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Despite the great effort of the medical community during the last decades, cardiovascular

diseases remain the leading cause of death worldwide, increasing their prevalence every

year mainly due to our new way of life. In the last years, the study of new hormones

implicated in the regulation of energy metabolism and inflammation has raised a great

interest among the scientific community regarding their implications in the development

of cardiometabolic diseases. In this review, we will summarize the main actions of relaxin,

a pleiotropic hormone that was previously suggested to improve acute heart failure and

that participates in both metabolism and inflammation regulation at cardiovascular level,

and will discuss its potential as future therapeutic target to prevent/reduce cardiovascular

diseases.
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INTRODUCTION

In the last decades, cardiovascular diseases (CVDs) have remained as the first cause of death
worldwide, being their prevalence boosted every year mainly due to our new way of life, based
on the increased intake of cheaper energy-dense food and a sedentary lifestyle (Pérez-Martínez
et al., 2017; WHO | Cardiovascular diseases (CVDs), 2017). Hand in hand with this increase in
the prevalence of CVDs goes the increase in obesity (WHO | Obesity Overweight, 2016), which
not only is a risk factor for CVDs by itself, but also promotes the development of other CVDs
comorbidities/risk factors, including hypertension, insulin resistance, dyslipidemia, type 2 diabetes
mellitus (T2DM) or the increase in systemic inflammation (Tune et al., 2017). In particular, the
combination of abdominal obesity, hypertension, hyperglycemia and dyslipidemia is known as
metabolic syndrome (Matsuzawa et al., 2011; Wiernsperger, 2013), and due to the increasing
evidences relating the presence of metabolic syndrome to the development of cardiovascular
events such as myocardial infarction or stroke, this state is now termed cardiometabolic syndrome
(Wiernsperger, 2013). The main therapeutic approach to treat the cardiometabolic syndrome is
focused on restoring the metabolic disorder to a normal state through weight reduction and
the prescription of drugs such as anti-diabetics, statins, anti-inflammatories or anti-hypertensives
(Duprez and Toleuova, 2013; Ginsberg, 2013; Wiernsperger, 2013; Soare et al., 2014; Desouza et al.,
2015). Unluckily, the therapeutic approaches available nowadays to treat the pathologies that define
the cardiometabolic syndrome are not sufficient, since this syndrome alters different metabolic
pathways, mainly those regarding glucose and lipid metabolism, and affects diverse organs/tissues,
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including the liver, the muscles or the fat tissue, and, moreover,
each individual can show different metabolic abnormalities
(Wiernsperger, 2013). Thus, there is an urge to understand
the signaling pathways of the different contributors to the
development of cardiometabolic diseases (CMDs) in an attempt
to find new possible targets that with their therapeutic
modulation could improve CMDs treatment and/or prevention.

In this line, in the last years the obesity and the adipose tissue
have received considerable attention regarding their potential
contribution to the development of CMDs. It is well established
that the adipose tissue functions as an endocrine organ by
secreting a number of proteins/hormones (adipokines) mainly
implicated in the regulation of metabolism and in the control
of the inflammatory response (Mancuso, 2016). Obesity induces
an imbalance in the adipokine production in favor of pro-
inflammatory adipokines and in detriment of anti-inflammatory
adipokines, leading to a low grade of chronic inflammation
that promotes both systemic metabolic dysfunction and CVDs
(Nakamura et al., 2014; Molica et al., 2015). In fact, inflammation
is nowadays recognized as a central player in the development
of CVDs and its complications (Ruparelia et al., 2016), and
the study of this kind of hormones that influence metabolism
and inflammation and which have been shown to have effects
at cardiovascular level (not only adipokines, but also other
hormones, such as ghrelin, which is mainly produced by the
stomach (Lilleness and Frishman, 2016), nesfatin-1, that is widely
expressed in the body, including the brain and the heart (Feijóo-
Bandín et al., 2015), or prokineticin, secreted by immune cells
and reproductive organs, and expressed in heart and kidney
apart from the adipose tissue Nebigil, 2017) has raised a great
interest among the scientific community regarding their potential
role in the development/prevention of CMDs (Ingelsson et al.,
2008; Athyros et al., 2010; Gonzaga et al., 2014; Chiara et al.,
2015; Prinz and Stengel, 2016; Colldén et al., 2017). Hence,
the study of this kind of proteins/hormones that participate
in the regulation of metabolism and/or inflammation can shed
light in the understanding of how cardiometabolic diseases
behave, and contribute to the developing of new therapeutic
approaches.

