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‘Epichromatin’, the surface of chromatin beneath the interphase nuclear

envelope (NE) or at the surface of mitotic chromosomes, was discovered

by immunostaining with a specific bivalent mouse monoclonal anti-

nucleosome antibody (mAb PL2-6). ‘Chromomeres’, punctate chromatin

particles approximately 200–300 nm in diameter, identified throughout

the interphase chromatin and along mitotic chromosomes, were observed

by immunostaining with the monovalent papain-derived Fab fragments of

bivalent PL2-6. The specific target for PL2-6 appears to include the nucleo-

some acidic patch. Thus, within the epichromatin and chromomeric

regions, this epitope is ‘exposed’. Considering that histones possess unstruc-

tured ‘tails’ (i.e. intrinsically disordered peptide regions, IDPR), our

perception of these chromatin regions becomes more ‘fuzzy’ (less defined).

We suggest that epichromatin cationic tails facilitate interactions with ani-

onic components of NE membranes. We also suggest that the unstructured

histone tails (especially, histone H1 tails), with their presumed promiscuous

binding, establish multivalent binding that stabilizes each chromomere as

a unit of chromatin higher order structure. We propose an ‘unstructured

stability’ hypothesis, which postulates that the stability of epichromatin

and chromomeres (as well as other nuclear chromatin structures) is a

consequence of the collective contributions of numerous weak histone

IDPR binding interactions arising from the multivalent nucleosome,

analogous to antibody avidity.
1. Background and recent data
Although the nucleosome was discovered more than 40 years ago [1], the next

level of organization, the higher order chromatin structure, remains controver-

sial. We believe this is due to the search for a rigid organization in a highly

dynamic and fluid nuclear architecture. This review will focus upon chromatin

architecture at the nuclear envelope (NE), at the surface of mitotic chromosomes

and, to some extent, chromatin within nuclei and mitotic chromosomes. Inter-

phase NE chromatin, its association with inner nuclear membrane proteins,

mitotic chromosome structure and post-mitotic NE reformation are discussed

within numerous excellent recent articles [2–11]. This personalized brief

review will primarily discuss recent discoveries from our laboratory and their

possible implications to the larger issue of chromatin higher order structure.

Antibodies against nuclear components and structures are a common fea-

ture of many autoimmune diseases, yielding important reagents in the study

of interphase nuclei and mitotic chromosomes [12,13]. Indeed, the principal

antibody tool (mAb PL2-6) of our laboratory for the past few years was discov-

ered in the laboratory of Marc Monestier, during an analysis of mouse

autoimmunity [14]. PL2-6 was developed into a hybridoma along with other

anti-histone antibodies. When several of these antibodies were examined in

our laboratory, we observed that PL2-6 produced a remarkably similar immu-

nostaining pattern on cells from a variety of diverse species (human, mouse,
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Figure 1. Immunostaining of the epichromatin epitope throughout the cell
cycle in U2OS (a) and HL-60/S4 (b) cells using mAb PL2-6 (red) and a DNA
stain (DAPI, blue). Note that epichromatin staining persists on the outer
edges of the mitotic chromosomes, even following NE breakdown. The
magnification bar for (a) and (b) equals 10 mm. This image has been
previously published [15].
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Figure 2. Immunostaining of the epichromatin epitope in interphase and
mitotic Drosophila Kc cells using two different mAbs that stain epichromatin
(PL2-6 and 1H6, red), rabbit polyclonal anti-H3S10p (green) and DNA (DAPI,
blue). Note the similar staining of epichromatin as shown for human U2OS
and HL-60/S4 cells ( figure 1). The magnification bar equals 10 mm. This
image has been previously published [16].

rsob.royalsocietypublishing.org
Open

Biol.8:180058

2

Drosophila, Caenorhabditis elegans and tobacco) [15,16]: inter-

phase nuclei exhibited strong staining beneath the NE,

denoted ‘epichromatin’; mitotic chromosomes frequently

exhibited even stronger staining at the outer edges of the

chromosome surfaces (figures 1 and 2). The intense periph-

eral staining of the interphase nuclei was observed using

thin section electron microscopy of interphase HL-60/S4

cells treated with the DNA-specific osmium ammine B

(OAB) stain [17–19]; an example is shown in figure 3. This

OAB stained image suggests that the DNA may be more den-

sely packed just beneath the NE. More recently, we

demonstrated that exposing interphase mammalian tissue

culture cells to hyper-osmotic conditions (i.e. 320 mM sucrose

in culture medium) resulted in contraction of interphase chro-

matin away from the NE, clearly revealing that the

epichromatin epitope is separate from the NE lamina

(figure 4).

