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Abstract

Background: Intervention effect on ongoing medical processes is estimated from clinical trials 

on units (i.e. persons or facilities) with fixed timing of repeated longitudinal measurements. All 

units start out untreated. A randomly chosen subset is switched to the intervention at the same time 

point. The pre-post switch change in the outcome between these units and unswitched controls is 

compared using Generalized Least Squares models. Power estimation for such studies is hindered 

by lack of available GLS based approaches and normative data.

Methods: We derive Generalized Least Squares variance of the intervention effect. For the 

commonly assumed compound symmetry correlation structure, this leads to simple power 

formulas with important optimality properties. To maximize power given a constrained number of 

total time points, we investigate on the optimal pre-post allocation with the local minimization of 

variance.

Results: In four examples from nursing home and HIV patients, the Toepltiz within-unit 

correlation of repeated measures differed from compound symmetry. We applied empirical 

Toeplitz based calculations for variance of the estimated intervention effect to these examples 
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(each with up to seven longitudinal measures). Unlike what happened under compound symmetry, 

where power was often maximized with multiple observations being pre-intervention, for these 

examples, having one pre-intervention measure tended to maximize power. Attempts to 

approximate the Toeplitz variance structures with compound symmetry (to take advantage of the 

simpler formulas) resulted in overestimation of power for these examples.

Conclusions: While compound symmetry correlation among repeated within-unit measures 

leads to simple power estimation formulas, this structure often did not hold. There may be strong 

underestimation of variance of the intervention effect estimate from incorporating short-term 

within-unit correlation estimates as a common compound symmetry correlation to approximate an 

unknown Toeplitz correlation without adequately accounting for the correlation between repeated 

measures declining with time.

Keywords

Compound symmetry; Power and sample size estimation; Toeplitz correlation; Optimal allocation; 
Pre-post interventional study; Generalized least squares; Mixed model

Background

Randomized controlled trials and other experiments often evaluate repeated measures of 

continuous outcomes on each unit (i.e. either an individual or a facility) at systematic time 

points before and after an intervention begins, using two arms one which is entirely switched 

onto the intervention at a fixed time point and a control arm that remains in the same state 

[1–8]. Investigators measure longitudinal outcomes on each unit over b sequential pre-

intervention time points. Then the units are randomly divided into two arms: one with 

intervention started at time point b+1 and one left without the intervention. The outcomes 

are then measured over k sequential post-intervention time points. The shortest duration 

clinical trial of this type is having b=0 pre-intervention and k=1 post-intervention time 

points; no pre-intervention measure and one post-intervention measure with randomization 

serving as the basis for the post-intervention comparison or the intervention arm. Increasing 

the number of pre-intervention measures (b) and/or post intervention measures (k) improves 

the precision of the estimated intervention effect and thus study power, but doing this is 

offset by increased study duration and costs.

In our nomenclature, “units” could be facilities such as nursing homes or persons such as 

HIV infected patients. For example, units could be HIV patients being treated for depression 

with the outcome measured at 6-month intervals with b=2 semiannual measures taken 

among all subjects then a randomly chosen 50% being put on an intervention with k=4 more 

semiannual depression measures taken among all subjects after that. The change in 

depression between the two pre-intervention and four post-intervention time points is 

compared between those who are and are not put on the intervention. This design is widely 

used, for example, in articles published over the past four years involving addiction, pain 

management, sleep, heart disease, cancer, dementia, hypothyroidism growth, medical 

communication, headaches, multiple sclerosis, nutrition, obesity and industrial production as 

outcomes and persons, animals and residence/ treatment/manufacturing facilities as units [9–

15].
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Power and sample size determination for planning and optimizing such longitudinal 

randomized trials is important [3,5–7,16]. Repeated measures within the same unit are 

typically positively correlated which compared to the standard setting of independence 

complicates power estimation as well as statistical analysis. While general linear models 

(GLMs) for both statistical analysis and power estimation exist [17–19], these methods 

require that the correlation structure of repeated measures within the same unit be estimated. 

This is often impossible when historical data is lacking. Going back to our example that 

measures depression outcomes over b=2 semiannual pre-intervention and k=4 semiannual 

post-intervention (or a total of 6 semiannual) it would be very likely that at the study 

planning stage this would be a new cohort with only limited historical data on within-unit 

correlation of repeated measures as use for such data for study planning would not have been 

anticipated 2.5 years in advance.