Relaxin is a hormone that was first identified as a reproductive
hormone implicated in vasoregulation during pregnancy and
the softening of the tissues of the birth canal during delivery
(Bani, 1997), but that has been recently suggested to participate
in metabolism regulation and to exert protective effects at
cardiovascular level. This review outlines the functions of relaxin
as a new potential metabolic hormone with cardiovascular
actions and discusses its potential as future therapeutic target to
prevent/reduce CMDs.

RELAXIN

Relaxin is a 6 kDa hormone identified and named in 1926 by
Frederick Hisaw due to its ability to induce the relaxation of the
pubic ligaments and the softening of pubic symphysis just prior
to delivery in pregnant gophers and guinea pigs (Hisaw, 1926;
Wilkinson et al., 2005). Subsequently, different relaxin genes were
discovered, so that nowadays the relaxin peptide family consists

of seven peptides: relaxin (RLN)-1, RLN-2, RLN-3/insulin-like
peptide (INSL)-7, and INSL3-6 (Bathgate et al., 2013). In humans
and higher primates, there are three RLN genes: RLN-1, RLN-2,
and RLN-3; however, the function of RLN-1 is unclear and it may
even represent a pseudogene in these species. In contrast, other
mammals have only the RLN-1 and RLN-3 genes. Importantly,
the RLN-2 gene in humans and the RLN-1 gene from other
mammals are equivalent and encode the relaxin peptides that
circulate in blood during pregnancy, being RLN-2 in humans and
great apes and RLN-1 in other non-primate species commonly
referred to as relaxin (Wilkinson et al., 2005; Bathgate et al., 2013;
in this review we will refer to RLX-2 and RLX-1 as relaxin), while
the peptide encoded by the RLN-3 gene is a neuropeptide in all
species (Figure 1; Dschietzig, 2014).

Although human relaxin was originally discovered as a
hormone mainly secreted by the corpus luteum of the ovary
that regulates the adaptive changes in pregnancy, it is also
produced in non-pregnant women, and males also produce
relaxin, being identified the presence of the relaxin peptide in
prostate. Relaxin mRNA was also detected in other tissues, such
as the endometrium, decidua, placenta, mammary gland, brain
and the heart (Bathgate et al., 2013).

Initially, the different members of the relaxin family were
discovered due to their similar structure and their roles
in reproduction. However, nowadays we know that they
participate in a wide range of physiological functions apart
from reproduction, including stress, fear and anxiety responses,
behavioral activation, mood, reward, depression, addiction,
feeding behavior, metabolism, water drinking behavior, learning
and emotional memory or somatosensory motor behavior
(Gundlach et al., 2013). In some cases, they are expressed and
have well conserved roles in different species, like RLX-3 and
INSL-3, but in others, such as RLX-2, the expression and function
differ between species (Bathgate et al., 2013).

Relaxin Activation and Receptors
Relaxin is a two-chain peptide with a structure and processing
similar to insulin. It is produced as a pro-hormone, containing
a signal sequence and a B-C-A domain configuration, and after
processing by prohormone convertases, the C domain is removed
and three disulphide bonds are formed between six highly
conserved cysteine residues in the A and B chains. Thus, the
mature relaxin is constituted by the A and B chains with three
disulphide bonds, like insulin (James et al., 1977; Bathgate et al.,
2013). Human relaxin gene structure was first identified in 1983,
showing a highly conserved sequence within the B-chain (R-X-X-
X-R-X-X-I/V-X) that was later found to be indispensable for the
binding to relaxin receptors (Hudson et al., 1983; Bathgate et al.,
2013). All of the members subsequently discovered of the relaxin
family retain the relaxin-like pre-prohormone structure and are
predicted or proven to have the same processing and structure
(Bathgate et al., 2013).