PL2-6 is a bivalent mouse IgG2b antibody. In order to

examine the significance of antibody bivalency to the
remarkable peripheral chromatin nuclear staining, we

generated a monovalent form of PL2-6, employing papain

digestion [20]. To our surprise, the monovalent Fab fragments

yielded a punctate immunostaining pattern throughout inter-

phase nuclei and along mitotic chromosome arms (figure 5).

These (formaldehyde-fixed) punctate structures are approxi-

mately 200–300 nm in diameter and have been named

‘chromomeres’ [20], in deference to the pioneering obser-

vations of mitotic chromosome granules observed at the

end of the nineteenth century [21–23] (figure 6). In favour-

able microscopic views, chromomeres appear to radiate out

of a central region in the chromosome arms (figure 7).

During the initial discovery of mAb PL2-6 [14], the authors

demonstrated that histones H2A and H2B include the epitope

site. By comparison of the peptide sequence of the PL2-6

(heavy chain variable region 3, hv3) to those of known

nucleosome ‘acidic patch’-binding proteins (LANA and

CENP-C), we predicted that the acidic patch (an ‘exposed’

juxtaposition of acidic amino acids in histones H2A and

H2B) would include the epitope (figure 8) [20].

Several major questions arise from the unusual chromatin

surface binding of interphase epichromatin by bivalent

PL2-6: What are the properties of this chromatin? Do these

properties change during cell differentiation? What type of

DNA is present in interphase epichromatin? These questions

were explored employing ChIP-Seq on the human myeloid

leukaemia HL-60/S4 cell line, which can be differentiated

in vitro into granulocytes and macrophage forms [25]. In

summary, ChIP-Seq revealed considerable similarity in the

DNA composition comparing interphase epichromatin

from undifferentiated and differentiated cells. Epichromatin

contains only approximately 4–5% of the total DNA

sequences. In the HL-60/S4 cells, it is GC-enriched, highly

methylated and exhibits a significant enrichment in retrotran-

sposon Alu. Mapping epichromatin regions along the human

chromosomes demonstrated considerable similarity in its

discrete and discontinuous distribution, comparing the

three cell states. Furthermore, epichromatin exhibits a high

nucleosome density and a paucity of various histone post-

translational modifications associated with transcription or

repression of transcription [26]. Indeed, it appears that inter-

phase epichromatin represents a unique unmodified (except

for DNA methylation) chromatin ‘surface’ facing the inner
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Figure 4. Immunostaining of the epichromatin epitope in interphase U2OS
cells exposed to hyper-osmotic conditions (320 mM sucrose), compared to
iso-osmotic conditions (0 mM sucrose), employing two different mAbs that
stain epichromatin (PL2-6 and 1H6, red), two rabbit antibodies that stain
NE proteins (emerin and lamin A, green) and a DNA stain (DAPI, blue).
The arrows point to a gap between the NE (lamina) and epichromatin,
observed in 320 mM sucrose. The magnification bar equals 10 mm. This
image has been previously published [16].

Figure 3. DNA-specific staining (OAB) of an interphase HL-60/S4 cell imaged
by thin section transmission electron microscopy. OAB shows a region of
intense staining at the periphery of the interphase nucleus, suggesting a
higher concentration of ordered DNA in the epichromatin region. The
magnification bar equals 0.2 mm.
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membrane of the existing (or reforming) NE. It is impor-

tant to stress that PL2-6 is not an anti-DNA antibody and

that the DNA sequences enriched from HL-60/S4 cells

are possibly unique to these cells. Certainly, Drosophila,

C. elegans and tobacco cells do not have retrotransposon

Alu, among other differences. A recent study [27], employ-

ing acridine orange staining, argues that epichromatin

DNA possesses an A-form conformation more readily than

internal chromatin.

