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Abstract

Liquid chromatography mass spectrometry has become one of the analytical

platforms of choice for metabolomics studies. However, LC-MS metabolomics data

can suffer from the effects of various systematic biases. These include batch

effects, day-to-day variations in instrument performance, signal intensity loss due to

time-dependent effects of the LC column performance, accumulation of

contaminants in the MS ion source and MS sensitivity among others. In this study

we aimed to test a singular value decomposition-based method, called EigenMS,

for normalization of metabolomics data. We analyzed a clinical human dataset

where LC-MS serum metabolomics data and physiological measurements were

collected from thirty nine healthy subjects and forty with type 2 diabetes and applied

EigenMS to detect and correct for any systematic bias. EigenMS works in several

stages. First, EigenMS preserves the treatment group differences in the

metabolomics data by estimating treatment effects with an ANOVA model (multiple

fixed effects can be estimated). Singular value decomposition of the residuals

matrix is then used to determine bias trends in the data. The number of bias trends

is then estimated via a permutation test and the effects of the bias trends are

eliminated. EigenMS removed bias of unknown complexity from the LC-MS

metabolomics data, allowing for increased sensitivity in differential analysis.

Moreover, normalized samples better correlated with both other normalized

samples and corresponding physiological data, such as blood glucose level,

glycated haemoglobin, exercise central augmentation pressure normalized to heart

rate of 75, and total cholesterol. We were able to report 2578 discriminatory

metabolite peaks in the normalized data (p,0.05) as compared to only 1840
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metabolite signals in the raw data. Our results support the use of singular value

decomposition-based normalization for metabolomics data.

Introduction

Along with nuclear magnetic resonance, liquid chromatography coupled to mass

spectrometry (LC-MS) has become one of the most common analytical platforms

for studying cell, tissue or body fluid metabolomes [1–7]. Advantages of the

method include high sensitivity and the ability to discriminate thousands of

features in a single experiment. Yet, as with any high-throughput technology,

systematic biases are often observed in LC-MS metabolomics data [8]. As the

number of samples in the dataset increases so does the possibility of a time-

dependent variation in the resulting metabolite data. Time-dependent trends in

LC-MS metabolomics datasets typically result from analyte retention time drift

due to changes in LC column performance or variations in signal intensity caused

by fluctuations in MS sensitivity. While these issues can be addressed in part by

careful experimental design and the use of quality control samples, there remains

a need for robust post-acquisition data normalization. Normalization methods

need to be flexible enough to capture biases of arbitrary complexity, while

avoiding overfitting that would invalidate downstream statistical inference.

Careful normalization of metabolite peak intensities enables greater accuracy in

quantitative comparisons between disease groups as well as better correlation of

metabolite signals to physiological or phenotypic data collected in tandem. We

report here the application of a singular value decomposition-based method,

called EigenMS, to remove systematic biases from metabolomics data in the

presence of missing observations [9]. This normalization method, previously

shown to be effective in normalizing LC-MS proteomics data [9], improved

downstream differential analysis and increased correlation of the metabolite peak

intensities with corresponding physiological measurements of what we call clinical

biochemistry.

Materials and Methods

To demonstrate the utility of our approach, we used a recently-acquired

metabolomic dataset examining the serum of subjects with type 2 diabetes (n540)

and control subjects without diabetes (n539). The age range of the human

subjects was 57¡11 years with standard error of the mean of 1.2. Biological

sample preparation and data acquisition followed the same protocol as reported

in Nikolic et al. [10]. LC-MS data were acquired in positive ion mode using an

Orbitrap XL mass spectrometer (Thermo Scientific) controlled by XCalibur v2

software. Chromatographic separation was carried out using C18 reverse-phase

HPLC as described in [8].
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The study was approved by the Human Research Ethics Committee of the

University of Tasmania and all procedures conformed to the Declaration of

Helsinki. Study participants gave written informed consent prior to participation.

We generated a pooled quality control (QC) sample in order to monitor LC

and MS performance across sample runs by combining small aliquots (10 uL) of

every sample in the study, as recommended by Sangster et al. [11]. This pooled

QC sample was then used throughout the experiment as a process control.

Because all QC injections originated from the same mixture and thus should be

chemically identical, QC samples allow detection of variations in the observed

intensities that may affect downstream statistical analyses.

We monitored system performance using blocks of four experimental samples

flanked by the QC samples between MS source and inlet cleaning. Thus our basic

experimental running order included cleaning of the ion spray cone and exterior

surface of the ion transfer capillary with 50:50 methanol/water between each

block. At the end of each day of operation we used 50:50 methanol/water to flush

the sample transfer tube and atmospheric pressure ionization probe, according to

the guidelines for daily operation of LTQ XL specified by the manufacturer.

