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We aimed to assess longitudinal changes in quantitative imaging metric values obtained from diffusion-
weighted (DW-) and dynamic contrast-enhanced magnetic resonance imaging (DCE)-MRI at pre-treatment (TX
[0]), immediately after the first fraction of stereotactic body radiotherapy (D1-TX[1]), and 6weeks post-TX
(Post-TX[2]) in patients with pancreatic ductal adenocarcinoma. Ten enrolled patients (n =10) underwent DW-
and DCE-MRI examinations on a 3.0 T scanner. The apparent diffusion coefficient, ADC (mm2/s), was
derived from DW imaging data using a monoexponential model. The tissue relaxation rate, R1t, time-course
data were fitted with a shutter-speed model, which provides estimates of the volume transfer constant, Ktrans

(min�1), extravascular extracellular volume fraction, ve, and mean lifetime of intracellular water protons, t i
(seconds). Wilcoxon rank-sum test compared the mean values, standard deviation, skewness, kurtosis, and
relative percentage (r, %) changes (D) in ADC, Ktrans, ve, and t i values between the magnetic resonance
examinations. rADCD2–0 values were significantly greater than rADCD1-0 values (P= .009). rKtransD2–0 values
were significantly lower than rKtrans D1-0 values (P= .048). rveD2-1 and rveD2-0 values were significantly differ-
ent (P= .016). rt iD2-1 values were significantly lower than rt iD2-0 values (P= .008). For group comparison,
the pre-TX mean and kurtosis of ADC (P= .18 and P= .14), skewness and kurtosis of Ktrans values (P= .14 for
both) showed a leaning toward significant difference between patients who experienced local control (n=2) and
failed early (n=4). DW- and DCE-MRI-derived quantitative metrics could be useful biomarkers to evaluate longitu-
dinal changes to stereotactic body radiotherapy in patients with pancreatic ductal adenocarcinoma.

INTRODUCTION
Pancreatic cancer is the fourth leading cause of cancer-related death
in the United States (1). Pancreatic ductal adenocarcinoma (PDAC)
is an aggressive disease with poor outcomes, especially for patients
who are unable to undergo curative resection (2). PDAC is charac-
terized by complex microarchitecture, dense fibroblastic stroma,
and heterogeneous vascularization, which creates considerable
challenges for therapy planning and response assessment (3, 4).
Stereotactic body radiation therapy (SBRT) has emerged as an

important treatment modality for patients with the localized unre-
sectable disease (5). It is associated with similar survival compared
with conventionally fractionated RT for locally advanced pancreas
cancer (6) and is a promising technology for further dose escalation
(7). Biomarkers of early response could facilitate adaptive replan-
ning of SBRT and help inform post-SBRT management (8).

The quantitative imaging metrics derived from diffusion-
weighted (DW) and dynamic contrast-enhanced (DCE)-MRI are
emerging as surrogate biomarkers in differentiating between
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normal pancreatic parenchyma and pancreatic tumors, as well as
in assessing treatment response in PDAC (9–11). The utility of
DW- and DCE-MRI techniques can be limited owing to the
motion of abdominal organs, which can be minimized by either
breath-hold (BH) or non-BH techniques, such as the respiratory-
triggered technique (12–15).

DW-MRI describes the restriction/hindrance of translational
motion of water molecules caused by tumor cellular structure in
tissue. Water diffusion in the tumor is influenced by tissue com-
position, including cellularity, stroma content, and vasculariza-
tion (16). The apparent diffusion coefficient (ADC) derived from
the DW imaging signal, using monoexponential modeling, has
shown promise for characterization, prognosis, and evaluation of
treatment strategies in abdominal cancers (17). ADC is the surro-
gate biomarker for tumor cellularity because the macromolecular
and microstructural changes occur at the cellular level earlier
than anatomical changes during therapy (18). Previous studies
have reported that mean ADC values of the normal pancreas
were significantly higher than either pancreatic cancer or mass-
forming pancreatitis (19, 20). Dalah et al. reported that the mean
ADC values after neoadjuvant chemoradiation in PDAC corre-
lated significantly with pathological responses (21). A recent
study has reported that pre-treatment (TX) DW-MRI data could
predict overall survival of patients with locally advanced pancre-
atic cancer treated using SBRT (11).

In contrast, DCE-MRI pharmacokinetic modeling confers
measures of tumor microvascular physiology via pharmacoki-
netic modeling. Standard Tofts model provides estimates of
Ktrans and ve (22). To quantify these parameters, changes in tissue
water proton relaxation rate R1 (ie, DR1 = 1/DT1) is assumed to be
linearly related to contrast agent (CA) concentration in tissue,
such that intercompartmental water exchange kinetics is at the
fast exchange limit (FXL). When a significant amount of CA
extravasates into extravascular extracellular space (EES), a large
Ktrans, transcytolemmal water exchange (ie, between intracellular
space [ICS] and EES) drives out of the FXL into the fast exchange
regime (FXR) (23). Landis et al. (23) showed the effects of trans-
cytolemmal water exchange on estimates of T1 longitudinal
relaxation time in muscle tissue. The degree of DR1 deviation
from linearity depends on the magnetic resonance (MR) sequence
parameters, in particular, on the flip angle (FA), the amount of
CA extravasated into the EES, and the tissue under study (24,
25). FXR provides estimates of a mean lifetime of intracellular
water protons,t i (ie, inverse of the water exchange rate, kie, from
ICS to ESS), in addition to Ktrans and ve (26). K