Much less can be said about chromomeres, visualized

with the monovalent Fab fragments of PL2-6. Chromomeres

appear to have ‘exposed’ nucleosome acidic patches which

are not highlighted by bivalent PL2-6. It is possible that

some chromomeres present transcriptional ‘target regions’

on their surface, maintaining a more ‘open’ display of surface

nucleosomes [28], but we have no information on the

relationship of chromomeres to transcription. Chromomeres

can also be visualized using bivalent anti-H1 antibodies

[20], which implies that chromomere surfaces exhibit

‘exposed’ H1 epitopes. There appears to be some level of

chromomere heterogeneity, with some chromomeres exhibit-

ing particular H1 isotypes and others showing absence of

particular H1 isotypes. Present immunostaining data are

not sufficient to say whether chromomeres contain more

than one H1 isotype. HL-60/S4 cells (undifferentiated and

differentiated) have been demonstrated to contain primarily

three H1 isotypes, H1.2, H1.4 and H1.5 [29]. Depending

upon image ‘thresholding’ constraints, the number of HL-

60/S4 Fab-stained undifferentiated interphase chromomeres

(per diploid nucleus) is approximately 2791 (at 20%

threshold) and less (approx. 1150) in mitotic chromosomes

[20]. It is not clear whether this apparent reduction in

chromomeres during metaphase is due to chromatin con-

formational changes or to the epichromatin epitope

becoming ‘hidden’, or both. It is clear that loops in mitotic

chromosomes, whether nested or tightly packaged, are

highly condensed [11] and could appear as chromomeres in

formaldehyde-fixed chromosomes.

How do we explain the different immunostaining pat-

terns of bivalent PL2-6 and of monovalent Fab fragments?
Conceivably, at least four factors might affect the bivalent

versus the monovalent antibody staining pattern: (i) epitope

local concentration; (ii) geometric arrangements of the multi-

valent epitopes; (iii) blocking by competing binders; and (iv)

unique properties of epichromatin as a ‘surface’ (e.g. chroma-

tin on one side; no chromatin on the other side). It is

interesting that a zig–zag arrangement of nucleosomes along

a single chromatin fibre (a view quite common in surface

spread chromatin fibres; see [1]) yields adjacent nucleosomes

exhibiting acidic patches related by an external dyad axis,

which could match complementary bivalent PL2-6 binding

sites (also related by an internal dyad axis; figure 9 and the

electronic supplementary material, Movie). We suggest that

the intense localized immunostaining pattern of PL2-6 is an

example of high antibody ‘avidity’ (i.e. the binding of a biva-

lent antibody to a multivalent antigen, resulting in an

increased ‘association constant’) binding to ‘exposed’ epitopes

present at a high local concentration [30]. The monovalent Fab

fragment does not have the property of avidity (with its high

association constant) and is less dependent upon local geome-

try. But it is still influenced by epitope concentration and

blocking by competitors. In sum, we suggest that bivalent

PL2-6 is greatly responsive to the nucleosome–nucleosome

geometry at the epichromatin surface, benefiting by its capa-

bility for avidity. The monovalent Fab can detect ‘exposed’

epitopes scattered throughout the nuclear and chromosome

environment, revealing clustered epitopes defining the

punctate chromomeres.
2. Discussion
The 1950s and 1960s were the beginning of exciting times for

structural biology: deduction of the protein a-helix and

b-sheet from X-ray diffraction data of polypeptides, determi-

nation of the collagen triple helix, the DNA double helix,

haemoglobin subunit allosteric interactions, predictability of
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Figure 5. Immunostaining patterns of bivalent PL2-6 and monovalent Fab fragments, derived from PL2-6. (a) An undifferentiated HL-60/S4 interphase nucleus stained with PL2-6
(green), anti-histone H1.5 (red), DAPI (blue) and merged red and green (R þ G). (b) An undifferentiated HL-60/S4 interphase nucleus stained with Fab (green), anti-histone H1.5
(red), DAPI (blue) and merged (R þ G). (c) A single confocal Z-slice from a mitotic HL-60/S4 cell stained with Fab, anti-histone H1.5, DAPI and the merged (Rþ G). (d ) Various Z-
slices from the merged mitotic R þ G stack are presented. For all images, the magnification bar equals 10 mm. This image has been previously published in part [20].

