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ABSTRACT: In chemical production processes, outliers are inevitable.
Many existing feature extraction algorithms are overly sensitive to
outliers and excessively focus on secondary features while ignoring the
key features in the data. To address this problem, the Frobenius norm
based soft linear discriminant analysis algorithm (FBSLA) is proposed
in this paper. Specifically, FBSLA uses the Frobenius norm instead of
its square as a metric to enhance the robustness of the algorithm.
Furthermore, a nonreduced dimensionality projection matrix is
introduced to make the training data features more obvious.
Additionally, soft constraint is adopted instead of the traditional hard
constraint to reduce the sensitivity caused by outliers. To validate the
effectiveness of FBSLA, in this paper, experiments are conducted on the
Tennessee Eastman Process and the Penicillin Fermentation Process
data sets. According to experimental results, FBSLA significantly outperforms other state-of-the-art algorithms in terms of fault
detection accuracy.

1. INTRODUCTION
The chemical production process is a complex systemwithmany
sensors and measuring devices monitoring various data. These
data reflect the state of the production process, which is critical
for ensuring proper equipment operation and increasing
production efficiency.1 However, during data monitoring of
chemical processes, factors such as aging equipment, equipment
fault, and environmental changes may lead to faulty data from
measurement equipment. This can result in production process
instability and an increase in operational risk.2 Therefore, the
study of fault detection in chemical production processes has
become critical.
The rapid development of technology has driven the

application of deep learning in fault diagnosis in chemical
production processes.3−5 For example, Yuan et al.6 proposed a
convolutional neural network model based on multiscale
attention. The model generates feature maps containing
multiscale features by employing convolution kernels of
different sizes. Subsequently, by utilizing the channel attention
mechanism, the model automatically emphasizes the impor-
tance of features at different scales, thereby enabling accurate
prediction of industrial process quality. Similarly, Song and
Jiang7 designed a multiscale fault diagnosis method based on
convolutional neural networks for high-dimensional and non-
linear chemical process data, which significantly improved fault
detection accuracy. The performance of deep learning methods
depends highly on the quality and quantity of data.8 To ensure
robustness and generalization, extensive and high-quality data

sets are imperative for training. However, in practical chemical
production processes, obtaining such data sets often poses
significant challenges.
In contrast, machine learning has taken an important role in

the field of chemical process fault diagnosis due to its
interpretability and robustness. Machine learning methods
usually showmore adaptability and stability when facing outliers
and noisy disturbances in the data. However, high-dimensional
data often comes with redundant information and computa-
tional challenges. Therefore, effective dimensionality reduction
techniques can distill key features from original data, revealing
hidden patterns while reducing the dimensionality and
complexity of data sets.9 Many dimensionality reduction
techniques, such as principal component analysis (PCA),10

Kernel principal component analysis (KPCA),11 and linear
discriminant analysis (LDA),12 have been widely used in
diagnosing faults in the chemical production process. PCA can
map high-dimensional data to a low-dimensional space and
retain as much of the main features of the data as possible.
However, PCA is sensitive to outliers, which limits its
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application in chemical production. To address this problem,
improved PCA13−15 enhances robustness by optimizing outlier
description and selection mechanisms, increasing its reliability
against outlier data. It is noteworthy that robust PCA aims to
enhance data robustness. However, these methods may
compromise data authenticity, leading to the loss of critical
features. Additionally, robust PCA typically focuses less on
category features, which poses a major limitation in chemical
production. In chemical production processes, researchers focus
on the differences between normal and abnormal processes,
rather than differences within the data set.16 To address this
problem, LDA demonstrates its advantages. LDA is a supervised
learning algorithm that effectively utilizes category features from
both normal and abnormal process data. Therefore, LDA can
capture and identify anomalous processes more accurately,
allowing it to demonstrate greater effectiveness in chemical
production fault diagnosis.
LDA enhances classification accuracy by maximizing

