetoxyl-H-acetoxyl-H-ethyl 1.82
27* 71402-59-0 methoxymethyl-H-methoxy-methoxy-H-acetoxyl-hydroxy-methoxy-benzoxy-H-hydroxy-H-ethyl 4.27
28 71402-62-5 methoxymethyl-H-hydroxy-methoxy-H-hydroxy-hydroxy-methoxy-benzoxy-H-hydroxy-H-methy 2.59
29 39089-30-0 methy-H-hydroxy-H-H-hydroxy-H-methoxy-hydroxy-H-H-H-ethyl 2.29
30 58111-33-4 methoxymethyl-H-hydroxy-methoxy-hydroxy-hydroxy-H-methoxy-H-methoxy-H-H-trimethylethanaminium 1.93
31* 23943-93-3 hydroxy-H-methoxy-hydroxy-H-hydroxy-H-methoxy-methoxy-H-H-H-ethyl 1.85
32 32854-75-4 2-acetamidobenzoate ethyl-H-methoxy-H-H-hydroxy-H-methoxy-methoxy-hydroxy-H-H-ethyl 3.16
33 138729-51-8 2-acetamidobenzoate ethyl-H-methoxy-H-H-acetoxyl-H-methoxy-methoxy-acetoxyl-H-H-ethyl 2.84

* Test set compound.
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The Applicability Domain (AD) of the Topomer CoMFA and CoMSIA model was confirmed
by the Williams plot of Residuals vs. Leverage. Leverage of a query chemical is proportional to its
Mahalanobis distance measure from the centroid of the training set [85,86]. The leverages are calculated
for a given dataset X by obtaining the leverage matrix (H) with the equation below:

H = X
(

XTX
)−1

XT.

X is the model matrix, while XT is its transpose matrix. The plot of standardized residuals vs.
leverage values was drawn, and compounds with standardized residuals greater than three standard
deviation units (±3σ) were considered as outliers [85]. The critical leverage value is considered 3 P/n,
where p is the number of model variables plus one, and n is the number of objects used to calculate the
model. h > 3 P/n mean predicted response is not acceptable [85–87].

4.3. Molecular Docking and Dynamics Study

MOE (Molecular Operating Environment) is a comprehensive Computer-Aided Drug Design
(CADD) software program that incorporates the functions of QSAR, molecular docking, molecular
dynamics, ADME (absorption, distribution, metabolism, and excretion), and homologous modeling.
All of these functions are regarded as conducive instruments in the field of drug discovery and
biochemistry. The molecular docking and dynamics technology were performed in MOE2016 software
to detect the stability and affinity between the ligands and predictive targets [88,89].

The docking process involves the prediction of ligand conformation and orientation within a
targeted binding site. Docking analysis is an important step in the docking process. It has been widely
used to study the reasonable binding mode and obtain information of interactions between amino
acids in active protein sites and ligands. The molecular docking analysis was carried out to determine
the toxicity-related moiety of aconitine alkaloids through the ligand–amino-acid interaction function
in MOE2015. The PDB format of 2V7O and 2VZ6 was downloaded from the PDB (protein data bank)
database (https://www.rcsb.org/), and the mol2 format of compounds was from the SYBYL software
of QSTR research. The structure preparation function in MOE software will be carried out to minimize
the energy and optimize the structure of the protein skeleton. Based on the London dG score and
induced fit refinement, all compounds will be docked into the active site of every potential target by
taking score values as the scoring function [90].

The DCG (Discounted Cumulative Gain) algorithm was utilized to examine the consistency
between the ranking result of pLD50 and our research (fit scores of dock study). They rely on the
formula that refers to pLD50. The IDCG (ideal DCG) refers to the ordered pLD50 values. The closer the
Normalized Discounted Cumulative Gain (NDCG) value is to 1, the better the consistency [91].

NDCGP =
DCGP
IDCGP

DCGP = rel1 +
p

∑
i=2

reli
log2i

.

Preliminary MD simulations for the model protein were performed using the program NAMD
(NAnoscale Molecular Dynamics program, v 2.9), and all files were generated using visual molecular
dynamics (VMD). NAMD is a freely available software designed for high-performance simulation of
large biomolecular systems [92]. During the MD simulation, minimization and equilibration of original
and docked proteins occurred in a 15 Å3 size water box. A CHARMM 22 force field file was applied
for energy minimization and equilibration with Gasteiger–Huckel charges using Boltzmann initial
velocity [93,94]. Integrator parameters also included 2 fs/step for all rigid bonds and nonbonded
frequencies were selected for 1 Å and full electrostatic evaluations for 2 Å were used with 10 steps
for each cycle [93]. The particle mesh Ewald method was used for electrostatic interactions of the
simulation system periodic boundary conditions with grid dimensions of 1.0 Å [94]. The pressure
was maintained at 101.325 kPa using the Langevin piston and the temperature was controlled at

https://www.rcsb.org/
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310 K using Langevin dynamics. Covalent interactions between hydrogen and heavy atoms were
constrained using the SHAKE/RATTLE algorithm. Finally, 5 ns MD simulations for original and
docked protein were carried out for comparing and verifying the binding affinity and stability of the
ligand–receptor complex.

5. Conclusions

The method combining network analysis and the in silico method was carried out to illustrate
the QSTR and toxic mechanisms of aconitine alkaloids. The 3D-QSTR was built in Sybyl with internal
robustness and external high prediction, enabling identification of pivotal molecule moieties related to
toxicity in aconitine alkaloids. The CoMFA model had q2, r2, optimum component, and correlation
coefficient (r2) values of 0.624, 0.966, 6, and 0. 9698, respectively, and the CoMSIA model had q2, r2,
optimum component, and correlation coefficient (r2) values of 0.719, 0.901, 4, and 0.9770. The network
was built with Cytoscape software and the STRING database, which demonstrated the reliability of
cluster analysis. The 2V7O and 2VZ6 proteins were identified as potential targets with the CytoNCA
plugin with PharmMapper server for interactions between the aconitine alkaloids and key amino acids
in the dock study. The result of the dock study demonstrates the consistency of the experimental pLD50.
The MD simulation indicated that aconitine alkaloids exhibit potent binding affinity and stability to the
receptor CAMK2G. Finally, we incorporate pivotal molecule moieties and ligand–receptor interactions
to realize the QSTR of aconitine alkaloids. This research serves as a guideline for studies of toxicity,
including neuro-, reproductive, and embryo-toxicity. With a deep understanding of the relationship
between toxicity and structure of aconitine alkaloids, subsequent structural modification of aconitine
alkaloids can be carried out to enhance their efficacy and to reduce their toxic side effects. Based on
such research, aconitine alkaloids can bring us closer to medical and clinical applications. In addition,
as pointed out in past research [95], user-friendly and publicly accessible web servers represent
the future direction of reporting various important computational analyses and findings [96–109].
They have significantly enhanced the impacts of computational biology on medical science [110,111].
The research in this paper will serve as a foundation for constructing web servers for QSTR studies
and target identifications of compounds.

Supplementary Materials: The following are available online, Table S1: The centrality measurements of 147
nodes were calculated by CytoNCA, Table S2: The dock result of the aconitine alkaloids to the proteins 2V7O
and 2VZ6.
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