Our goal is to develop power estimation framework using Generalized Least Squares (GLS) 

estimators in planning randomized pre-post intervention longitudinal clinical trials with two 

intervention arms. We first consider the simplest repeated-measure correlation structure, 

compound symmetry (which in practice is often assumed given the absence of normative 

data) that leads to closed form formulas. We then study four real examples and observe that 

repeated-measure correlation attenuates with time leading to a more complicated repeated-

measure structure known as Toeplitz (for which simple closed form formulas do not occur). 

The influence of pre-post intervention allocation of varying total visits on power (i.e. 

variance of the intervention effect estimate) for both the compound symmetry and the 

Toeplitz correlations of our four examples are studied. We also evaluate the ability to use a 

compound symmetry approximation to estimate study power for our four examples given the 

temptation investigators have to do this especially when limited normative data for 

correlation structure exists.

The paper is organized as follows: we first present a general linear model (GLM) for 

longitudinal data with pre-post repeated measures, then develop a generalized least squares 

(GLS) framework for estimation of the intervention effect and incorporated the GLS 

variance estimate into power estimation. Under compound symmetry, a simple GLS variance 

estimate formula for the intervention effect is derived and the influence of pre- (vs. post-) 

intervention time point allocation on this variance is evaluated. However, as compound 

symmetry correlation may not always hold, we empirically construct the Toeplitz correlation 

structures of repeated measures over seven time points from four longitudinal health care 

outcomes of nursing homes, hospitals and HIV infected patients. We investigated the true 

variances of intervention effect estimates obtained under these empirical correlation 

structures. The effect of pre-post allocation for varying T on these variances and closeness of 

variances obtained from the compound symmetry approximations that would be used by 

someone with limited normative data to those true variances for these settings are evaluated.

Methods (for Compound Symmetry and Toeplitz Correlation)

General linear model (GLM)

We begin with the statistical model of the intervention effect. For randomized longitudinal 

studies with two intervention arms, researchers encounter repeated measures of a 
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quantitative outcome at T=b+k systematic time points with b being before and k being after 

the intervention is delivered to one of the arms. Let h denote the intervention arm with h=0 

for control and h=1 for the new intervention. For each group, there are nh units (no for the 

control and n1 for the new intervention) and j={−b, −(b−1),…, −1, 1, 2,…, k} denotes the 

ordered times with {−b, −(b−1),…, −1} prior to and {1, 2,…, k} after the intervention onset. 

The goal is to assess the impact of the new intervention (versus control) on pre-post change 

in a longitudinal continuous outcome Y where Y1ij is measure j from unit i in the new 

intervention arm and Yoi’j’ is measure j’ from unit i’ in the control arm.

For example, consider a trial with n0=n1=30 hospitals in each arm. Let i denote hospitals (as 

“units”) where i=1,…,nh. The “units” are measured annually for T=7 years total with b=2 

years (2001 to 2002) before and k=5 (2003 to 2007) after the intervention implementation in 

the intervention arm (h=1). The outcome of interest, Y, could be portion of patients 

discharged within 30 days after surgery. Thus Y1,3,−2 and Y0,17,3 respectively denote the 

measurement taken in 2001 (2 years prior to start of the intervention) in the 3rd hospital of 

the intervention arm and 2005 (3 years after the start of the intervention) in the 17th hospital 

of the control arm, respectively. We assume complete data with T=b+k measures observed 

on each unit. Now Yhij can be decomposed as:

Yhij = α + βj+ θ Zhj+ εij* (1)

The overall means (α) for two intervention arms are equal at baseline due to randomization. 

The fixed time effect (βj) is modeled to allow for temporal effect at time point j. Now 

Zhj=I h=1,j>0  as the intervention effect (θ) only delivers to the intervention arm (h=1) on the 

k post-intervention measurements. Any random unit (ith level) effects are subsumed into the 

within-unit error term εij* , where εij* N(0, σ2 V) with the correlation matrix V defined below 

in eqn. (2). We assume an immediate “jump effect” of size θ after the intervention begins at 

time j=1, that remains unchanged at subsequent time points. Note that other functions such 

as linear intervention effect increase j ∗ θZhj for j ≥ 1 or threshold followed by exponential 

decay e−j ∗ θZhj for j ≥ 1 are possible. However, there may be settings where an immediate 

“jump effect” that continues forward unchanged is appropriate, such as when the 

intervention is a process change at a medical facility that can be implemented quickly; a 

drug that the body does not develop resistance or acclimation to, or an immediately 

successful behavioral intervention. Even if the intervention impact was not “immediate 

jump”, it could be close to this.