intercategory differences, ensuring that data remains well
separable after dimensionality reduction. However, traditional
LDA has some limitations in data processing that can affect its
performance under certain conditions. To overcome these
limitations, researchers have proposed various improvement
algorithms based on LDA, such as null-space LDA,17 orthogonal
LDA,18 and ratio sum for linear discriminant analysis
(RSLDA).19 The null-space LDA maps the primitive feature
space to a high-dimensional feature space, which can better
capture the nonlinear structure of the data. However, the
nonlinear mapping in the null-space LDAmay amplify the effect
of outliers. The orthogonal LDA and RSLDA enhance the
classification performance by maximizing differences between
categories. Nonetheless, these algorithms do not guarantee
complete independence of the projected data from the original
data. By optimizing the scatter matrix over the neighborhood,
the limitations of traditional LDA under complex intraclass
structures20 can be addressed, thus describing the internal
structure of the data more accurately. However, the above
algorithms are still limited by hard constraints, making them
sensitive to outliers and difficult to effectively capture the
structural features of the data.
Using a sparse matrix is critical for efficiently representing the

data and understanding its underlying structure. Sparse
constraints improve the handling of high-dimensional data
during dimensionality reduction. They also reduce the impact of
outliers, enhancing the robustness of the algorithm.21,22 For
example, Hu et al.23 addressed the problem of the squared L2-
norm exacerbating the influence of outliers when measuring
model errors by introducing the L1-norm to mitigate their
impact. Similarly, Liang and Zhang24 proposed a discriminant
analysis algorithm based on the L1-norm, enhancing the stability
of LDA in the presence of outliers by studying the error bounds.
Both above algorithms are based on the L1-norm to increase the
robustness of the algorithm. However, these algorithms are
plagued by the nondeterministic polynomial-time hard problem.
To overcome the limitations of the L2-norm and L1-norm, the
L21-norm is proposed.25 The L21-norm can better capture the
overall distribution and shape of the data while remaining
sparsity. Sha and Diao26 proposed L21-norm based KPCA to
address the nonlinearity problem of data. Nie et al.27 proposed a
nongreedy strategy PCA based on the L21-norm. Zhao et al.28

proposed an improved LDA based on the L21-norm, reducing
the interference of outliers. Although the introduction of the L21-
norm has made progress in overcoming the limitations of the L1

and L2-norms, it remains necessary to address the dynamics of
the data. Additionally, traditional LDA has not considered the
dynamic features of the data over time when modeling, thus
ignoring the changes in the data over the time series. Therefore,
to better understand the dynamics of the data, dynamic
processes29 are introduced to capture the dynamic patterns
over time.
Despite significant progress in the field of chemical

production process fault detection, there are still many
challenges. Deep learning excellence is highly dependent on
the quantity and quality of data, which is particularly critical and
difficult in the chemical industry. Traditional machine learning
methods have shortcomings in dealing with outliers, and they
often struggle to effectively focus on the dynamic and category
features of data. Moreover, many existing methods are more
sensitive to outliers due to hard constraints, making it difficult to
fully and accurately capture the intrinsic structure of the data.
In summary, inspired by the L21-norm, this paper uses the

Frobenius norm (F-norm) instead of its square as a metric.
Meanwhile, the interference of outliers is effectively reduced by
using the soft constraint. Additionally, matrix samples are
extracted using a sliding window and analyzed for dynamic
processes. F-norm based soft LDA algorithm (FBSLA) is
proposed in this paper, building upon these innovations and
improvements. The main contributions of this paper are as
follows:

1. To better retain the data change features, matrices are
used as samples and extracted through a sliding window to
reveal the dynamic features of the data. Meanwhile, to
enhance the robustness of the algorithm, the F-norm is
adopted instead of its square as the metric, accurately
measuring the relationship between dimensions.

2. To make the features of the training data more obvious, a
nonreduced dimensionality projection matrix is intro-
duced to further sparse the data. This effectively reduces
the dimensionality of the data while retaining key features,
allowing the model to better learn and understand the
underlying structure of the data.

3. The traditional hard constraint is replaced by a soft
constraint to better accommodate changes in the data. A
soft constraint can help to balance outliers and normal
values in the data, making the model more robust when
dealing with complex data.

The rest of the paper is organized as follows: Section 2
describes the detailed steps of the FBSLA. Section 3 describes
the experimental procedure in detail. A discussion is presented
in Section 4. Section 5 provides conclusions.