Mass spectral peak deconvolution and retention time correction were carried

out in R using XCMS. The parameters for deconvolution were:

method5‘centWave’, ppm53, peakwidth55–30, snthresh56, mzdiff50.01; and

for RT correction: method5‘‘obiwarp’’ and profStep50.1, yielding ,7000 peaks.

EigenMS uses a combination of ANOVA and singular value decomposition to

capture and remove biases from LC-MS metabolomic peak intensity measure-

ments while preserving the variation of interest. ANOVA is used first to capture

and preserve the variation attributable to the treatment effect(s) under study.

EigenMS utilizes built-in R function lm() to estimate treatment effects and

produce the matrix of residuals which accessed via the residuals() function.

Singular value decomposition (SVD) is then applied to a matrix of residuals to

find any systematic trends attributable to bias. The number of bias trends is

determined by a permutation test and the effects of the bias trends are then

removed from the data. We found that in metabolomic studies the number of bias

trends to be eliminated should be set to about 20% of the number of samples. This

is a heuristic approach that produces better normalization than the automatically

determined number, which works well for proteomic studies. EigenMS is based on

the surrogate variable analysis of Leek and Storey [12], with modifications

including analysis of data with missing values that are typical in LC-MS

experiments [9]. EigenMS is available as a stand-alone set of two functions

implemented in R from SourceForge: http://sourceforge.net/projects/eigenms/.

Current version of software was implemented in RStudio version 0.98.953 and R

version 3.0.1.
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Results and Discussion

A characteristic of biofluid metabolite analysis via LC-MS is progressive signal

intensity loss due to the accumulation of contaminants within the MS ion source,

sample transfer lines and the heated ion transfer capillary [13]. We designed our

experiment based on the guidelines outlined in Lai et al. 2009 [13] as well as based

on in-house experimentation to establish the number of samples that could be run

without large signal intensity loss on our instrumentation. We conditioned the LC

column using QC samples as suggested by Want et al. and others prior to running

any experimental samples to avoid high signal variation during the first few runs

[8, 11].

Within each block, different treatment groups were matched and run order

randomized. However, even using frequent cleaning, some signal loss was

observed as is evident from the declining abundance profile within each day

(Fig. 1). These data were acquired on the instrument operating in positive ion

mode. Intensity loss was not as obvious when the instrument was operating in

negative ion mode, however, we still observed variation that could not be easily

explained. Careful experimental design, such as within-block treatment group

matching, alleviated the influence of some of the biases and signal intensity loss

that we and others have observed [13]. We still suggest that normalization be used

to correct for any remaining intensity loss as well as any other known and

unknown systematic biases. Further, if one wishes to identify relationships

between LC-MS metabolomics data and other variables, normalization becomes

essential.

Sample intensity loss makes comparisons between experimental groups more

difficult, it also leads to an increased number of missing values in subsequent

samples. Thus careful experimental design and sample run order randomization

are required to minimize the introduction of systematic biases and any possible

confounding of the results. Our experience leads us to recommend the use of QC

samples to monitor performance of the LC-MS instrument. For example, we

embedded QC samples throughout the experimental runs to help us monitor

instrument performance. We utilized an incomplete block design where each

block consisted of four samples, two diabetes and two control samples in

randomized order. Each block was bracketed by QC samples to allow the operator

to monitor the experiment and perform system diagnostics if variation in the

signal intensity of the QC runs was observed. In this study QC samples were not

used for data processing or normalization.

We normalized the data with EigenMS. EigenMS identified 12 systematic bias

trends and eliminated their effects from the data. Fig. 2 shows boxplots of the

intensities for the disease and control groups before (top panel) and after (bottom

panel) normalization for the same data as in Fig. 1. Samples in Fig. 2 are grouped

by disease group (red vs. green with QC samples not shown) and within each

group they appear in the run order on the instrument, such that the first sample

in red was run right next to the first sample in green and so on. Even with regular

cleaning of the inlet we encountered some signal loss as is evident from the
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downward trend in the means (middle bars) of the boxplots. Fig. 2 bottom panel

shows that normalization successfully adjusted for the signal intensity loss and any

other systematic biases and placed the means of each sample almost on a straight

line.

Fig. 3 shows SVD trends in raw (left 3 panels) and normalized (right 3 panels)

diabetes data. Samples are ordered by group and appear in chronological run

order within each group in the same way as Fig. 2. Trends are ordered from top to

bottom by the decreasing amount of variation explained by each trend. Due to the

nature of SVD, each trend is orthogonal to every other. Notably, 20 percent of the

variation in the raw data is attributable to the signal loss that appears as the top

trend. Note that SVD trends can be rotated around the x-axis, thus the top trend

in the raw data represents signal intensity loss. The top trend also shows a jump in

each group which occurred between days 3 and 4 of the experiment. All the

processing was done following the same protocol, but we still observed a variation

due to the day effect where samples run on days 4 and 5 were affected differently

than samples run on days 1–3. The rest of the trends in the raw data are not easily

interpretable and are attributed to unknown systematic biases. Fig. 3 (right panel)

shows the normalized data. The top trend is representative of the differences

between the disease and control groups. Only 3.7% of variation is attributable to

the differences between the disease groups, but nonetheless this is a major trend in

the normalized data as compared to the signal intensity loss trend in the raw data.