Generalized least squares (GLS) estimates

The matrix form of eqn. (1) is: Y=Xβ+ ε*, where εij* N(0, σ2 V). Here X represents the 

design matrix and Y is a vector of outcomes. For the general parameter vector 

β= α ,β− b − 1 ,…,β−1,β1,…,βk, θ , the corresponding design matrix X has columns (I,J−(b−1),

…, J−1,J1,…, Jk, Z), with N*T rows per column. Z is a column vector of intervention 

indicator with Zhj coded (0, 1) as defined above; J−(b−1),…, J−1,J1,…, Jk are columns 
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corresponding to b+k-1 independent time coded variables as follows: for j={−(b−1), −(b-2),

…, −1, 1, 2,…k), Jj={−1 at time –b (reference); 1 at time j; and 0 at all other times}. There 

is no column for J−b as β−b = − ∑
j=−(b − 1)

k
βj under the fixed effects constraint ∑

j=−b

k
βj = 0 .

More details on the full expansion of design matrix to a related design, the stepped wedge, 

can be found [20]. The covariance matrix V is made up with (n0 + n1) times block T 

diagonal matrices V0’s with all off block diagonal matrix elements being 0. The error term 

measures are independent between units, and within-unit correlation structure is invariant 

given two visit j and j’, i.e., ρi,jj ,=ρi’,jj,(i ≠ I’,j ≠ j’). Thus,

V =

V0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ V0 n0+n1 T

,

where V0 =

ρ11 ρ12 ρ13 ⋯ ρ1,T−1 ρ1,T
ρ21 ρ22 ρ23 ⋯ ρ2,T−1 ρ2,T
ρ31 ρ32 ρ33 ⋯ ρ3,T−1 ρ3,T
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

ρT−1,1 ρT−1,2 ρT‐1,3 ⋯ ρT−1,T − 1 ρT−1,T
ρT,1 ρT,2 ρT,3 ⋯ ρT,T−1 ρT,T T

(2)

The within-unit correlation structure (ρij) is often unknown in advance. Typically, correlation 

for any two visits would be monotonically non-increasing with |j –j’|, i.e., as the two time 

points are further separated, they will not become more strongly correlated [21–23].

The Generalized Least Squares (GLS) estimate for β is β in eqn. (3), which has proven 

properties of being the best linear unbiased estimator (BLUE) for β and uniform minimum 

variance (UMVU) if Yhij is normally distributed [17].

β = X′V−1X −1X′V−1Y; (3)

The Generalized Least Squares variance of β is Λ in eqn. (4); a square matrix of order T+1 

with the variance of θ the estimated intervention effect being in the last row and last column 

of Λ.

Λ = X′V−1X −1 σ2 . (4)
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General power estimation

We consider Ho : θ=0 versus HA:θ=± θA where θA is some expected or hypothesized value 

for the intervention effect we wish to be able to statistically detect. Where without loss of 

generality, δ=
θÁ
σ  is the effect size [24] or θA expressed as units of standard deviation. For 

practical repeated-measure designs, the normal approximation of the non-central t 

distribution can be applied [25]. In specific, the two distributions are almost identical when 

degrees of freedom (DF) γ > 30 and we have the following equations of power (1-β) in eqn. 

(5), in which Var θ  as derived above in the GLS variance estimate in eqn. (4).

θA = Z
1 − α

2
+ Z1 − β Var θ (5)

where αand βare Type I and Type II errors, respectively. For smaller sample sizes, it may be 

appropriate to approximate degrees of freedom (DF) (γ) in non-central t distribution for the 

mixture variance (for example, by Satterthwaite’s [26], and Kenward-Roger’s 

approximations [27]) and adjust eqn. (5) for this. But the full details are beyond the scope of 

this paper.

Repeated-measures correlation structure

As previously noted, one main difficulty in parametric analysis of longitudinal data lies in 

specifying covariance structure [4,23], i.e. estimating ρjj for j ≠ j’, as normative data from 

historical settings often does not exist or is limited. The simplest approximation is 

compound symmetry structure (VCS) where correlations among repeated measures are 

assumed to be equal within the same unit; For example, VCS is shown below with T=7.

Vcs =

1 ρ ρ ρ ρ ρ ρ
ρ 1 ρ ρ ρ ρ ρ
ρ ρ 1 ρ ρ ρ ρ
ρ ρ ρ 1 ρ ρ ρ
ρ ρ ρ ρ 1 ρ ρ
ρ ρ ρ ρ ρ 1 ρ
ρ ρ ρ ρ ρ ρ 1

For VCS, correlation does not decline with time; thus ρjj′ ≡ ρjj″ for, j’ ≠ j” While 

surprisingly little empirical research has been done to confirm this structure holds given how 

often VCS, is used in practice, CS has been found to be a reasonable simplification in 

planning longitudinal studies [5,28,29].