2. ALGORITHM
Traditional LDA typically does not account for changes in data
over time, which limits their effectiveness in analyzing dynamic
data sets. To address this problem, a dynamic LDA is adopted
that allows the model to consider changes in data over time by
introducing time series variables.29 This paper mathematically
models data sets containing time information to capture the
temporal dynamics within the data. Specifically, the data from
each batch in the database are first expanded into a two-
dimensional data matrix using the time-lag window technique.
The specific transformation equation can be expressed as follows
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where K denotes the batch length, u denotes the time lag order,
and i denotes the i-th batch.
Themathematical model of FBSLA is discussed next. Suppose

the data has c categories, Mi denotes the number of samples in
category c,W ∈ Rm×k denotes the projection matrix, x̅i denotes
the mean of group i, x̅ denotes the average of all samples, and xij
denotes the j-th sample of group i. The objective function17 of
this optimal projection matrix can be expressed as follows

M W x x
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where ∥·∥F denotes the F-norm of the matrix. In eq 2, the goal is
to identify the optimal data projection direction by maximizing
the distance between classes while minimizing the distance
within each class. However, the presence of outliers may affect
the estimates of intraclass and interclass variances, causing the
projection directions to deviate from expectations.
In this paper, the MATLAB function is used to construct

normal values and outliers to determine the optimal projection
direction for LDA. Figure 1 illustrates the projection vectors of

LDA on the data set with and without outliers. WLDA denotes the
direction of the LDA projection without outliers, and WLDA

outlier

denotes the direction with outliers. From the figure, it can be
observed that the presence of outliers causes a significant
deviation between WLDA

outlier and WLDA. This deviation directly
impacts the ability of the classifier to distinguish between
different classes.
To minimize the negative impact of outliers on classification

effects, one strategy involves replacing the squared term with a
linear term in the objective function. The rationale is that the
squared term amplifies the effect of distance, thus over-
amplifying the influence of outliers far from the center point.
In contrast, linear terms do not assign excessive weight to

outliers far from the center, thereby helping to mitigate their
impact on the overall objective function. Therefore, to enhance
the robustness of the algorithm, this paper adopts the F-norm to
measure both the intraclass and interclass scattering matrices
within the objective function. Accordingly, the objective
function is expressed as follows
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When dealing with high-dimensional data, traditional
dimensionality reduction strategies may encounter the problem
known as dimensionality catastrophe. To address this problem, a
novel projection matrix is introduced that does not reduce
dimensionality in the conventional sense. Instead, it focuses on
enhancing the separability of categories within the original
feature space. This method clarifies category boundaries in the
training data without directly reducing its dimensionality.
Additionally, the sparsity of the data is further enhanced by
using the L21-norm. Building on this concept, the objective
function is further defined as follows
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where Q ∈ Rm×m denotes the nonreduced dimensionality
projection matrix, and n denotes the number of samples.
To better explore potential associations in multidimensional

data and preserve the original features, soft constraint is
introduced.30 Here a new matrix W̃(j) ∈ Rm×(k−1) is introduced,
which includes the feature vectors other than wj. Suppose wj can
be expressed as follows

d d d d dw w w w w Wj j j j k k jk k j j1 1 2 2 ( 1) 1 ( )= + + ··· + + =
(5)

where dj denotes the parameters of the feature vector. Next,
minimize the correlation betweenwj and W̃(j)dj. Then define the
following rule
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where W̃ = [W̃1d1, W̃2d2,···, W̃kdk], r⟨a, b⟩ can be expressed as
follows
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where a ̅ and b̅ are the mean values of ai and bi, respectively. σa
and σb denote the standard deviation. The final simplified
expression is shown as follows

R W W W( ) tr( )T= (8)

After adding the above soft constraint, the final objective
function representation is obtained as follows

Figure 1. LDA projection vectors on a data set with and without
outliers.
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where λ, η, μ1 and μ2 denote the equilibrium parameters.
The above problem is unconstrained and can be solved by

fixing Q and W respectively. The detailed solution steps are as
follows
Step 1 (UpdateW), fixQ first and then updateW. The update

equation is as follows

M

W Q x x

W Q x x W W

argmin ( )