trans and t i are sur-
rogate biomarkers of tumor tissue perfusion/permeability and

cellular metabolic activity, respectively (26, 27). The effects of
transcytolemmal water exchange in estimates of T1 have been
investigated in DCE-MRI studies of breast cancer (26), head and
neck cancer (28), and prostate cancer (29), but not in those of
pancreatic cancer. Furthermore, both preclinical and clinical
studies have shown utility for Ktrans and t i as potential bio-
markers, assessing tumors vasculature and cellular metabolism
(30, 31).

DCE-MRI has been used to evaluate tumor vascular distribu-
tion and angiogenesis in the pancreas (32). Ktrans has shown
promise for monitoring therapeutic response in patients with
PDAC (33, 34). The previous study has shown that the mean
Ktrans values in the responders’ group were significantly higher
than those in nonresponders group treated with gemcitabine-
based chemotherapy in advanced PDAC (35). Ktrans was signifi-
cantly higher in tumors that showed a marked response than in
those that did not when treated with chemotherapy and antian-
giogenic therapy (33). Kim et al. reported an increase of Ktrans in
responsive tumors compared with a decrease of that in nonres-
ponding tumors at 8weeks post chemotherapy (34).

To the best of our knowledge, no study has used the
combination of quantitative DW- and DCE-MRI in patients
with PDAC longitudinally at multiple time points (ie, pre-
[TX], after SBRT, and post-TX MRI). The purpose of the pres-
ent prospective study was to assess longitudinal changes in
quantitative imaging metric values obtained from DW- and DCE-
MRI at pre-TX[0], immediately after the first fraction of SBRT
(D1-TX[1]), and 6 weeks after SBRT (Post-TX[2]) in patients
with PDAC.

MATERIALS AND METHODS
Patients
Our institutional review board approved this prospective longitu-
dinal study, in compliance with the Health Insurance Portability
and Accountability Act. Written informed consent was obtained
from all eligible patients diagnosed with PDAC. Criteria for inclu-
sion in the study required patients to be 18years or older and
with a diagnosis of PDAC, to be treated with SBRT. SBRT appli-
cation followed a 3-fraction dose-escalation protocol with
single fractions of 9–11Gy and total doses of 27–33Gy and
was given within 7 days. Ten patients (6 male and 4 female;
median age, 64 years; range, 52–70 years) were enrolled and
underwent MRI examinations. Figure 1 illustrates the timeline
of longitudinal MRI examinations. MRI examinations were
performed at pre-TX[0], immediately after the first fraction of
SBRT (<90minutes), D1-TX[1], and 6weeks after SBRT (post-

Figure 1. Timeline of magnetic resonance imaging
examinations. Immediately after the first fraction of ste-
reotactic body radiotherapy (SBRT), D1-treatment (TX)
[1], was performedwithin 1–4weeks from pre-TX[0],
and post-TX[2] was performed 6-weeks after SBRT.
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TX[2]). The D1-TX[1] and post-TX[2] MRI examinations were
performed within 1–4weeks and 8–12weeks from the pre-TX[0]
week, respectively. The accrual period for this study was from
February 2016 to August 2018, and the summary of patients’
characteristics is given in Table 1.

After SBRT, patients were evaluated every 3–6months for
the first 2 years, every 6months up to 5 years and yearly there-
after. Patients were assessed for 12-month local control using
standard clinical follow-up data including radiographic imaging.
Out of 10, only 6 patients were evaluable. Two patients (n = 2)
were alive at 12months with no local progression and 4 patients
(n = 4) had local progression within 12months. Four patients
were excluded from the above dichotomization who were ei-
ther patients who died within 12months with no evidence for
local progression (n = 3) or patient (n = 1) who had surgery.
The 3 patients who died within a couple of months after
SBRT were excluded because we had no way of ascertaining
whether these patients would have progressed shortly there-
after if they had remained alive a little longer. The follow-up
time for freedom from local progression ranged from 2.5 to
33months.

MRI Data Acquisition
All Pre-TX[0], D1-TX[1], and Post-TX[2] MR examinations were
performed on a 3 T MR scanner (Philips Ingenia, Philips Healthcare,
The Netherlands) using an integrated anterior–posterior dStream
Torso coil. The standard T2-weighted (T2w) and T1-weighted (T1w)
MR acquisition multiplanar (axial, coronal, and sagittal) were
acquired under breath-hold. 2D T2-images were acquired using a
fat-suppressed, fast spin-echo sequence with repetition time (TR) =
1250milliseconds, echo time (TE) =80milliseconds, number of
averages (NA) = 1, matrix size = 284� 232 reconstructed to
256� 256, slice thickness = 7mm, slice spacing = 7mm, field

of view (FOV) = 30–35 cm, and number of slices (NS) = 24. The
pre- and postcontrast 3D T1w images were acquired with TR =
3.01milliseconds, TE = 1.41milliseconds, NA = 1, slice thick-
ness = 8mm, slice spacing = 4mm, matrix size = 196� 194
reconstructed to 256� 256, FOV = 30–35 cm, NS = 60.
Multiple b-value DW-MRI and DCE-MRI acquisitions followed
standard T1w and T2 w method.