However, both logical reasoning and empirical data (such as that presented in the examples 

below) suggest that correlation declines with greater separation of time. Thus, stationary 

declining Toeplitz structure (VTP) where jj′ = ρ|j−j′| with 

ρ j − j′|=1 ≥ ρ j − j′|=2 ≥ …ρ j − j′|=T‐1 is reasonable or for T=7.
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Vcs =

1 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
ρ1 1 ρ1 ρ2 ρ3 ρ4 ρ5
ρ2 ρ1 1 ρ1 ρ2 ρ3 ρ4
ρ3 ρ2 ρ1 1 ρ1 ρ2 ρ3
ρ4 ρ3 ρ2 ρ1 1 ρ1 ρ2
ρ5 ρ4 ρ3 ρ2 ρ1 1 ρ1
ρ6 ρ5 ρ4 ρ3 ρ2 ρ1 1

We note that stationarity is needed with ρ j − j′  being constant over time for study planning 

otherwise, historical estimates of correlation cannot be applied to the future timepoints of a 

planned study [7,8]. However, VTP may be hard to estimate in practice, especially in early 

planning stage when researchers do not have enough historical data going back T time 

points.

We do note that correlation may also be modeled as a deterministic function of the absolute 

time separation of the observations (i.e., as ρ∆t where ∆t is the difference in times which 

may have additive value if periodicity of evaluations varies within and between persons 

[3,30]. However, this is beyond the scope of this paper. Finally, once the data has been 

collected the restricted maximum likelihood (REML) is recommended for estimation of ρ 
for VCS or ρ1,ρ2,…, ρ1,ρ2,…,ρb+k‐1  for VTP [2]. In fact, REML estimation is included as 

a default option in many current model-fitting software packages (e.g., Proc Mixed in SAS).

Compound symmetry correlation

Under the assumption of CS, we derive a closed form GLS formula for Var θCS  follows. 

The GLS estimator of β is therefore β = X′V−1X −1X′V−1Y and has variance Λ= X′V−1σ2

where Λ is a square matrix of order T+1. Var θCS  is the last diagonal element of Λ. Using 

the inverse formula for portioned matrix as discussed [20], we calculate for the following 

GLS variance estimate of intervention effect. More derivations can be found in the 

Appendix.

Var θCS = 1
n0

+ 1
n1

1 + b+k−1 ρ 1 − ρ
k 1 + b−1 ρ σ2 (6)

We note that after rearrangement of terms eqn. (6) is identical to the variance of intervention 

effect under compound symmetry presented in Section 5 from Frison and Pocock [5] who 

used a simpler approach of linear models on mean summary statistics that derived the same 

variance estimate as GLS model obtains. We are not, however, aware that this same result 

has been previously shown for the generally more powerful Generalized Least Squares 

design.
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The relatively simple form of eqn. (6), simplifies investigation on optimal design in planning 

longitudinal study. For example, a repeated-measure design may have a constrained total 

number of longitudinal times T (T=b + k) because of the budget and/or time constraints. In 

such scenarios, finding the optimal allocation of T into b and k that maximizes power (or 

minimizes the sample size needed to obtain a given power) would be important. From eqn. 

(6), for CS structure with constrained T given ρ, the optimal b with the local minimization of 

variance is (as was also inferred by Frison and Pocock [5] using illustrative examples):

b*=max round T+1
2 − 1

2ρ ,0 (7)

Note Y=round (X) rounds each element of X to the nearest integer. If an element is exactly 

between two integers, then Y can be either of the two integers. For example, suppose ρ=0.50 

for a randomized trial, we can calculate the optimal pre-intervention measurements 

b*=round T+1
2 − 1

2*0 . 50 =round T−1
2 . Therefore, for odd T,b*=round T−1

2 = T−1
2 ; for even 

T,b*=round T−1
2 = T−1

2 or T−1
2  ; Now b* is 0 for ρ=0 and approaches T/2 as ρ goes to 1.

To show how this work in practice including for comparison with our future examples 

involving empirical Toeplitz correlation structures, Table 1 presents examples under CS, 

letting T=2, 3,…, 7, and b range from 0 to T-1. We chose seven as a maximum for T which 

is reasonable for our examples below and for trials conducted for a maximum of 2–4 years 

with repeated measures at 3–6 months’ interval. In most published examples [9–15], we 

observed T was less than 8 as having more time points makes the study too long for practical 

consideration. We take ρ=0,0.25,0.50,0.75 to range from no correlation, to high correlation. 