( ) tr( )

i

c

j

M

i
j

i

i

c

i i

1 1

T T
F

1

T T
F 1

T

i

|| ||

|| || +

= =

= (10)

Then, eq 10 can be expressed as follows
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be expressed as follows
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Then, the following expression is obtained

A BW W W Wtr( ( ) ) tr( )T
1
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The derivative of eq 13 with respect to W is given by

A B W W2( ) 01+ = (14)

The final W can be expressed as follows

A BW W
2

( )1 1=
(15)

Step 2 (UpdateQ), fixW first and then updateQ. The update
equation is as follows

M

W Q x x Q x

W Q x x Q Q

argmin ( )

( ) tr( )

i

c

j

M

i
j

i
i

n

i

i

c

i i

1 1

T T
F

1

T
21

1

T T
F 2

T

i

|| || + || ||

|| || +

= = =

= (16)

Then, eq 16 can be expressed as follows
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The derivative of eq 18 with respect to Q is given by

D E CQWW QWW Q Q2 2 2T T
2= + + (19)

The solution to eq 19 obtained through gradient descent is
given as follows:

Q Qt t1 = ++ (20)

where δ denotes the learning rate. Finally, by updating Q on a
regular basis, the result is obtained.
Algorithm 1 is a summation of the previous formulas. It aims

to compute two key matrices: the projection matrix W and the
nonreduced dimensionality projection matrix Q

The T2 statistic measures the difference between multiple
variables. The difference between normal and fault states may be
less obvious in the context of fault detection. Using T2 can help
detect such subtle differences. If the linear transformation does
not change the distribution of the random variable, its
covariance matrix31 can be expressed as follows

W Q X W Q X( )( )T T T T T= (21)

Therefore, the final expression used for fault detection is as
follows

T n W Q X W Q X( ) ( )T T T 1 T T= × (22)

The kernel density estimation algorithm32 is used to calculate
the control limits of T2.

3. EXPERIMENTS AND RESULTS
3.1. Datasets. The data in the Tennessee Eastman Process

(TEP)33 are obtained from 52 sensors, which aremainly used for
fault diagnosis in chemical production processes. The data set
includes training and validation sets, comprising samples of both
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normal and faulty instances. D00.dat to d21.dat are the training
set samples, d00-te.dat to d21-te.dat are the test set samples,
d00.dat and d00-te.dat are the samples under normal operation,
and the others are the samples with faults. Thus, this data set
contains 21 faults. Each training set sample with faults includes
480 observations and each test set sample includes 960
observations.
The penicillin fermentation process (PFP) data set is typically

nonlinear in nature. The pensim simulation platform is utilized
to generate data,33 enabling fault detection within the penicillin
production process. The data set covers normal operating
conditions as well as fault 1, fault 2, and fault 3. This paper
introduces two types of faults: step disturbance and ramp
disturbance, which are applied to the aeration rate, agitator
power, and substrate feed rate. Table 1 demonstrates the
penicillin data generation in detail. The end point of the
fermentation is set to 300 h and the sampling time is set to 0.2 h.
All faults are added from 40 h until the end of the fermentation.
Each training set sample with faults includes 500 observations
and each test set sample includes 1000 observations.
To validate the effectiveness of FBSLA, 10 outliers are added

to the TEP and PFP data sets, replacing the normal training data.
This allows evaluation of the ability of the model to handle
outliers. Figure 2a illustrates the scatter plot of the TEP data set
with the 10 added outliers. Figure 2b illustrates the scatter plot of
the PFP data set after adding 10 outliers. From the figures, it can
be observed that the outliers are more prominent in the data
distribution, which may cause interference to traditional LDA
and PCA.

3.2. Parameter Setting. This paper selected seven values
(0.001, 0.01, 0.1, 1, 10, 100, and 1000) for each of the four
parameters (λ, η, μ1, and μ2) and performed parameter
optimization experiments on fault 17 in TEP data set. Figure 3
shows the results of the parameter selection. The fault detection

rate (FDR) reaches its highest value when the values of λ, η, and
μ1 are 10, while it is highest when the value of μ2 is 1. To further
refine the parameters, this paper conducts more detailed
experiments near these preliminary optimal values, and finally
determines that the optimal parameters are λ = 30, η = 10, μ1 =
30, and μ2 = 1, respectively. Through this stepwise
approximation method, the misclassification rate is reduced,
providing a reliable basis for parameter selection.