DWI Data Acquisition
DW images were acquired using a single-shot echo-planar imag-
ing (SS-EPI) sequence performed with 2 b-values of 0 and 500 s/
mm2 using a navigator triggered with the following MR parame-
ters: TR = 3000milliseconds, TE = 54milliseconds (minimum),
FOV = 30–35 cm, NS = 10–12, slice thickness = 6mm, slice spac-
ing = 6mm, NA = 2 for b= 0 s/mm2 and NA = 6 for b= 500 s/
mm2, and matrix = 132� 130 (interpolated to 256 � 256). The
total DWI acquisition time was�4minutes.

DCE Data Acquisition
For generating the precontrast T1 (ie, T10) maps, T1w images
were acquired using the fast 3D T1w spoiled gradient recalled
echo (SPGR) sequence with multiple FAs of 5°, 15°, and 30°. The
DCE data acquisition scheme is shown in Figure 4B. Other acquisi-
tion MR parameters were as follows: TR/TE = 5.6 /2.3milliseconds,
acquisition matrix = 231� 116 reconstructed to matrix = 256� 256
by zero-filling, FOV = 30–35 cm, slice thickness = 6mm, slice
spacing = 6mm, and NS = 10–12. T1w dynamic series data
were acquired for 20 phases with FA = 15° and other MR pa-
rameters, as mentioned above. After acquiring 3–4 precontrast
images, a bolus of 0.1mmol/kg Gd-based CA, used in clinical
practice, was delivered through an antecubital vein catheter at
2 cc/s, followed by a 20-mL saline flush using an MR-compati-
ble programmable power injector (Spectris; Medrad, Indianola,
PA). DCE-MRI data were acquired with a series of multiple
breath-holds. In the clinical setting, patients were requested by
the technologist to hold their breath for �15 seconds followed
by a �5-second break; the process was repeated multiple times
for�5minutes.

DW-MRI Data Analysis
The DW signal intensity data were fitted to a monoexponential
model as follows (36):

Sb ¼ S0e�bADC ; [1]

where Sb and S0 are the signal intensities with and without diffu-
sion weighting, b is the diffusion-weighting factor (s/mm2), and
ADC is the apparent diffusion coefficient (mm2/s).

DCE-MRI Pharmacokinetic Analysis
The signal intensity for T1w DCE acquired from a SPGR sequence
is given by the following equation (37):

S tð Þ ¼ M0 sin uð Þe�TER�2 tð Þ 1� e�TRR1 tð Þð Þ
1� cos uð Þe�TRR1 tð Þ� � ; [2]

where S (t) is the signal intensity at time t, M0 is the equilibrium
magnetization of the protons, u is the FA, TR is repetition time,
and TE is echo time. R1(t) (R1(t) = 1/T1(t)) [sec�1] and R2

*(t)

Table 1. Patient Characteristics E

Characteristics Number (%)

Age, median (range), years 65 (52–70)

Sex

Male 6 (60)

Female 4 (40)

Tumor location

Head 5 (50)

Body 5 (50)

Pre-chemo tumor size, median (range), cm 5 (2.4–11.0)

Stage

III 10 (100)

CA19-9, median (range), U/mL 48 (19–353)

Induction chemotherapy, median (range), months 4.4 (2.3–5.7)

FOLFIRINOX 8 (80)

Gemcitabine/nab-Paclitaxel 1 (10)

Both 1 (10)

Abbreviation: FOLFIRINOX: fluorouracil, leucovorin, irinotecan, and
oxaliplatin.
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(R2
*(t) = 1/T*2(t)) [sec

�1] are the time-courses of longitudinal and
transverse relaxation rate constants, respectively.

The R1t(t) can be derived from equation [2] when setting
e�TER�

2ðtÞ � 1 for TE � T2*, and is given by the following
equation:

R1t tð Þ ¼ 1
TR

ln

1� S tð Þcos uð Þ
M0sin uð Þ

 !

1� S tð Þ
M0sin uð Þ
� �

0
BBBB@

1
CCCCA: [3]

For the FXL, the time-course of tissue water proton relaxa-
tion rate, R1t(t), after CA administration, is expressed by the fol-
lowing equation (22):

R1t tð Þ ¼ R10þr1Ct tð Þ ! DR1t tð Þ ¼ R1t � R10 ¼ r1CtðtÞ; [4]

where R10 and DR1t (t) are the precontrast and change in tissue
water relaxation rate R1 time-course respectively, r1 [(mM)�1s�1]
is the CA longitudinal relaxivity, and Ct(t) is the time-course of
CA concentration in tissue.