Although relaxin peptides are structurally related to insulin,
they have low sequence similarity and bind to a different
type of receptors. Relaxin peptides activate a group of four G
protein-coupled receptors (GPCRs): the relaxin family peptide
receptors (RXFP) 1-4; whereas insulin activates tyrosine kinase
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FIGURE 1 | Expression of the mostly studied relaxin genes in mammals.

receptors (Wilkinson et al., 2005; Siddle, 2011; Bathgate et al.,
2013). Relaxin 1/2 and INSL-3 bind to RXFP-1 and RXFP-
2, respectively. RXFP-1 activation triggers signaling pathways
mainly related to the generation of second messengers like
nitric oxide (NO) or cyclic adenosine monophosphate (cAMP)
(and the subsequent activation of protein kinase A (PKA) and
the cAMP-response element (CRE)-mediated transcription), and
also stimulates the phosphorylation of mitogen-activated protein
(MAP) kinases like ERK1/2 or AKT, while RXFP-2 activation
only induces cAMP and CRE-dependent gene transcription
(Bathgate et al., 2013). RLN-3 and INSL-5 activate RXFP-3
and RXFP-4 respectively, which inhibit cAMP production and
activate MAP kinases. The receptors for INSL-6 and INSL-4
remain currently unknown (Figure 2; Bathgate et al., 2013).

Different studies have shown a wide distribution of relaxin
receptors in humans and murine, including ovary, prostate,
brain, kidney, liver, pancreas, skeletal muscle, ligament, tendon,
joint tissues, thymus, thyroid, adrenal glands, heart, arteries and
veins (Halls et al., 2007; Clifton et al., 2014; Jelinic et al., 2014;
Kim et al., 2016). Thus, this wide distribution of relaxin receptors
in different species supports the potential pleiotropic effects of
relaxin.

Relaxin as a Metabolic Hormone
The similar structure of relaxin and insulin suggests that
relaxin might have some important actions in regulating energy
metabolism. In this line, it has been shown the expression of
relaxin receptors in important organs for insulin action, like the
pancreas, liver or muscle (Halls et al., 2007), and there exist some
studies that propose relaxin as a new potential energy-regulating
peptide. In fact, relaxin has been shown to promote glycogen

depletion and to induce morphological changes of hepatocytes,
which are consistent with functional activation, in both male and
non-pregnant female rats (Bani et al., 2001b), and the peripheral
infusion of relaxin in C57BL/6J mice has been shown to enhance
insulin-stimulated muscle glucose uptake when animals are fed
with normal diet but not when fed with high fat diet, and to
reverse diet-induced insulin resistance in those fed with high fat
diet, suggesting that relaxin can be an effective new molecule to
revert muscle insulin resistance (Bonner et al., 2013). One of the
mechanisms that trigger insulin resistance is the inflammation
produced in obesity, due to the impairment of the adipose tissue
homeostasis and the imbalance on the adipokine production
toward a pro-inflammatory profile (Blüher, 2016). So far, little
is known about the mechanisms through which relaxin seems to
ameliorate insulin resistance andmore studies are needed, but the
control of the inflammatory processes linked to the development
of impaired insulin sensitivity could be one of the involved
pathways and is an interest field of study regarding the possible
relaxin use as a therapy in CMDs.

Relaxin circulating concentrations in women with T2DM
have been found to be negatively correlated to pancreatic β-
cells activity, but positively correlated to insulin sensitivity and
to other factors that are closely related to pancreatic function
and insulin sensitivity, like fasting circulating concentrations
of insulin, total cholesterol and LDL cholesterol, or C peptide,
suggesting that relaxin may protect against insulin resistance
in women with T2DM (Szepietowska et al., 2008). Serum
relaxin concentrations have also been shown to be elevated
in pregnant women with T1DM (Whittaker et al., 2003), in
pregnant women with early gestational diabetes mellitus (Alonso
Lopez et al., 2017), in non-pregnant women with metabolic
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FIGURE 2 | Overview of the different signaling pathways activated by the relaxin family and its receptors.

syndrome (Ghattas et al., 2013). However, in a study composed
by men and women, circulating relaxin concentrations were
lower in patients with T2DM than in controls but not related
to component traits in patients with diabetes such as cholesterol,
triglycerides, fasting blood glucose or fasting insulin (Zhang et al.,
2013). This difference could be explained due to the sample size
and the gender differences between studies.