3.3. TEP Experiment. The fault detection rate (FDR)33 is a
metric used to validate the performance of FBSLA. The
expression to calculate the FDR is as follows

Table 1. Penicillin Data Generation Detail

state fermentation period (h) sampling time (h) sample size position to add disturbance disturbance mode disturbance value

normal 100 0.2 500
fault 1 300 0.2 1500 200 step −0.6
fault 2 300 0.2 1500 200 ramp 3
fault 3 300 0.2 1500 200 ramp 1

Figure 2. Scatter plot with added outliers. (a) TEP. (b) PFP.

Figure 3. Impact of parameter values on FDP in fault 17.
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where Nn represents the number of successful detections in
normal data, Nf represents the number of successful detections
in fault data, andNs represents the total number of test data. The
higher the FDR, the better the algorithm is at detecting faults. To
validate the effectiveness of the algorithm, FBSLA is
experimentally compared with LDA,12 RLDA,28 RSLDA,19

PCA,10 and KPCA.26

Figure 4 shows the results of fault 11 detection. Figure 4a
shows that the T2 of the LDA begins to fluctuate around the
control limit after 8 h. This fluctuation indicates that the LDA is
having difficulty detecting faults consistently and effectively.
Figure 4b displays the detection results of RLDA. Although
RLDA improves its robustness by minimizing the L21-norm, it
still risks misjudging normal data as faults. In contrast, Figure 4c
shows that RSLDA has an FDR of 82.4%. According to this
figure, the majority of data is above the control limit after 8 h,
indicating that RSLDA has a significant advantage in recognizing
faults. RSLDA enhances the discriminative power of each
feature, allowing for more effective utilization of interclass
differences when handling high-dimensional data. In some cases,
the algorithms in Figure 4d,e can detect faults, but their
performance fluctuates, resulting in many missed faults. KPCA
handles complex data by introducing kernel functions that map
the data to a higher dimensional space. This makes KPCA
outperform PCA in fault identification accuracy. However,
selecting the kernel function for KPCA is more challenging,
which directly impacts its performance in fault detection. Figure
4f shows that after 8 h, the statistics are higher than the control
limit, indicating that FBSLA is the most effective algorithm. This
is because FBSLA uses a nonreduced dimensionality projection
matrix, which makes the features of the training data more
prominent. This approach effectively captures the subtle
differences in the data, thereby better preserving the original
features and improving the accuracy of detection.
Table 2 illustrates the results of monitoring 21 faults in the

TEP data set, with bold numbers indicating the best results

under each set of faults. According to the results, FBSLA
performs the best in most cases. By averaging the FDRs of the 21
fault cases, the average detection rate presented in the last
column of Table 2 is obtained. Overall, in 21 sets of faults, the
FDR outperforms the other algorithms. The average FDR for
FBSLA is 83.0%, which is 12.9% higher than LDA, 10.8% higher
than RLDA, 4.7% higher than RSLDA, 11.5% higher than PCA,
and 3.3% higher thanKPCA.However, for the detection of faults
9, 15, and 16, the FDR of FBSLA is less than 50%. This indicates
that the algorithm is not as effective in detecting these specific
faults.
To evaluate the sensitivity of different algorithms to outliers,

this paper incorporates outliers as training data in the TEP data

Figure 4. Detection results for fault 11. (a) LDA. (b) RLDA. (c) RSLDA. (d) PCA. (e) KPCA. (f) FBSLA.