Here and elsewhere we let n0=n1=30 units each in both the intervention and control arms and 

σ2=100 as simple common values to enable comparison across different designs and 

settings.

For example, for n0=n1=30, σ2=100, with T=7 and b=2 visits before the intervention (and 

thus k=7–2=5 visits after the intervention), if CS correlation structure exists with ρ=0, the 

variance of the intervention effect estimate, i.e., Var θCS  will be 1.33. However, if ρ=0.25, 

Var θCS  rises to 2.00 (an increase of 50% over 1.33 when ρ=0) and if ρ=0.75, Var θCS
drops to 1.05 (a reduction of 13.5% below 1.33 when ρ=0). These changes in Var θCS
with ρ represent a complex interplay between amount new information brought in with new 

measures (which is decreasing with ρ) and amount of common effect removed by matching 

post intervention to pre-intervention measures (which is increasing with ρ) as given by eqn. 

(6). However, the ratio changes are invariant to no,n1 and σ2. Thus, if n0=10, n1=20 and 

σ2=40, with T=7 and b=2, Var θCS  is still 50% higher when ρ=0.25 and 13.5% lower 

when ρ=0.75 compared to when ρ=0.

As T increases, Var θCS  decreases thus power increases. However, when planning a study, 

this must be weighed against the extra cost and time that increasing T requires. For example, 

with n0=n1=30, σ2=100, ρ=0.25, starting with T=2 and b=1 pre-intervention time point, Var 
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θCS  is 6.25. This drops by 40% to 3.75 from increasing T to 3 (With b remaining at 1). 

However, further increasing T to 4 (with b still at 1) only reduces Var θCS  another 13% 

(for a cumulative 53% of 6.25) down to 2.92. If the time points were 6 months apart, one 

would need to consider if this additional reduction of 13% was worth extending the study 

from 1 year to 1.5 years. Another consideration is when T is fixed, what value of b 

minimizes Var θCS  in eqn. (7) and by how much. Cleary when ρ=0 there is no common 

within-unit effect to be removed by matching to pre-intervention measure so Var θCS  is 

minimized by having maximizing k at T with b=0. As ρ increases this shifts towards larger b 

to remove common within-unit effect with b ≈ T
2  being optimal for ρ ≥ 0.5. Although often 

b being one unit lower than this performs nearly as well.

Toeplitz correlation

As shown below, declining Toeplitz Correlation may occur frequently in practice which at 

least theoretically raises concerns about using the assumption of compound symmetry when 

planning studies. But there is no simple closed form for the variance of the estimated 

intervention effect under Toeplitz correlation VTP, as was the case with compound symmetry 

in eqn. (6) rather Var θTP  must be obtained by computer incorporating VTP into eqn. (4). 

We thus explore this further in the Results Section using the empirical Toeplitz correlation 

structures of our four examples.

Results (for Empirically Observed Toeplitz Correlations)

Four Toeplitz correlation examples

While the formulas and properties for Compound Symmetry are easily implemented we 

wanted to see how well they applied to relevant data that we had in four examples with T=7 

time points. The first two were collected on 365 New Jersey nursing homes being monitored 

every three months from the second quarter of 2011 to the fourth quarter of 2012 (seven 

quarters total) in the Nursing Home Compare [31] for proportions of: 1) long stay nursing 

home residents with weight loss (NH - WEIGHT LOSS); and 2) long-stay nursing home 

patients that reported fall injury (NH - FALL INJURY). Higher levels of NH - FALL 

INJURY and NH - WEIGHT LOSS are undesirable and targeted for improvement at a 

facility level. The “unit” for these examples is the facility with the repeated measures being 

quarterly facility values. Thus, for example, in a future study, it is conceivable that all 365 

New Jersey nursing homes (NH) could be followed for b baseline time points to obtain 

proportions of their long stay residents with NH - WEIGHT LOSS and NH - FALL INJURY 

and then around 50% randomly chosen facilities be moved to a facility intervention to 

improve one or both outcomes with k post-intervention measures (proportions of long stay 

residents with each outcome) obtained from both groups for comparison of changes.

The next two examples were obtained from 1012 Bronx HIV infected women [32] who had 

complete data for their first seven semiannual visits at patient (PT) level: PT-CD4 counts and 

PT-CESD Depression scores [33]. Higher PT-CD4 and lower PT-CESD are desired and have 

been previously targeted for interventions. The repeated measures for these examples are 
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from semi-annual visits of patients. It is conceivable that in a future study these patients 

could be followed for b baseline visits to obtain PT-CD4 counts and/or PT-CESD scores and 

then around 50% be put on an intervention to improve one or both outcomes with k post-

intervention measures obtained from both groups for comparison of changes.