Figure 6. Mitotic figure from a stained salamander epithelial cell, drawn by
Walther Flemming, originally published in ‘Zellsubstanz, Kern und Zelltheilung’
(1882, Tafel IIIb, Fig. 41). In the figure caption, Flemming specifically noted the
chromosome substructure ‘Körnelung sehr deutlich’ (granulation very distinct).
In 1896, this drawing was reprinted by H. Fol [22], who is generally credited
with introducing the term ‘chromomere’. However, in his own caption to the
reprinted figure, he appears to be describing the chromatid fibres not the
chromatin granules. Simultaneously [23], in his classic book ‘The Cell in
Development and Inheritance’ (1896), E. B. Wilson wrote in Chapter VI,
p.221 the following: ‘The facts are now well established (1) that in a large
number of cases the chromatin-thread consists of a series of granules (chromo-
meres) embedded in and held together by the linin-substance, (2) that the
splitting of the chromosomes is caused by the division of these more elemen-
tary bodies . . . . These facts point unmistakably to the conclusion that these
granules are perhaps to be regarded as independent morphological elements
of a lower grade than the chromosomes.’ It is in that spirit that we have
denoted our immunostained chromatin granules as ‘chromomeres’.
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RNAse peptide folding, tRNA structure, etc. In many

respects, the cell became regarded as a ‘bag’ of highly regular

macromolecular structures, functioning by ‘lock-and-key’

mechanisms with predictable secondary, tertiary and qua-

ternary higher order folding, while being immersed in

defined intracellular solutions. An amazing documentation

of the successes with structure determination can be seen in

the beautiful poster available online from the PDB (Molecular

Machinery: A Tour of the Protein Data Base). This confidence

in structural predictability, combined with fibre X-ray diffrac-

tion data (i.e. the method employed to decipher the DNA

double helix) employed on isolated chromatin fibres led to

two proposals for helical models of chromatin, both of

which were wrong (aspects of this part of chromatin history,

viewed through the eyes of the present authors, have been

previously published) [1]. It is now clear that much of cellular

structure, including chromatin, is more complex and disorga-

nized than we had hoped. Soon after the discovery of the

nucleosome in 1973/1974, helical arrangements of nucleo-

somes into approximately 30 nm fibres became the

favoured next level of chromatin organization. Numerous

studies, including electron microscopy and X-ray scattering,

have eroded our confidence in the general existence of such

structures [31–36]. Instead, current views emphasize less

well-defined punctate super-nucleosomal clusters (with var-

ious names; e.g. fractal globules, topologically associating

domains, contact domains, compact domains and 1 Mbp

chromatin domains) [37–44], structures that we suggest are

correlates with our fixed ‘chromomeres’ [20]. These structures

undoubtedly reflect an underlying genetic organization and
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Figure 7. Immunostaining patterns of monovalent Fab fragments on alternate sequential Z-slices along a mitotic chromosome arm, revealing a radial ‘chromomeric’
pattern. The top row is Fab (green); middle row, anti-histone H1.5 (red). The bottom row contains the merged ‘red þ green (R þ G)’ slices. Chromomeres are
approximately 300 nm in diameter. The magnification bar equals 2 mm. This image has been previously published [20].

Figure 9. Cartoon sketch depicting a bivalent PL2-6 molecule binding to a
zig-zag arrangement of nucleosomes. This sketch does not display accurate
molecular dimensions. Rather, it is exaggerated to show the potential sites
of interaction. A more accurate model can be visualized in the electronic
supplementary material, Movie. The cartoon arrows on the nucleosome
‘faces’ represent the nucleosome acidic patches (AP). Notice that in this
zig-zag arrangement, for sequential nucleosomes, the AP orientations are
related by a dyad axis ( perpendicular to the linker DNA and to the plane
of the cartoon). Adjacent to the zig-zag chromatin is a representation of
the bivalent PL2-6, also displaying the complementary binding regions as
arrows. A bivalent IgG has a dyad axis running between the two Fab regions
and along the midline of the Fc region. The junction between the Fab and Fc
regions is very flexible, tolerating a wide range of angles between the Fab
‘arms’ and allowing the arms to rotate with considerable freedom. The
geometry of the nucleosomes presents two binding sites to the bivalent
IgG, exploiting the avidity principle.

Figure 8. Peptide sequence comparisons. The PL2-6 heavy chain variable
region 3 (‘*’, Hv3) compared to various acidic patch binding proteins. The
second arginine (red R) in the LANA sequence (. . . RLRS . . .) forms salt
bridges with H2A E61, D90 and E92 [24]. The yellow (. . . LDYW . . .)
motif is a common hydrophobic structural feature of many Hv3 regions.
This image has been previously published [20].
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are reminiscent of the earlier studies of lampbrush and

polytene chromosomes [45–49].