The time-course of tissue CA concentration, Ct(t), based
on the standard Tofts model is given by the following equa-
tion (22):

CtðtÞ ¼ Ktrans
ðt
0

e�kep t�tð ÞCp tð Þdt [5]

where, K trans (min�1) is the volume transfer constant of CA, Cp(t )
is the time-course of plasma CA concentration (also called the ar-
terial input function), kep ¼ Ktrans

ve
is the transport rate constant of

CA from EES to vascular space, and ve is the EES volume fraction.
The CA concentration in EES is calculated as follows:
Ce tð Þ ¼ Ct tð Þ

ve
.

FXL approximation may lead to significant errors in esti-
mates of Ct(t) when a large amount of CA extravasates into EES,
such that FXL departs to FXR (also called SSM), in which the net
rate of water exchange across cell membrane is: kc ¼ kieþ
kei� R1i � R1ejj ). The kie (kie = 1/t i) and kei are the rates of water
exchange from ICS to EES and vice versa, and R1i and R1e are the
longitudinal relaxation rates of ICS and EES, respectively.

To account for the effects of transcytolemmal water
exchange in estimates of Ct(t), the Bloch McConnell’s equations
for ICS and EES can be solved for negligible vascular space, vp
(23, 38). One of the solutions of the exchange matrix equation
yields an observable relaxation rate, R1t, which is given by equa-
tion [6] and the time-course of R1t data fitted with SSM provides
estimates of Ktrans and ve, and t i.

R1t tð Þ ¼ 1
2

R1i þ kieþR10e þ r1Ce tð Þ þ keið Þ½

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1i þ kie � R10e � r1Ce tð Þ � kieð Þ2 þ 4kiekei

q
	; [6]

where R10e is the precontrast relaxation rate of EES in the ab-
sence of exchange.

Regions of Interest Analysis
Regions of interest (ROIs) were manually delineated on tumors in
both the DWI images (b = 0 s/mm2), and T1w DCE images, on late

phases of the dynamic series, based on reference anatomical
T2w/T1w images. Experienced abdominal radiologists and radia-
tion oncologists contoured ROI’s using ImageJ and ITK-SNAP
(39, 40). DW signal data obtained from the ROIs were fitted on a
voxel-by-voxel basis using a monoexponential model (equation
[1]) to calculate the ADC (mm2/s). The multiple FA T1w voxel-
wise signal data were fitted (equation [2]) to calculate the T10 and
M0 as detailed elsewhere (41). The R1t time-course data (equation
[3]) was fitted with SSM (equation [6]) for a given CA relaxivity
of r1 = 4.0 (mM)�1s�1 (26). The parametric maps of ADC, Ktrans,
�e, and t i were generated on a voxelwise basis to display the
extent of the PDAC lesion. Model-fitting used a nonlinear least-
squares algorithm that minimizes the sum of squared errors
(SSEs) between model fit and data, as detailed elsewhere (42).
Estimates of SSM metrics values were bounded as follows: Ktrans

[ [0, 5] (min�1), ve [ [0, 1], and t i [ [0, 2] (seconds). Arterial input
function was extracted from the abdominal aorta, as described
elsewhere (34).

The image registration method implemented in Elastix was
used for the time-course of DCE data to minimize any potential
misalignment in DCE-MRI as detailed elsewhere (43, 44).

The quantitative value of each metric extracted from
analyses was reported as mean, standard deviation (SD),
skewness, and kurtosis. All DW- and DCE-MRI image post-
processing and quantitative metrics map generation were
performed using in-house-developed software entitled MRI-
QAMPER (MRI Quantitative Analysis of Multi-Parametric
Evaluation Routines) (45).

A relative percentage change (r, %) in the quantitative metric
value, X, between the longitudinal MR exams (ie, pre-TX[0], D1-
TX[1], and post-TX[2]) was calculated as follows:

rXDj�i %ð Þ ¼ Xj � Xi

Xi
�100 [7]

For simplicity in equation [7], Dj-i (j=1,2 and i=0,1) is
described as follows: D1-0 = (D1-TX[1] � Pre-TX[0]), D2-0 =
(Post-TX[2]� Pre-TX[0]), and D2-1 = (Post-TX[2]� D1-TX[1]).

Statistical Analysis
Wilcoxon rank-sum test (WSRT) was performed to compare the
mean values of ADC, Ktrans, ve, and t i between the longitudinal
MR examinations (ie, pre-TX[0], D1-TX[1], and post-TX[2]), and
to compare their relative percentage (r, %) changes (D) between
the longitudinal MR examinations. To compare the mean, SD,
skewness, and kurtosis values of these metrics between the
patients who showed local control and early failure, WRST test
was used. All statistical calculations were conducted in R (46).
For the correlation of MRI metrics with clinical outcomes,
patients were dichotomized into binary clinical endpoints for
local control at 12months. Local control was defined using
standard clinical follow-up and radiographic progression by
RECIST 1.1 imaging criteria. A P-value < .05 was considered
statistically significant.