Despite de fact that (a) relaxin shares its structure with insulin,
(b) it seems to improve insulin resistance, and (c) its circulating
levels are altered in diabetes, it is not clear whether or not relaxin
could share with insulin the capacity to decrease blood glucose
levels. Although, in healthy C57BL/6J mice fed with high fat
diet (Bonner et al., 2013) and in genetically diabetic db+/db+

mice (Bitto et al., 2013) the treatment with relaxin was shown to
decrease fasting blood glucose levels (Bonner et al., 2013), there
exist other studies with diabetic animal models in which relaxin
do not normalize circulating glucose concentrations (Dschietzig
et al., 2015; Ng et al., 2017) or glycosylated hemoglobin (Wong
et al., 2013). Thus, more studies are needed to elucidate if relaxin
could indeed mimic insulin and decrease circulating glucose
levels. In regard with this aspect, even though insulin and relaxin
activate a different type of receptors, both insulin receptors and
RXFP-1 signaling can converge in the activation of AKT (Zaid
et al., 2008; Bathgate et al., 2013; Sun et al., 2016; Ogunleye et al.,
2017), which is a key kinase implicated in glucose transporter-
4 (GLUT-4) mobilization to the cell membrane and glucose
uptake in different tissues, contributing to the lowering of glucose
circulating concentrations (Sakamoto and Holman, 2008). This
observation suggests that relaxin could potentially participate
in the regulation of blood glucose levels, but more studies are
needed to clarify this issue.

Regarding food intake regulation, the neuropeptide RLN-3
is the one of the relaxin family that was by far more studied.
Centrally administered RLN-3 in rats has been shown to increase
water intake, food intake and body weight in males (McGowan
et al., 2005; Hida et al., 2006; Otsubo et al., 2010). When
comparing the different effect of RLN-3 central injection between
sex, female rats show a higher increase in food intake and
in body weight gain compared to males, and it induces a
different corticotrophin-releasing hormone (CRH) expression
pattern in different paraventricular hypothalamic nucleus (PVN)
areas between male and female rats, an effect suggested to
mediate the different response to RLN-3 on food intake behavior
between sex (Lenglos et al., 2015). On the other hand, the
intake of rewarding substances, like sucrose or alcohol, has
been shown to increase endogenous RLN-3 levels in the brain
(Ryan et al., 2014); and in rats with diet-induced obesity (DIO)
it was shown that central RLN-3 expression is constitutively
increased, and that refeeding after food deprivation stimulates
the orexigenic effect of RLN-3 through the increase of RXFP-
3 expression in brain areas that regulate food intake (Lenglos
et al., 2014). The orexigenic effect of RLN-3 through its cognate
receptor RXFP-3 has been proved to be mediated by the
hyperpolarization and consequent inhibition of the majority of
putative magnocellular PVN neurons, including cells producing
the anorexigenic neuropeptides, oxytocin and vasopressin (Kania
et al., 2017).

Although there exist more studies so far focused on the
neuropeptide RLN-3 role regarding food intake behavior than on
relaxin, these works could provide some clues and open a new
line of study concerning the possible role of relaxin in food intake
regulation and its concomitant effect on CMDs. In fact, and on
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the contrary of RLN-3, central and peripheral administration of
RLN-2 in ad libitum-fed male rats has been shown to reduce food
intake (McGowan et al., 2010).

Relaxin has been identified as a secreted factor in porcine
adipose tissue (Hausman et al., 2006), and to induce hypertrophy
in mammary and parametrial adipose tissue in female mice and
in 3T3-L1 preadipocytes (Bianchi et al., 1986; Bani et al., 1989;
Pawlina et al., 1989), and to promote lipid deposition in the
parametrial adipose tissue in mice (Bani et al., 1989). Although
the adipose tissue seems to be a target organ for relaxin, it is
unknown whether or not the different adipose tissue depots
express relaxin receptors, and whether or not relaxin could
participate in the regulation of adipose tissue homeostasis in
terms of growth, energy metabolism or even adipokine secretion,
with the concomitant effect on systemic inflammation and the
development of CMDs.