Table 2 and Figure 1 summarize the empirical Toeplitz correlation structures for the four 

outcomes described above estimated using the REML algorithm in the mixed procedure in 

SAS from our normative data. Visually, Figure 1 and Table 2 illustrate a range from starting 

correlations at ρ1 of ~0.60 to ~0.85 and slight to steep generally monotonic linear declines of 

~0.10 to ~0.62 going out to ρ6.

From the four examples in Figure 1, PT-CESD is qualitatively closest to compound 

symmetry with correlations between 0.52 and 0.64, but qualitatively the other correlation 

structures have rapid and/ or sustained decline in ρ starting at ρ2 with greater separation of 

time points. We mow present variance estimates and optimality properties for these four 

examples obtained by computer using eqns. (4) and (5) incorporating VTP in Table 2 and 

Figure 1.

Toeplitz variance estimates

We calculated the variance of the intervention effect estimate, i.e., Var θTP  from eqn. (4) 

using the identified Toeplitz correlations in Table 3 and Figure 1 over all possible b: k 

allocations with T=2,…, 7 for each of the four examples. As before, to permit comparability 

across examples, it was assumed that the variance of each outcome was σ2=100 and n0= 

n1=30. This is presented in Table 3. For each example, 0= the b: k allocation for each value 

of T that gives the minimum variance is indicated in bold.

For example, with PT-CESD {T=2, b=1} and {T=5, b=2}, Var θTP  are 3.94 and 2.29 

respectively while for the same values of T and b for PT-CD4, the Var θTP  are 1.96 and 

1.78, respectively. The lower 7 for each of the four examples. As before, to permit 

comparability across examples, it was assumed that the variance of each outcome was 

variances for PT-CD4 reflect that it has higher values of ρ1 and ρ2. The slower declining in 

variance from T=2, b=1 to T=5, b=2 for PT-CD4 (which also occurs for NH - WEIGHT 

LOSS and NH - FALL INJURY) may reflect larger deviation from compound symmetry 

with ρ1 being larger than the other correlations and thus having a more pronounced role in 

removing shared matched effects from adjacent pre-intervention observations.

Not surprisingly, Var θTP  decreases for all as T increases. For T≥4, the advantages from 

increasing T in terms of Var θTP  may attenuate. Also, not surprisingly, b=0 performs 

particularly poorly for all examples. But b=1 is the optimal choice for NH - WEIGHT 

LOSS, NH - FALL INJURY, and PT-CD4. For PT-CESD, which is closer to compound 

symmetry, b=1 is optimal for smaller T (T<4), but b=2 is optimal for larger T (T≥4). While 

more comprehensive analyses for other values of T and VTP is beyond the scope of this 

paper, we believe that: i) VTP presented here are likely representative of many settings ii) T 

≈ 7 may be reasonable for many settings so this observation can be widely applicable.
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CS variance approximation

If the actual structure of VTP can be identified and the needed software is available, it is 

ideal to use it in eqn. (4) to obtain Var θTP  for power estimation in eqn. (5). However, in 

practice, investigators often have limited access to: i) normative historical correlation 

structure data from which to obtain VTP; ii) needed software to generate Var θTP  from 

eqn. (4); iii) space in a grant proposal to explain and justly complicated parameter estimates 

for power estimation. Furthermore, power/sample size estimates using VTP could have 

unknown robustness properties against misspecification on {ρ1, …,ρT-1}. For the above 

reasons, investigators may opt to use a Compound Symmetry approximation even in settings 

where a non-CS VTP is known or CS is not likely to hold. Indeed, in practice simpler 

statistical models are often fit when it is impossible or impractical to fit a more complicated 

model that is closer to truth. Still it is important to be aware how robust the approximation of 

VTP with compound symmetry (in ways that are likely to occur) is.

For example, in many settings, the investigator may have data spanning two visits (such as 

data from two semiannual visits for our previous HIV+ patients, or two quarterly reports in 

the nursing home example) to obtain ρ1. Or it may otherwise be possible to use other 

approaches to derive values for ρ1 but not for other ρ′s. The most immediate choice 

(particularly if the investigator mistakenly believes the structure is VCS) would be to use 

eqn. (6) with the observed or surmised ρ1. This seems likely to lead to underestimation of 

the variance of the intervention effect estimate as the variance declines with ρ and for VTP in 

our examples in Table 2 and Figure 1 and in general ρ1 is the largest value.