RESULTS
In total, 27 MRI examinations (N= 27) from 10 patients with
PDAC, including pre-TX[0] (N=10), D1-TX[1] (N=8), and post-
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TX[2]) (N=9), were successfully performed. Five out of 27 DW-
MRI examinations were excluded owing to either poor signal-to-
noise (n = 4) or total tumor volume was not fully captured (n = 1).
One out of 27 DCE-MRI examinations (n = 1) was excluded from
analysis, in which the total tumor volume was not fully captured.
Tumors were located in the head (n =5) and body (n =5) of the
pancreas. The mean tumor size (mean6 SD) was 5.156 2.43 cm
at pre-TX[0] in patients with PDAC. Local control and early fail-
ure tumor sizes in these patients were 4.206 0.28 cm and 5.556
2.56 cm, respectively.

DW-MRI
Figure 2A box and whisker plot display mean ADC values of the
longitudinal MR examinations (ie, pre-TX[0], D1-TX[1], and

post-TX[2]). Mean ADC values increased significantly at post-TX[2]
(2.08 6 0.06� 10�3 [mm2/s]) than those of D1-TX[1] (1.84 6
0.16� 10�3 [mm2/s], P= .003) and pre-TX[0] (1.58 6 0.13 �
10�3 [mm2/s], P< .0001). Mean ADC values at D1-TX[1]
were significantly higher than those at pre-TX[0] (P = .002).
Table 2 summarizes ADC values (mean 6 SD) at pre-TX[1],
D1-TX[1], and post-TX[2] MR examinations. The number of
patients at pre-TX[0], D1-TX[1], and post-TX[2] MR exami-
nations was n = 9, n = 7, and n = 6, respectively.

Figure 2B displays a bar graph of the relative percentage
(r, %) changes (D) in ADC values between the longitudinal MR
examinations (ie, rADCD1-0, rADCD2-0, and rADCD2-1) in patients
with PDAC. The changes (mean 6 SD) in rADCD1-0, rADCD2-0,
and rADCD2-1 were 17% 6 11%, 34% 6 10%, and 13% 6 7%,

Figure 2. Box and whisker plot comparing mean apparent diffusion coefficient (ADC) values obtained from patients
with pancreatic ductal adenocarcinoma (PDAC) at the longitudinal magnetic resonance examinations: pre-treatment
(TX[0]), after the first fraction of stereotactic body radiotherapy, D1-TX[1], and post-TX[2]. ADC value showed a significant
difference between these MRI examinations (P< .05). Boxes represent the interquartile range, whiskers represent the
range of all values, and the horizontal line within the box is the median value. Open circles represent the outliers (A). Bar
plots exhibit the longitudinal relative percentage changes in ADC values, and rDADC (%) showed significant differences
between MRI examinations (P< .05). Error bars indicate the standard error of the mean (B).

Table 2. DWI- and DCE-MRI-Derived Quantitative Metrics E

Model Parameter Pre-TX D1-TX Post-TX P-Value

DWI ADC � 10�3 (mm2/s) 1.58 6 0.13 1.84 6 0.16 2.08 6 0.06
.002 (D1-TX vs Pre-TX)

<.0001 (Post-TX vs Pre-TX)
.003 (Post-TX vs D1-TX)

DCE-SSM

Ktrans (min-1) 0.50 6 0.26 0.90 6 0.37 0.61 6 0.24
.011 (D1-TX vs Pre-TX)
.183 (Post-TX vs Pre-TX)
.039 (Post-TX vs D1-TX)

ve 0.34 6 0.14 0.39 6 0.13 0.48 6 0.18
.20 (D1-TX vs Pre-TX)
.04 (Post-TX vs Pre-TX)
.11 (Post-TX vs D1-TX)

t i (seconds) 0.62 6 0.18 0.75 6 0.12 0.48 6 0.18
.045 (D1-TX vs Pre-TX)
.065 (Post-TX vs Pre-TX)
.001 (Post-TX vs D1-TX)
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respectively. rADCD2-0 and rADCD1-0 values were significantly
different (P= .009), whereas rADCD2-1 and rADCD1-0 were not
significantly different (P= .22). rADCD2-1 and rADCD2-0 showed
significantly different (P= .002). The number of patients for
rADCD1-0, rADCD2-0, and rADCD2-1 was n = 6, n = 6, and n=4,
respectively.

Figure 3 exhibits the representative pre-TX[0] and D1-TX[1]
DW images (b=0 s/mm2) obtained from a patient with PDAC
(61years, female) who showed a local control. ROI at pre-TX[0] and
D1-TX[1] are outlined in yellow. ADC maps are overlaid on the DW
image (b=0 s/mm2) at pre-TX[0] and D1-TX[1]. The tumor cellular
heterogeneity across the ROI can be seen in both pre- and D1-TX
and higher ADC values predominating at D1-TX[1].

For group comparison as an exploratory analysis at pre-
TX[0], 6 patients qualified for local control at 12months, 2
patients had local control of disease at last clinical follow-up,
and 4 patients showed evidence for local progression within
12months after treatment. Pre-TX[0] mean ADC value was 7%
higher in the local control group patients than in patients who
failed early (1.60 6 0.17� 10�3 [mm2/s] vs 1.50 6 0.05� 10�3

[mm2/s]). Mean values of ADC showed a leaning toward signifi-
cant difference (P= .18), and a similar trend was seen in ADC
kurtosis values (P= .14) between these 2 groups at pre-TX[0]. As
a note, 1 patient out of 4 patients who failed early was excluded
as tumor ROI was not fully captured at pre-TX[0].