Table 2. FDR (%) for the TEP Dataset

fault LDA RLDA RSLDA PCA KPCA FBSLA

1 98.6 81.6 90.8 98.4 97.2 99.4
2 96.8 81.6 92.2 98.2 96.0 99.6
3 29.0 50.2 61.8 26.2 65.8 50.9
4 99.0 81.0 82.0 79.8 75.2 98.8
5 68.4 81.4 87.2 44.4 69.0 84.5
6 99.4 85.8 92.8 99.1 97.9 99.6
7 98.6 84.4 90.2 99.6 73.6 94.1
8 82.4 77.6 81.2 97.0 90.4 99.2
9 31.6 55.8 53.6 24.2 67.2 37.7
10 63.8 77.2 79.0 62.9 77.6 82.2
11 75.2 70.6 82.4 71.2 77.4 98.0
12 77.2 84.2 86.4 98.8 92.6 98.4
13 88.6 84.0 92.2 96.2 96.2 96.4
14 37.6 66.0 87.4 99.4 88.8 99.2
15 34.0 53.4 50.4 29.7 60.8 32.7
16 55.0 73.6 67.8 46.7 72.6 42.7
17 93.8 79.4 81.0 88.2 85.8 97.6
18 82.8 82.0 82.8 91.6 92.3 93.4
19 30.4 50.6 67.6 36.9 53.5 92.4
20 73.4 74.4 82.4 61.5 82.4 83.0
21 56.2 40.4 52.6 52.5 61.2 62.2
mean 70.1 72.2 78.3 71.5 79.7 83.0
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set. Figure 5a,f illustrates the detection results after adding
outliers. When outliers are added, the fault detection results of
LDA, RLDA, RSLDA, PCA, and KPCA remain poor. Although
PCA and RSLDA are less affected by the outliers, the detection
results are still poor. In contrast, FBSLA is least affected by
outliers in the monitoring of fault 11. Before 8 h, the detected
data always remains below the control limits, and after 8 h, it is
almost always above them. This suggests that FBSLA still
exhibits good fault detection with outliers.
Table 3 presents the monitoring results for the 21 faults with

added outliers. It indicates that the FDR of FBSLA exceeds that
of the other algorithms in 8 of the 21 sets of faults,

demonstrating its continued strong performance. The average
FDR of FBSLA is 79.4%, compared to 63.1% for LDA, 62.7% for
RLDA, 78.2% for RSLDA, 70.6% for PCA, and 66.9% for KPCA.
These results further demonstrate the superiority of FBSLA in
fault detection. It is noteworthy that RSLDA exhibits the least
change with the addition of outliers compared to Table 2,
indicating that it is the least affected by outliers. However,
although RSLDA is less affected by outliers, its average detection
accuracy is lower compared to FBSLA.

3.4. PFP Experiment. Figure 6 displays the results of
detecting fault 1 in the PFP data set. As shown in Figure 6a,f,
RLDA performs poorly with this data set, indicating that the
algorithm may not be suitable. PCA detects the fault at 38 h, but
the data from the subsequent assays fluctuate around the control
limits. KPCA and RSLDA show similar detection results. In
contrast, LDA does not detect the fault until 60 h. FBSLA
detects the fault at 46 h, and the data after 46 h are all above the
control limit, indicating that the fault is fully detected.
Table 4 demonstrates the performance of different algorithms

in terms of FDR in the PFP data set, where FBSLA achieving the
highest FDR for both faults. Additionally, FBSLA achieves an
average FDR of 88.6%. Compared to LDA, FBSLA improves
FDR by 12.1%; compared to RLDA, by 12.4%; compared to
RSLDA, by 14%; compared to PCA, by 9.2%; and compared to
KPCA, by 3.9%. These results further confirm the superiority of
FBSLA in fault detection.
Figure 7a,f illustrates the detection results for fault 1 in the

PFP data set. It is noteworthy that the detection effectiveness of
all algorithms decreases to varying degrees, indicating that the
introduction of outliers negatively affects the detection effect.
Even though FBSLA is slightly affected in the detection of fault
1, it can still detect the majority of faults.
Table 5 shows the FDR of various algorithms after

introducing outliers. FBSLA has the highest detection accuracy
for faults 1 and 2. Furthermore, The FBSLA has the highest
average FDR of the three faults. When comparing Table 4 with
Table 5, it is observed that the addition of outliers results in a
decrease in accuracy for all algorithms, with FBSLA experiencing

Figure 5. Detection results for fault 11 with outliers. (a) LDA. (b) RLDA. (c) RSLDA. (d) PCA. (e) KPCA. (f) FBSLA.