Most importantly we were able to report 2578 discriminatory metabolite peaks in

the normalized data as compared to only 1840 metabolite signals in the raw data

(compared using an unpaired t-test; with a significance cutoff a50.05 after

Benjamini-Hochberg multiple testing adjustment) [14].

We saw an improvement in correlations of normalized metabolite intensities to

the physiology variables we measured for each subject. We selected 1100 peaks

Fig. 1. Boxplots of sample intensities. Boxplots of sample intensities in run order on the instrument for positive ion mode. Each box represents a sample,
each of five days is presented in different color. Decline in intensity indicates signal intensity loss within each day.

doi:10.1371/journal.pone.0116221.g001
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that were found to be significantly different between two groups with Benjamini-

Hochberg adjusted p-value,0.001 in the normalized data. We correlated these

1100 MS peaks using Spearman correlation in ‘Hmisc’ package to the following

clinical measurements we obtained for each subject: blood glucose level, glycated

haemoglobin, exercise central augmentation pressure normalized to heart rate of

75, and total cholesterol [15]. The first three of these are expected to be elevated in

diabetics while cholesterol is usually lower than controls due to statin therapy. If

EigenMS works well we expect to see increased correlation between the changes

observed in normalized metabolites and physiological variables.

Fig. 4 shows correlations of raw (x-axis) and normalized (y-axis) metabolite

intensities to glucose (top left), glycated haemoglobin (top right), exercise central

Fig. 2. Boxplots of the raw and normalized intensities. Boxplots of the intensities before (top panel) and
after (bottom panel) normalization. Each box represents a sample. Samples are grouped by disease group
(red vs. green, QC samples are omitted) and are in chronological run order on the instrument within each
group.

doi:10.1371/journal.pone.0116221.g002
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augmentation pressure (bottom left) and cholesterol (bottom right). The blue

lines show correlations of zero. The red lines indicate no difference between

correlations obtained from normalized and raw data. The scatter plots show that

we obtained higher correlations of normalized metabolite peak intensities to the

variables measured in the laboratory. For glucose, for example, correlations for

most of the positively correlated peaks increased as is evident from the dots falling

above the diagonal line. For negatively correlated metabolites most of the

correlations fall near the diagonal line still producing more scatter below the

Fig. 3. SVD trends in raw and normalized data. SVD trends in raw (left panel) and normalized (right panel) clinical study data. Percentage at the top of
each subplot shows the percent of the variation in the data explained by each trend. On the x-axis is sample index from 1 to 79, where each circle represents
a sample. Samples are grouped by disease group with 39 control samples numbered 1–39 followed by 40 diabetes samples numbered 40–79. Samples are
in chronological run order on the instrument within each group. Values on the y-axis satisfy equation: R5UDV’ where R is a matrix of residuals (left panel)
and matrix of normalized intensities (right panel); columns of V represent trends observed in the data. Three trends that explain the most amount of variation
are plotted for raw and normalized data.

doi:10.1371/journal.pone.0116221.g003
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diagonal line indicating increased correlations. Similar patterns are observed for

the rest of the physiological variables.

Conclusions

Normalization is an important step in MS data analysis, but it is complicated by

the high complexity of biases. EigenMS has been shown to remove biases of

arbitrary complexity from proteomics data [9]. Here we show that it works

equally well for metabolomics data. By extension, the method should reasonably

be expected to work equally well for any omics data where the variation of interest

Fig. 4. Correlations to physiology data. Correlations of raw (x-axis) and normalized (y-axis) metabolite
intensities to physiology data. Metabolites with p-value,0.001 in the normalized data (1100 metabolites) were
selected to be plotted. The same metabolites are plotted for raw data. Blue lines represent correlation of zero.
Red diagonal line shows the line on which all dots would fall if there was no difference between correlations of
raw and normalized data. Observed counter-clockwise shift of points indicates better correlation with
physiological data.

doi:10.1371/journal.pone.0116221.g004
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can be preserved via the fixed effects in an ANOVA model and the matrix of

residuals analyzed for the presence of bias trends. The ability of EigenMS to

capture complex biases and eliminate them preserves the validity of any

downstream statistical analysis. The software is implemented in R and is freely

available from SourceForge: http://sourceforge.net/projects/eigenms/.
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