DCE-MRI
Figure 4A shows the plot of tissue water protons longitudinal
relaxation rate, R1t, time-course data obtained from the 1
enhancing voxel fitted with SSM. ROIs are outlined in yellow at
pre-TX[0] and D1-TX[1] (Figure 7). The open circle corresponds
to R1t data (black), and the solid line (black) to the SSM fit. An

arterial input function extracted from the abdominal aorta is out-
lined in the red circle at D1-TX[1] (Figure 7). A plot of plasma CA
concentration, Cp(t ), time-course data (inset). The SSM fitting
yielded Ktrans = 0.36 (min�1), ve = 0.23, and t i = 0.51 (seconds).
Figure 4B exhibits the representative DCE data acquisition schema.

Figure 5 shows the box and whisker plot that displays the
distribution of mean Ktrans, ve, and t i values for the longitudinal
MR examinations (pre-TX[0], D1-TX[1] and post-TX[2]). Mean
Ktrans values (0.906 0.37 [min�1] at D1-TX[1] were significantly
higher than those at pre-TX[0] (0.50 6 0.26 [min�1], P= .011)
and at post-TX[2] (0.61 6 0.24 [min�1], P= .039). Mean Ktrans

values at post-TX[2] showed a higher trend than those at
pre-TX[0] but were not significantly different (P= .18). Mean ve
values at post-TX[2] increased significantly from those at
pre-TX[0] (0.48 6 0.18 vs 0.34 6 0.14, P= .042). Mean ve values
at D1-TX[1] (0.39 6 0.10) and at pre-TX[0], as well as at post-
TX[2] and at D1-TX[1], were not significantly different (P> .05).
Mean t i values at D1-TX[0] (0.75 6 0.12 [seconds]) were signifi-
cantly higher than those of pre-TX[0] (0.62 6 0.18 [seconds],
P= .045) and post-TX[2] MR examination (0.486 0.18 [seconds],
P= .001). Mean t i values at post-TX[2] showed a trend toward
being significantly lower than those at pre-TX[0] (P= .065).
Table 2 shows the summary of Ktrans, ve, and t i values obtained
from SSM at pre-TX[0], D1-TX[1], and post-TX[2] MR examina-
tions. The number of patients at pre-TX[0], D1-TX[1], and post-
TX[2] was n= 9, n= 8 and n=9, respectively.

Figure 6 is a bar graph that displays the relative percentage
(r, %) changes (D) in SSM-derived metric values Ktrans (rKtransD1-0,
rKtransD2-0, and rK

trans
D2-1), ve (rveD1-0, rve D2-0, and rve D2-1), and t i

(rt iD1-0, rt i D2-0, and rt i D2-1) between the longitudinal MR exami-
nations. The number of patients at pre-TX[0], D1-TX[1], and post-
TX[2] was n= 9, n= 8, and n=9, respectively.

Figure 3. Left: Representative diffusion-weighted
(DW) images (b=0 [s/mm2]) obtained from a
patient with PDAC who showed a local control
(61 years, female) at pre-treatment (TX[0]) and im-
mediately after the first fraction of stereotactic body
radiotherapy, D1-TX[1]. Regions of interest are out-
lined in yellow. Right: ADC maps overlaid on DW
image (b = 0 [s/mm2]) at pre-TX[0] and D1-TX[1].
An increase in ADC value at post-TX[2] is evident.
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The changes (mean 6 SD) in Ktrans (ie, rKtransD1-0 and
rKtransD2-0) values were 91% 6 104% and 33% 6 70%, respec-
tively, and were significantly different (P= .048), whereas
rKtransD2-1 decreased by �20% 6 42%, and showed a borderline

significant difference from that of rKtransD1-0 (P= .062). The changes
in rKtransD2-1 and rK

trans
D2-0 were not significantly different (P= .35).

The changes (mean 6 SD) in ve values (ie, rveD1-0 and rveD2-0,
and rveD2-1) were 15% 6 38%, 51% 6 77%, and 37% 6 76%,

Figure 4. Plot of the representative longitudinal
relaxation rate, R1t(t), time-course data obtained
from 1 enhancing pixel fitted with the shutter-speed
model. Regions of interest are outlined in yellow at
pre-TX[0] and immediately after the first fraction of ste-
reotactic body radiotherapy, D1-TX[1]. Inset: The
plasma contrast agent concentration,Cp, data plot
extracted from the aorta, which is outlined in the red
circle at D1-TX[1] (A). Representative dynamic con-
trast-enhanced data acquisition schema (B).