Relaxin and Relaxin Receptors Expression
in the Cardiovascular System
Relaxin and its receptors are widely located in different
cardiovascular tissues. It has been demonstrated the expression
of RXFP-1 in rodents in the aorta, vena cava, mesenteric artery,
mesenteric vein, femoral artery, femoral vein, small pulmonary
arteries and small renal arteries (Novak et al., 2006; Jelinic et al.,
2014), as well as in cardiomyocytes (Moore et al., 2009) and in
cardiac atrial and left ventricle tissue, with higher expression in
atria (Osheroff and Ho, 1993; Hsu et al., 2000; Kompa et al., 2002;
Krajnc-Franken et al., 2004; Scott et al., 2004). Moreover, relaxin
shows a specific and high-affinity binding to its receptors in the
atrium in both male and female rat heart (Osheroff et al., 1992).
RXFP-1 has also been detected in human heart (Hsu et al., 2002;
Dschietzig et al., 2011), again with higher expression in atria, and
its expression is enhanced by α1-adreonreceptors stimulation
but suppressed by β1-adrenoreceptors activation in cultured rat
cardiomyocytes and in transgenic mouse hearts with cardiac-
restricted overexpression of subtypes of adrenoceptors (Moore
et al., 2009, 2014).

Likewise relaxin receptors, relaxin is also expressed in
cardiovascular tissues. In rodents, relaxin has been detected
in thoracic aortas, mesenteric arteries, small renal arteries, in
rat heart tissue and in cultured cardiomyocytes derived from
the atria of neonatal rats, which secrete relaxin in detectable
amounts (Taylor and Clark, 1994; Gunnersen et al., 1995;
Novak et al., 2006), and RLX-3 is also detected in the atria
and ventricle in mice and rats (Bathgate et al., 2001; Kompa
et al., 2002). In humans, relaxin was demonstrated to be
expressed in atrial and ventricular cardiac tissue (Dschietzig et al.,
2001).

Relaxin Effects at Cardiovascular Level
Relaxin has been demonstrated to participate in the
cardiovascular and hemodynamic changes required to adapt the
cardiovascular system to pregnancy, so that during pregnancy
take place increases in plasma volume, cardiac output or heart
rate, and decreases in blood pressure and vascular resistance
(Bathgate et al., 2013). However, relaxin can also regulate
cardiovascular function in men and non-pregnant women at

different levels, modulating blood pressure, inflammation, cell
injury/death, fibrosis, hypertrophy or angiogenesis (Teichman
et al., 2010; Leo et al., 2016a).

Relaxin Effects on Vasculogenesis and Vascular

Function
Relaxin is able to stimulate the formation of new blood vessels,
not only in pregnancy but also in tumorigenesis or ischemic
wounds, through the upregulation of vascular endothelial growth
factor (VEGF) transcripts (Shirota et al., 2005; Silvertown et al.,
2006; Segal et al., 2012; Bitto et al., 2013; Unemori et al.).
And in genetically diabetic mice, relaxin not only increases new
vessel formation but also improves the impaired wound healing,
suggesting that it could be beneficial in diabetes-related wound
disorders (Squadrito et al., 2013).

The endothelial cells are the key regulators of the vascular tone
through the production and secretion of vasoactive substances,
including vasodilator factors such as NO, prostacyclin (PGI2),
kinins (bradykinin), or endothelium-derived hyperpolarizing
factors (like K+ ions), and vasoconstrictor agents such as
endothelin-1, thromboxane A or angiotensin II (AngII) (Félétou
and Vanhoutte, 2006; Su, 2006).

A big number of studies have shown that relaxin promotes
vasodilation through a mechanism that involves NO production
in a wide range of organs/tissues, not only in reproductive organs
such as the mammary glands (Bani et al., 1988) or the uterus
(Vasilenko et al., 1986; Bani et al., 1995), but also in non-
reproductive tissues like the mesocaecum (Bigazzi et al., 1986),
kidney (Danielson et al., 1999, 2000; Novak et al., 2001; Conrad
et al., 2004; McGuane et al., 2011), subcutaneous fat (McGuane
et al., 2011) or liver (Bani et al., 2001a).

In the heart, relaxin increases coronary flow in normal
and hypertensive rats (Bani-Sacchi et al., 1995; Masini et al.,
1997; Debrah et al., 2005b). Relaxin has also been shown to
decrease systemic arterial resistance and to increase global artery
compliance in rats (Conrad et al., 2004; Debrah et al., 2005a,c,
2006; Conrad and Shroff, 2011), as well as it reverses large
artery remodeling and improves arterial compliance in senescent
spontaneously hypertensive rats (Xu et al., 2010). In pregnant
relaxin-deficient mice, relaxin administration for 5 days has been
shown to prevent vascular dysfunction in mesenteric arteries and
to ameliorate the increased responsiveness of small mesenteric
arteries to the vasoconstrictor AngII, suggesting that relaxin
could alleviate maternal systemic vascular dysfunction associated
with hypertensive diseases in pregnant women (Marshall et al.,
2017).