Another option is that the investigator would try to estimate the average ρ in VTP say as a 

weighted average of estimated ρ1,ρ2,…,ρT-1, i.e., ρavg =
T−1 ρ1 + T−2 ρ2 +…+ρT−1

∑i=1
T−1i

 and use 

this as the common ρ in VTP approximation based on eqn. (6). If ρ1,ρ2,…,ρT-1 were known, 

then ρavg could be calculated directly and used as described above if the software to 

incorporate VTP was unavailable. As ρavg will be smaller than ρ1 if the correlation declines 

with temporal distance, use of ρavg would not have as strong a pull towards underestimation 

of the variance of the intervention effect as would use of ρ1, in a VCS approximation to VTP.

For example, consider an investigator planning to use for NH - FALL INJURY described 

above as a longitudinal outcome in a randomized nursing home facility intervention with 

T=7. To refresh for NH - FALL INJURY in Table 2, ρ1=0.74, ρ2=0.51, ρ3=0.32, ρ4=0.14, 

ρ5=0.13, ρ6=0.12. But the investigator may not have all the normative data. If only ρ1=0.74 

were known, it might be used as a common ρ in a VCS approximation to VTP Alternatively, 

ρavg =
6ρ1+5ρ2+4ρ3+3ρ4+2ρ5+ρ6

6+5+4+3+2+1  could be used in eqn. (6) under VCS approximation to VTP. If 

estimated correctly for this example, ρavg =6 0.74 +5 0.51 +4 0.32 +3 0.14 +2 0.13 +0.12
21 = 0.43, is 

much less than the previously described ρ1. The question we now address is how well use of 

VCS in eqn. (6) with either (i.e., a correctly identified) ρ1 or avg as the common correlation 

performs in estimating Var θTP .
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We let T range for 3 to 7 (as by default, T=2 is compound symmetry). We focus on b=1 as: i) 

in Table 3, b=1 typically minimizes the variance, and thus ii) b≥2 would be used only if this 

number of pre-intervention measures already existed in which case these could be used to 

identify more components of VTP minimizing the need for a VCS approximation. Figure 2 

presents the actual Var θCS  from VTP and the Var θCS  approximations using ρ1 and 

ρavg. As before to allow for cross comparability between different estimates, we assume that 

σ2=100 and n0=n1=30 units in each treatment arm.

Thus, for example, with NH - FALL INJURY for T=3 (on the x-axis in Figure 2) and b=1, 

Var θTP  from VTP shown in Table 2B is 2.90. If the investigator did not know VTP but 

knew (or estimated correctly) ρ1=0.74 and used it in eqn. (6) assuming CS, he would 

underestimate that variance as 2.15. However, if the investigator could obtain or correctly 

estimate ρavg =
2ρ1+ρ2

2+1 =0.66  and use this in eqn. (6) Var θTP  is less underestimated, as 

2.63.

For the three outcomes (PT-CD4, NH-WEIGHT LOSS, NH-FALL INJURY) where the 

correlations declined greatly after ρ1 using VCS with 1 greatly underestimated Var θTP  , 

sometimes by as much as 40% which would result in great overestimation of study power. 

For PT-CESD where the correlation was much closer to compound symmetry, the disparity 

while was much less being at most an underestimation of 13% of Var θTP  when T=6. 

While not perfect, the performance of a correctly estimated ρavg in the VCS approximations 

were much better. Often the Var θCS  with ρ=ρavg was almot the same as the true Var 

θCS , while it sometimes underestimated Var θTP . The greatest underestimation of the 

variance was by 10% (for T=3 of PT-CD4).

Conclusion

The aim of this paper was to present a “usable” power and sample size estimation 

framework for randomized two-arm pre-post intervention trials with repeated continuous 

longitudinal outcomes. We developed Generalized Least Squares estimates of the 

intervention effect Var θ  for general linear models assuming a jump effect on the outcome 

fully occurs immediately after the intervention is delivered.

Presented in eqn. (6) is an easily implemented formula for variance of the intervention effect 

estimate under the very commonly assumed compound symmetry correlation structure i.e., 

Var θCS . Not surprisingly, Var θCS  decreases as the number of total visits T increases. 

But this must be weighed against the extra cost associated with more follow-up visits. For T 

that is fixed due to budget or time limitations researchers would like to determine the 

optimal number of pre-post intervention measures (b: k) to minimize Var θCS . From eqn. 