Figure 5. Box and whisker plots show quantitative metric mean values obtained with the shutter speed model in longitu-
dinal MR examinations (ie, pre-treatment [TX 0], immediately after the first fraction of stereotactic body radiotherapy, D1-
TX[1], and post-TX[2]). Ktrans (min�1) (A), ve (B), and t i (seconds) (C). K

trans values at D1-TX were significantly higher than
those at pre-TX (P= .011) and post-TX (P= .039). ve values at pre-TX were significantly lower than those at post-TX
(P= .042). D1-TX t i values were significantly higher than pre-TX (P= .045) and post-TX (P= .001) values. t i values at pre-
and post-TX showed borderline significance (P= .065). Boxes represent the interquartile range, whiskers represent the
range of all values, the horizontal line within the box is the median value, and the open circle represents the outliers.
Moderate overlap of quantitative metric values is evident.
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respectively. When comparing rveD2-1 versus rveD1-0 and rveD2-1
versus rveD1-0, these values showed a significant difference (P= .037
and P= .016, respectively).

The changes (mean 6 SD) in rt iD1-0 increased by 22% 6
33%, whereas rt i D2-0 and rt iD2-1 decreased by 18% 6 29%, and
�39%6 21%, respectively. rt iD2-0 versus rt iD1-0 and rt iD2-1 ver-
sus rt iD2-0 were significantly different (P= .045 and P = .0085,
respectively), whereas rt iD2-1 and rt i D1-0 showed a difference
trend but was not significant (P = .12).

Figure 7 exhibits representative pre-TX[0] and D1-TX[1]
T1w images from a patient with PDAC (61 years, female) who
showed a local control (left). Representative Ktrans, ve, and t i
maps overlaid on the precontrast T1w images at pre-TX[0] and
D1-TX[1] MR examinations (right). The elevated values of Ktrans,
ve, and t i can be seen at D1-TX[1]. Ktrans and t i maps show alter-
natively elevated and smaller values at pre-TX[0] and D1-TX[1],
respectively.

In an exploratory analysis, 6 patients were evaluable for
local control at 12month, 2 patients had local control of disease
at last clinical follow-up, and 4 patients showed evidence for
local progression within 12months after treatment for group
comparison. At pre-TX[0], the mean Ktrans value of the local con-
trol group was 56% smaller than that of patients who failed early
(0.266 0.14 vs 0.616 0.35 [min�1]). Ktrans skewness and kurto-
sis values showed a leaning toward significant difference
between 2 groups (P= .14). The mean ve values of the 2 groups

differed by 8% (0.336 0.22 vs 0.376 0.25), and the mean t i val-
ues differed by 5% (0.586 0.24 vs 0.616 0.14) for patients who
experienced local control at last clinical follow-up versus
patients who failed early.

DISCUSSION
To the best of our knowledge, this is the first preliminary longitu-
dinal MR study (ie, pre-TX[0], immediately after the first fraction
of SBRT (<90minutes), D1-TX[1], and 6weeks after SBRT (post-
TX[2]) in PDAC that reports changes in metric values ADC (mm2/s)
and SSM DCE-derived metrics (ie, Ktrans (min�1), ve, and t i (sec-
onds). ADC, a marker of tissue water diffusion restriction and cel-
lularity, Ktrans, an index of vascular perfusion/permeability, and
t i, a marker of metabolic activity of a cell, could provide useful
quantitative, physiological, and functional information in patients
with PDAC. The greatest changes in Ktrans occurred immediately
after the first fraction of SBRT, whereas t i showed a significant
change at post-TX. ADC and ve values showed the greatest change
at the post-TX MRI examination. Even though the sample size for
group comparison was small, we found differences in mean, skew-
ness and/or kurtosis ADC, Ktrans, ve, and t i values between the
patients who showed local control (n=2) and early failure (n=4)
at pre-TX. ADC and SSM derived biomarkers could capture the
longitudinal change in tumor physiology, which has a unique tu-
mor microenvironment (ie, stroma-rich) in patients with PDAC.

SBRT is an emerging technology that has enabled dose esca-
lation and has the potential to improve patient outcomes (4, 42)
further. PDAC response to radiation has traditionally been
assessed by measuring tumor size. However, these changes are
slow to occur, and size measurements are further complicated by
the irregular shape common to PDACs. Functional MR imaging,
including DW- and DCE-MRI, can help assess the biological
effects of therapy in tumor and surrounding normal tissue before
changes in tumor size or normal organ architecture become visi-
ble. The DWI and DCE advanced quantitative imaging metrics
can provide tumor characteristics (ie, cellularity, vascularity, and
cellular metabolic activity) in response to the first dose of SBRT
and could potentially enable biologically driven adaptive optimi-
zation of an SBRT plan. In addition, early post-SBRT biomarkers
would help inform post-SBRT treatment decisions. Currently,
options after SBRT include consideration of surgery, observation,
and additional systemic therapy (5). Decisions regarding man-
agement are primarily based on anatomic imaging, which is
notoriously flawed after chemoradiotherapy (47), or CA19-9 se-
rum biomarker that may indicate a progression of the disease
without differentiating between local or distant disease (48).
Thus, early longitudinal changes in biomarkers for SBRT of
PDAC would greatly add to clinical decision-making.

Diffusion of water molecules in pancreatic tissue is highly
restricted owing to structural barriers, including cellularity,
stroma content, and vascularization (18). A previous preclinical
study reported that tumor cellularity is a prognostic feature
and may be of predictive importance given the emergence of
stroma-acting treatment approaches (49). Dalah et al. found a
significant correlation between the change in ADC values before
and after treatment and pathological treatment response in
patients with PDAC following neoadjuvant chemoradiation (21).