Recombinant human relaxin in co-treatment with high doses
of glucose for 3 days was also demonstrated to prevent vascular
dysfunction in themouse aorta through amechanism that reverts
the reduced sensitivity to the endothelium-dependent agonist
acetylcholine induced by high glucose, and that ameliorates PGI2
production (Ng et al., 2016). In streptozotocin induced diabetic
mice, relaxin treatment for 2 weeks reversed diabetes-induced
endothelial dysfunction in terms of endothelial vasodilator
function in mesenteric arteries and aorta by increasing NO and
PGI2 mediated relaxation, but it did not affect endothelium-
derived hyperpolarizing factors (Ng et al., 2017).
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Acute infusion of relaxin (3 h) in healthy male rats has
also been shown to increase in the mesenteric artery basal
NOS activity and to reduce endothelin-1 dependent contraction,
and this vasodilator effect was sustained for 24 h due to the
following increase in PGI2/bradykinin production, even though
the absence of circulating levels of relaxin at 24 h (Leo et al.,
2014). Similarly, in male rats continuously infused with relaxin,
it was shown an increase in the endothelial vasodilator function
in arteries, but not in veins, through the production of NO and
the increase of eNOS activity at 48 h, a mechanism reverted at
72 h, but at this time, relaxin induced a transition to PGI2 and
bradykinin production, a mechanism suggested by the authors
to be key to sustain vascular response to relaxin in time (Leo
et al., 2016b). The same effects are observed when relaxin is
administered chronically (5 days) in male rats: relaxin reduces
wall stiffness and increases volume compliance in mesenteric
arteries through the increase of bradykinin-mediated relaxation,
involving enhancedNOproduction but not endothelium-derived
K+ hyperpolarization, and in this study PGI2 production was
not observed (Jelinic et al., 2014). On the other hand, in
blood-perfused hamster cremaster muscle preparations in situ,
relaxin induced a rapid (seconds), transient vasodilation in
transverse and branch arterioles through NO production and
K+ hyperpolarization, while the smallest ramification of the
arteriolar tree was not responsive to relaxin (Willcox et al.,
2013). However, it was also shown that 48 h intravenous relaxin
infusion in healthy rats does not significantly alter resting outer
diameter or pressure-induced myogenic tone in the mesenteric
vasculature despite enhancing the contribution of NO through
increased endothelial NO synthase (eNOS) dimerization (Jelinic
et al., 2017).

Taken these results all together, it seems clear that relaxin has
a potent vasodilator effect, and that contributes to ameliorate
endothelial dysfunction in cardiometabolic scenarios such
as hypertension or diabetes. It was recently suggested that
endothelial cells have functional heterogeneity depending on
the tissue, being determined by mechanical and metabolic
stimuli, as well as by the characteristic microenvironment of
each tissue (Potente and Mäkinen, 2017), and also between
sex (Mudrovcic et al., 2017). Thus, the differences observed
regarding timing and the specific pathways activated by relaxin
in the different studies could be due not only to the different
experimental designs and animal models used or relaxin doses,
but also to a different response by endothelial cells from different
tissues/physiopathological conditions to relaxin.

Apart from the regulation of the vascular tone, endothelial
cells mediate other functions, such as the preservation of
blood fluidity, the formation of new blood vessels, platelet
function, vascular smooth muscle cell growth and migration
or the regulation of the inflammatory response (Jensen and
Mehta, 2016; Incalza et al., 2017). Under pathological scenarios
associated with a pro-inflammatory profile, such as obesity,
diabetes, hypertension or dyslipidemia, the endothelial cells are
influenced by cytokines and external stimuli to change into
a pro-inflammatory and pro-coagulant state, characterized by
the expression of cell-surface adhesion molecules required for
the recruitment and attachment of inflammatory cells, which