Describing the internal nucleosomal organization

of chromomeres presents a distinct challenge. Histone

H1 is a particularly attractive candidate for stabilizing

super-nucleosomal clusters (chromomeres) within live

cells. A considerable amount of research has been performed

on the different H1 isotypes (generally, six isotypes in somatic

human cells: H1.1, H1.2, H1.3, H1.4, H1.5 and H1.0 in termin-

ally differentiated cells) [50–62]. A few of the conclusions

presented in these many research and review articles are as

follows. (i) A central highly conserved globular domain

with a ‘winged helix fold’ [63], which binds to the nucleo-

some, is flanked by two unstructured peptide tails. (ii) In
vitro, the presence of histone H1 is required to condense poly-

nucleosomal chains at physiological ionic strength. (iii) The

H1 C-terminal peptide is more important in the formation

of chromatin higher order structure than is the N-terminal

peptide (which still plays a role). (iv) There appears to be an

insignificant amount of ‘free’ (unbound) H1 in the nucleus.

(v) The residence time for H1 on a nucleosome is shorter

than the residence time for the inner histones, but longer

than for transcription factors or HMG proteins. (vi) H1 exhi-

bits numerous types of post-translational modifications

(especially phosphorylation) that are dynamic during the

cell cycle and during cell differentiation. (vii) Genetic loss

of certain histone isotypes can apparently be compensated

by H1 redundancy, until the stoichiometry of H1/nucleo-

some becomes too low. It is clear that H1 proteins are
dynamic within the nucleus, with complex and varying

roles in influencing chromatin higher order structure and

transcription regulation.

An additional challenge to the concept of highly defined

chromatin structures comes from the emerging realization

that the constituent histones of the nucleosome are rich in

‘unstructured’ intrinsically disordered peptide region

(IDPR) [64–66]. IDPRs are frequently enriched with Lys,

Arg, Pro and Ser residues, a clear characteristic of histone

tails. IDPRs, by definition, do not exhibit stable peptide con-

formations in physiological buffers and are generally

promiscuous in their interactions with binding partners.

IDPR conformations are greatly affected by post-translational

modifications [67] and usually acquire more defined peptide

conformations as a consequence of binding [68]. Because of

the frequently chaotic nature of the IDPR conformations in

solution, they have been aptly described as ‘fuzzy’ or forming

a peptide ‘cloud’ [69]. Nucleosomes possess 10 inner histone
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Figure 10. Cartoons depicting locations of intrinsically disordered peptide regions (IDPR) at three levels of chromatin structure, the nucleosome, the chromomere
and epichromatin. (a) Cartoon of a mononucleosome with 10 basic inner histone tails and two basic histone H1 tails forming a multivalent macromolecule with
possible analogy to the multivalent IgM antibody molecule. Beneath the nucleosome is a drawing of an H1 molecule, showing the central globular region (red)
flanked by N- and C-terminal tails. An untethered 100 aa peptide can extend up to approximately 30 – 35 nm from the globular domain. (b) Cartoon of a chro-
momere, contained within a membrane-less domain (approx. 200 – 300 nm diameter), consisting of a highly convoluted polynucleosome chain ( possibly,
approximately 500 – 1000 nucleosomes [42,71]) clamped by condensin or cohesin (red ring) [72,73] into a genetic ‘bouquet’, stabilized by the promiscuous binding
of histone tails to adjacent nucleosomes, resulting in a spatially coordinated higher order structure. (c) Cartoon of interphase epichromatin adjacent to the NE,
containing a nuclear pore complex (NPC), an outer nuclear membrane (ONM) and an inner nuclear membrane (INM). The outermost layer of nucleosomes in
epichromatin exhibits ‘waving’ (þ) charged histone tails (blue) interacting with the anionic (2) phospholipids (red) emanating from within the INM. This cartoon
does not show the lamins nor transmembrane proteins (e.g. LBR, emerin, etc.), but focuses on the epichromatin regions in contact with the INM.
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IDPR tails [65] and two IDPR histone H1 tails, becoming