Table 3. FDR (%) for the TEP Dataset with Outliers

fault LDA RLDA RSLDA PCA KPCA FBSLA

1 98.9 94.5 95.5 99.3 83.0 99.8
2 96.9 95.1 93.1 98.3 57.6 100.0
3 29.6 32.0 57.8 21.8 50.4 51.0
4 98.9 99.0 79.8 99.6 49.1 99.2
5 41.7 92.8 89.6 40.6 61.0 90.0
6 99.4 96.3 94.1 99.8 97.3 98.6
7 98.3 99.0 89.6 99.9 64.6 99.0
8 81.9 44.3 82.9 98.1 86.4 91.7
9 29.6 40.0 51.9 20.2 50.2 36.7
10 47.2 37.8 76.1 57.2 65.8 69.8
11 29.6 40.4 81.2 71.0 59.2 98.2
12 79.4 72.0 87.8 98.5 87.5 87.5
13 89.6 69.2 92.6 95.8 91.4 96.5
14 29.6 36.5 90.0 99.4 55.4 99.6
15 29.6 36.3 45.7 27.3 56.0 33.5
16 29.6 45.1 64.9 43.3 59.5 48.2
17 82.8 48.6 80.9 80.5 74.0 98.3
18 83.5 80.4 83.1 90.9 89.6 92.7
19 29.6 37.1 69.2 30.9 41.4 34.7
20 68.7 83.3 85.3 56.7 71.8 90.2
21 49.8 38.0 51.8 53.5 54.1 52.8
mean 63.1 62.7 78.2 70.6 66.9 79.4
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a 7.6% decrease in FDR. Compared to the other algorithms,
FBSLA shows the smallest decrease in accuracy, confirming its
superiority in dealing with outliers.
Table 6 illustrates the fault alarm rates for the TEP and PFP

data sets under different conditions. This paper focuses on fault
11 (TEP) and fault 1 (PFP). For fault 11 of the TEP data set, the
fault alarm rate is 100% without outliers. When outliers are
added, the fault alarm rate decreases slightly to 99.3%, a decrease

Figure 6. Detection results for fault 1. (a) LDA. (b) RLDA. (c) RSLDA. (d) PCA. (e) KPCA. (f) FBSLA.

Table 4. FDR (%) for the PFP Dataset

fault LDA RLDA RSLDA PCA KPCA FBSLA

1 77.0 78.0 79.8 75.2 87.5 93.2
2 77.0 78.0 73.8 86.5 81.4 85.2
3 75.6 72.6 70.2 76.5 85.3 87.5
mean 76.5 76.2 74.6 79.4 84.7 88.6

Figure 7. Detection results for fault 1 with outliers. (a) LDA. (b) RLDA. (c) RSLDA. (d) PCA. (e) KPCA. (f) FBSLA.

Table 5. FDR (%) for the PFP Dataset with Outliers

fault LDA RLDA RSLDA PCA KPCA FBSLA

1 42.1 77.3 73.7 53.1 69.5 82.1
2 79.6 44.5 67.6 82.8 83.3 84.2
3 75.5 74.7 55.5 77.0 70.7 76.6
mean 65.7 65.5 65.6 71.0 74.5 81.0

Table 6. Comparison of Fault Alarm Rates (%) under
Different Groups

group fault alarm rate

TEP without outlier (fault 11) 100.0
TEP with outlier (fault 11) 99.3
PFP without outlier (fault 1) 87.8
PFP with outlier (fault 1) 85.6
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of 0.7%. For fault 1 of the PFP data set, the alarm rate is 87.8%
without outliers and drops slightly to 85.6% with outliers added,
resulting in a decrease of only 2.2%. Overall, the decrease in the
fault alarm rate after outliers is minor, demonstrating that
FBSLA maintains a high fault detection rate in the presence of
outliers.
To deeply show the robustness of FBSLA, this paper keeps

using Figure 1 as an example. Sincematrices cannot be visualized
in two dimensions, vectors are utilized in this paper instead of
matrices. Figure 8 illustrates a comparison of the projection

vectors of LDA and FBSLA, where WLDA denotes the projection
vector of LDA without outliers, WLDA

outlier denotes the projection
vector of LDA with outliers, and WFBSLA

outlier denotes the projection
vector of FBSLA with outliers. By comparing the distances of
WLDA

outlier to WLDA, and WFBSLA
outlier to WLDA, it is clearly observed that

when the data set contains outliers, WFBSLA
outlier and WLDA remain

highly close to each other, fully demonstrating the strong
robustness of FBSLA in dealing with outliers.