(7), the optimal b∗ becomes larger as the correlation coefficient ρ increases for a constrained 

T because higher correlation increases benefits from matching on pre-intervention 

measurements. When ρ=0 there is no common within-unit effect, the variance is minimized 
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by having maximizing k at T with b∗=0. As ρ increases this shifts towards larger b∗ to 

remove common within-unit effect with b* ≈ T
2  being optimal for ρ≥ 0.5. But in practice 

smaller values also performed well with b being one unit lower than b∗ performing nearly as 

well as b∗ in most cases.

Although compound symmetry is commonly used in healthcare research, the correlation 

structures of outcomes we evaluated from nursing homes and HIV patients behaved 

(sometimes very) different from CS. Therefore, further investigation on power 

approximation with a more general stationary declining Toeplitz correlation was needed. As 

simple closed form GLS variance formulas are not directly available for Toeplitz 

correlations, we numerically evaluated Var θTP  using computer software in eqn. (4). 

While stochastically, increasing T reduced the Var θTP  the declines were much lower 

especially for two of the four examples than they were with compound symmetry with T=7 

giving only 24% - 32% lower Var θTP  than T=2 for PT-CD4 and NH–FALL INJURY in 

studies with the same number of units. Such gains must be weighed the fact that studies with 

T=7 measures require 6 times as much follow up time as do those with T=2. In our four 

examples with fixed T, b=1 gave optimal or close to optimal results in minimizing Var 

θTP . Moreover, having at least one baseline pre-intervention measure is important as b=0 

always produced (often substantially) larger Var θTP .

While when the correlation structure is Toeplitz, it is more accurate to estimate the variance 

of the intervention effect using VTP in eqn. (4), investigators often neither have precise 

normative data to estimate the needed parameters ρ1, …,ρT-1 nor the software/expertise to 

implement eqn. (4). However, in these settings, investigators often have some insight on 

correlations (i.e., to observe ρ1 and/or estimate ρavg). In practice, as compound symmetry is 

often used as a default correlation structure where either observed or estimated ρ1 or ρavg 

could be used as the common correlation in a compound symmetry approximation. Thus, we 

assessed how close the Var θCS  from either of these approximations with the parameters 

correctly obtained was to the real Var θCS  using closed form formula in eqn. (6) with T 

varied from 2 to 7 (with fixed b=1). The Var θCS  approximations using =ρavg 

underestimated Var θTP  by at most 10%, especially when the correlations declined 

dramatically over time. While the Var θCS  approximations using =ρ1 typically 

substantially underestimated the true Var θTP  and thus overestimated power. Of note, we 

only focused on b=1 as this is typically the setting that maximizes power and where the true 

correlation structure could not be obtained, but results were similar for larger b (data not 

shown) Also there may be some other conservative approaches to overestimate Var θTP
when it cannot be calculated directly; for example by using mean summary statistics [5], or 

simple approximations using T=2 with b=k=1 and ρ=ρ1.

There are some limitations in our work. For simplicity, we focused on balanced designs with 

equal time interval between visits and no missing data. We assumed an immediate one-time 
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jump effect of the intervention, but in some settings, the effect may be linear cumulative or 

some other patterns. Also, our analysis was restricted to T ≤ 7 longitudinal measures as we 

observed to be the case in most previous published studies. While this need to be confirmed 

in future studies, we suspect, however, that the properties observed on optimal b: k 

allocation and compound symmetry approximation to Toeplitz correlations in our four 

examples, qualitatively hold when these settings are expanded. Although we assumed 

stationary covariance (a minimum requisite to use historical data for correlation estimation), 

covariance could change over time from uncontrollable mechanisms in practice. Relaxation 

of the above assumptions may likely lead to complicated settings that perhaps can only be 

addressed with simulation.

In conclusion, this paper developed a Generalized Least Squares power estimation 

framework based on correlation structures and investigated optimality for randomized 

longitudinal randomized intervention trials. Under the commonly made assumption of 

compound symmetry correlation, we derived a simple formula for the variance of the 

intervention effect estimate. However, CS may not always hold in the practice as shown in 

our real examples. In those examples, for T ≤ 7 total measures per unit, having b=1 pre-

intervention visit typically minimized the variance of the estimated intervention effect. 

Furthermore, our examples suggest that if compound symmetry correlation structure is used 

to approximate Toeplitz correlation structure with short-term correlation assumed to hold for 

longer periods, there may be a strong bias towards underestimation of the variance of the 

intervention effect.
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Figure 1: 
Visualization of Toeplitz correlation structures from four examples (T=b+k=7).
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Figure 2: 
Comparative variance for randomized designs over all possible b: k allocations with CS 

approximations.
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