Figure 6. Bar plots display the relative per-
centage changes in mean Ktrans (min�1), ve,
and t i (seconds) values between longitudinal
MR examinations (ie, pre-treatment (TX[0]), im-
mediately after the first fraction of stereotactic
body radiotherapy D1-TX[1], and post-TX[2]).
rKtransD2-0 versus rK

trans
D1-0, rveD2-1 versus

rveD2-0, rveD2-1 versus rveD2-0, and rt iD2-1 versus
rt i2-0 exhibited significant differences
(P< .05). Error bars indicate the standard error
of the mean.
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In the present study, the mean ADC value increased by 34%
post-TX following successful SBRT treatment, indicating a sig-
nificant loss of cell membrane integrity and cell density such
that the geometrical arrangement has become more favorable for
freely diffusing water molecules.

PDAC has an extraordinarily dense fibrous stroma that
impedes tumor perfusion and delivery of anticancer drugs (3).
Pretreatment Ktrans, a marker of both perfusion and permeability,
has been shown to predict response to antiangiogenic therapy in
pancreatic tumors (33). Kim et al. reported that an increase in tu-
mor perfusion correlates significantly with the chemotherapeutic
response in PDAC, and these study findings were consistent with
a preclinical study (50–52). The present study showed a signifi-
cant increase in Ktrans immediately after the first fraction of
SBRT, which may be related to changes in the interstitial fluid
pressure (53). Our finding is consistent with the CT perfusion
imaging performed within 60minutes of ablative radiotherapy,
which revealed significant increases in blood flow and perme-
ability (unpublished data). Earlier studies have reported that t i is
inversely correlated with cell membrane ion-pump activity,
which is considered a measure of mitochondrial metabolism and
suggesting that t i might be a sensitive indicator of cellular
energy turnover (27, 30, 31). t i is related to the mean

transcytolemmal water permeability coefficient, PW, and the size
of the cell (�Pw/r) (31). t i obtained from the SSM analysis might
be of particular interest to assess SBRT response in PDAC. Thus, a
better understanding of the pathophysiology of pancreatic can-
cer is essential for mapping the tumor microenvironment and for
establishing guidelines for therapy.

Group comparison at pre-TX[0] was performed for 6 patients
between those who had local control (n= 2) and those who failed
early (n = 4). The mean tumor size in patients who showed local
control was 24% smaller than that in patients of early failure.
The summary statistics, such as SD, skewness, and kurtosis, pro-
vide heterogeneity of tumors and degree of asymmetry of the dis-
tribution of the quantitative metric values. In the present study,
kurtosis of ADC and skewness and kurtosis of Ktrans indicated
differences in tumor microenvironment between patients who
experienced local control and failed early at pre-TX[0]. As a
note, ADC is related to tumor cellularity, whereas Ktrans, an index
of tumor blood flow and vessel permeability, is associated with
the degree of tumor tissue vascularization, and t i is an index of
cellular metabolism. SSM-derived metrics Ktrans and t i have
shown promise to predict overall survival in head and neck and
breast cancers (31, 54). However, the increase or decrease of these
quantitative metrics after therapy could depend on the tumor

Figure 7. Left: Representative T1-weighted (T1w) images at pre-treatment (TX[0]) and immediately after the first fraction
of stereotactic body radiotherapy, D1-TX[1], from a patient who showed a local control (61years, female). ROIs were
drawn on the pancreatic tumor (outlined in yellow color) and aorta (outlined in red circle) for the plasma contrast agent
concentration, Cp. Right: Representative SSM-derived parametric maps of Ktrans, ve, and t i overlaid on T1w image at lon-
gitudinal MR examinations (ie, pre-TX[0] and D1-TX[1]). An increase in quantitative metrics value after the first fraction of
SBRT is evident.
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physiology and treatment modality (28, 29). In this scenario, it is
very critical to perform longitudinal DW- and DCE-MRI so that
the treating physician can see the early pattern of changes in
metric values and decide if additional therapy is needed in
patients with PDAC who fail early to TX.

The main limitation of this prospective study was the
small patient cohort, with short clinical follow-up precluding
correlation with long-term response outcomes. However, pre-
liminary results indicated significant differences in metric
values for both DW- and DCE-MRI on longitudinal MRI fol-
low-up and may serve as the basis for further validation stud-
ies with larger sample sizes. For DCE-MRI, B1 inhomogeneity

can influence estimates of Ktrans if properly not accounted for
in the analysis.

CONCLUSION
Quantitative imaging metrics derived from DW (ie, ADC) and
SSM DCE-MRI (ie, Ktrans and t i) performed longitudinally, pre-
TX[0], immediately after the first fraction of SBRT (D1-TX[1])
and 6weeks after SBRT (post-TX[2]) MRI examinations, show
initial promise as early-response biomarkers for SBRT in patients
with PDAC. Following appropriate validation, these measures
could potentially enable improved adaptive planning of SBRT
and help guide post-SBRT treatment decisions.
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