multivalent structures with numerous types of binding inter-

actions [43,70] (figure 10a). As an analogue to the multivalent

mononucleosome, we suggest considering the multivalent

IgM (macro-immunoglobulin) molecule. The IgM molecule

is composed of five IgG-like subunits, connected by their Fc

regions, generating 10 antibody binding sites on a single

macromolecule. The individual binding constants are usually

relatively weak; but collectively, based upon the avidity prin-

ciple, an IgM molecule has among the strongest association

constant of any immunoglobulin. As a prototype for inter-

nucleosome binding, we also cite the histone H4 tail, which

can interact with the acidic patch of an adjacent nucleosome

[74]. We suggest that ‘fuzzy’ nucleosomes form the basis for

‘fuzzy’ epichromatin and ‘fuzzy’ chromomeres. The unstruc-

tured basic tails extending outward from epichromatin could

form electrostatic interactions with nuclear membrane anionic

phospholipids (e.g. phosphatidylserine, PS) (figure 10c), ana-

logous to the interaction between PS and the protein

MARCKS at the plasma membrane [75,76]. The inner histone

and H1 tails could be binding to neighbouring nucleosomes

helping to stabilize the chromomeric nucleosome complex,

acting as promiscuous ‘sticky tape’ (figure 10b). In this
manner, nuclear architecture and chromatin higher order

structure can be regarded as being the product of the multi-

valent mononucleosome, with its binding force derived

from the avidity principle.
3. Speculations
(1) We suggest that the conformational plasticity of nucleo-

somal higher order structure is in large measure due to

the multiplicity of IDPR histone tail interactions.

(2) Our conception of interphase and mitotic epichromatin is of

a chromatin surface covered with unaffiliated histone tails,

forming a cloud of (þ) amino acid residues. Interphase epi-

chromatin might be electrostatically attracted to inner

nuclear membrane anionic phospholipids. During mitotic

chromosome condensation, a rise in cellular Mg2þ [77]

might weaken the electrostatic interaction of the histone

tails to the membrane anionic phospholipids. During telo-

phase, the positively charged chromatin surface may

facilitate post-mitotic NE reformation.

(3) We speculate that inner histone and H1 tails act like ‘sticky

tape’ holding multivalent nucleosomes in a coordinated
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bundle (chromomeres). The effectiveness of this ‘sticky

tape’ to bind nucleosomes together can be influenced by

post-translational modifications. In vitro experimental and

computational evidence supports that the histone tails can

bind to DNA within chromatin [78–80]. Thus, it is likely

that in vivo, at least some of the histone tails are associated

with ‘distant’ nucleosomal DNA.

(4) Chromomeres likely represent only one level in the

super-nucleosome organization. If chromatin possesses

‘liquid droplet’-like properties [41], phase separation

may fuse together these structures into larger structures

or cleave them into smaller units.

4. The ‘unstructured stability’ hypothesis
We propose that various chromatin structures (e.g. epichro-

matin and chromomeres) are stably maintained by the

interactions of the unstructured intrinsically disordered pep-

tide regions (IDPRs) of the inner histones and of histone H1

on multivalent mononucleosomes. This hypothesis stresses

the collective contributions of the numerous IDPR–binding

partner interactions in establishing these chromatin struc-

tures. Furthermore, we propose that the promiscuity of

IDPRs will generate many functionally equivalent binding

partners (e.g. consisting of DNA, protein or phospholipids),

resulting in considerable redundancy, such that mutations

in the binding sites can be readily compensated by alternative

binding interactions. However, this hypothesis must be con-

sistent with the conception that histone post-translational

modifications of IDPRs can modulate (i.e. destabilize or

hyper-stabilize) these binding interactions. This hypothesis

also does not exclude the importance of specific ‘lock-and-

key’ interactions by other chromatin-associated proteins or
specific ‘induced fit’ mechanisms by modifying enzymes

[81], which may be essential for the specific genetic functions.

Rather, this hypothesis focuses attention upon the consider-

able number of weak and relatively nonspecific interactions,

in combination with the avidity principle, that permit

chromosomes to fulfil their numerous functions. Testing

the hypothesis will require cataloguing and mutating

the multitude of IDPR binding interactions, a considerable

endeavour. From the point-of-view of Darwinian evolution,

if the Unstructured Stability Hypothesis is correct, one

could argue that a preservation of some level of IDPRs is

advantageous for maximizing evolutionary adaptability.
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