4. DISCUSSION
LDA, based on Gaussian distribution assumptions, frequently
encounters challenges related to robustness when applied to
complex data sets. RLDA and RSLDA incorporate mechanisms
to mitigate the impact of outliers on traditional LDA. However,
these algorithms employ hard constraints, resulting in outliers
being heavily weighted in the optimization process. In contrast,
the application of soft constraints is an effective solution to
reduce the negative impact of outliers. Soft constraints, unlike
hard constraints, allow for a certain degree of suppression of
outliers during the optimization process, reducing their impact
on the results. This flexible strategy strengthens the algorithm in
the face of outliers and reduces performance fluctuations. On the
other hand, PCA is a widely used dimensionality reduction
algorithm. It simplifies data and reduces computational
complexity. However, its projection matrix may lose important
features, which leads to certain key features being ignored in the
dimensionality-reduced data. This can subsequently affect the
accuracy of the analysis. KPCA is an enhanced version of PCA,
which improves the performance to some extent, but still faces
problemswith robustness.When outliers exist in the data, KPCA

may be affected, thereby limiting its applicability in certain
scenarios.
In this paper, extensive experiments are conducted using the

RLDA algorithm on the TEP and PFP data sets. However, the
experimental results are not satisfactory for accurately detecting
faults. Although the potential of RLDA to enhance algorithmic
robustness has been recognized, its application to these specific
data sets did not meet our expectations. This discrepancy
suggests that RLDA is not suitable for fault detection in the TEP
and PFP data sets.
FBSLA employs multiple innovations to address the problem.

Specifically, it replaces the squared term with a linear term in the
objective function. This enables FBSLA to effectively handle
variations across different dimensions. Meanwhile, FBSLA
employs a nonreduced dimensionality projection matrix. This
strategy helps preserve the key features of the data. Therefore, it
allows for a more accurate representation of the intrinsic
structure of the data. Moreover, FBSLA innovatively employs
soft constraints instead of hard constraints, significantly
reducing the sensitivity of the data analysis process to outliers.
This paper reveals a remarkable finding by comparing the

LDA and FBSLA projection vector results. It shows that the
projection vectors of FBSLA with outliers are closer to the
projection vectors of LDA without outliers. This not only
demonstrates that FBSLA has better processing capability than
LDA in dealing with outliers, but also emphasizes the high
robustness of FBSLA. FBSLA demonstrates the ability to be less
susceptible to interference when dealing with complex data
structures, which is critical for handling outliers in practical
problems. In chemical production processes, outliers often have
a significant impact on the stability of the production process.
FBSLA effectively addresses these outliers while preserving the
intrinsic structure of the data set. In summary, FBSLA has
demonstrated its effectiveness in the TEP and PFP data sets,
maintaining stable performance in the presence of outliers.

5. CONCLUSIONS
FBSLA is proposed in this paper for the problem of fault
detection in chemical production processes. FBSLA significantly
enhances the robustness of the algorithm by introducing F-norm
as a metric. Second, the nonreduced dimensionality projection
matrix is added to make the training data features more obvious,
thus retaining the key features in the data. Furthermore,
traditional hard constraints are replaced by soft constraints. This
substitution effectively reduces the interference outliers cause on
algorithm performance. It also further enhances the robustness
of FBSLA. Experimental validation on the TEP and PFP data
sets shows that FBSLA outperforms other state-of-the-art
algorithms. These strategies together enhance the accuracy of
FBSLA in chemical production process fault detection.
However, it is critical to recognize that the algorithm has its

own limitations, particularly when dealing with nonlinear
problems that may be difficult. In the future, algorithms will
continue to be optimized to better adapt to the complex and
changing environments in chemical production. More accurate
solutions for fault detection in chemical production processes
can be provided by introducing kernel functions to solve
nonlinear problems.
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