lead to clot generation, increasing the thrombotic risk as a
consequence of increased blood thrombogenicity or impaired
fibrinolysis (Incalza et al., 2017; Montecucco et al., 2017).
Thus, and although little is known so far, the proved effect
of relaxin on regulating endothelial function suggests that
relaxin could also ameliorate the inflammatory response in the
vascular system under pathological conditions, and this opens
a promising new field of study of relaxin regarding its potential
role as a regulator of cardiovascular inflammation. In fact, in
human endothelium and vascular smooth muscle cells, relaxin
was already proved as a potent inhibitor of early vascular
inflammation, decreasing the expression of endothelial adhesion
molecules, cytokine expression and suppressing monocyte
adhesion to the endothelium (Brecht et al., 2011), a result also
observed in vivo in female apolipoprotein E-deficient mice fed
with a high-fat and cholesterol-rich diet for 6 weeks, in which
relaxin treatment for the last 4 weeks reduced vascular oxidative
stress, improved endothelium-dependent vasodilatation, reduced
the development of the atherosclerotic plaque, decreased
circulating concentrations of the cytokines interleukin (IL)-6 and
IL-10, and down-regulated the angiotensin II type 1a receptor
in the aorta, but in this study authors did not find differences
in vascular macrophage, T-cell or neutrophil infiltration, nor in
collagen/vascular smooth muscle cell content between relaxin
treated and control mice (Tiyerili et al., 2016).

Chronotropic and Inotropic Effects of Relaxin in the

Heart
In the heart, relaxin has powerful positive chronotropic and
inotropic effects. It has been shown to induce an increase in
the contraction force and rate in isolated rat atria, and in
conscious normotensive and spontaneously hypertensive rats
relaxin increases heart rate without alter urine or blood volume,
mean arterial pressure of water and food intake (Kakouris
et al., 1992; Ward et al., 1992; Toth et al., 1996). In rat
perfused hearts, relaxin infusion has been shown to induce
the release of the atrial natriuretic peptide (ANP) along with
the increase in heart rate through a mechanism that involves
protein kinase C (PKC) activation (Toth et al., 1996), and in
isolated murine cardiac myofilaments relaxin increases cardiac
myofilaments force through a PKC-dependent pathway that
leads to the increase of myofilament Ca2+ sensitivity (Shaw
et al., 2009). As well, in rat isolated hearts it causes a dose-
dependent tachycardia in both intact preparations and those
in which the atria had been removed, suggesting that relaxin
acts on both the atrial and ventricular pacemakers to increase
the heart rate (Thomas and Vandlen, 1993). In fact, it was
demonstrated in single cells isolated from the sinoatrial node
in rabbits that relaxin is able to enhance L-type Ca2+ current
through a mechanism dependent on cAMP formation and PKA
activity (Han et al., 1994). In human myocardium, relaxin has
positive inotropic effects in atrial tissue, without differences
between control and failing hearts, through a mechanism that
involves PKA activation and a decrease in the transient K+

outward current, an effect partially blunted by the pretreatment
with pertussis toxin and the inhibition of phosphoinositide-3
kinase (PI3K) in non-failing hearts but notably suppressed in
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failing myocardium (Dschietzig et al., 2011). However, in this
study, relaxin did not show any inotropic effects in ventricular
myocardium.

Relaxin and Ischemia-Reperfusion Injury
Relaxin has been extensively proven to protect the heart
against damage induced by ischemia/reperfusion. The process
of ischemia/reperfusion induces the generation of O2-derived
free radicals, that contribute to the peroxidation of cell
membrane lipids and to damage the mitochondrial function,
and the overload of Ca2+, which alters myofilaments contractile
function and triggers proteolytic cascades, leading to cell injury
(Anderson et al., 2012; Bompotis et al., 2016). In isolated
guinea pig heart, relaxin was shown to protect myocardium
from ischemia/reperfusion injury by decreasing the peroxidation
of cell membrane lipids and Ca2+ overload, as well as the
hypercontraction of myofibrils, mitochondrial swelling and
accumulation of dense granules in the mitochondrial matrix,
through amechanism that involves NO production (Masini et al.,
1997).

As well, in a swine model of acute myocardial infarction,
relaxin injection during reperfusion caused a reduction in
circulating markers of myocardial injury, as troponin T, creatin
kinase-MB or myoglobin, and in tissue malondialdehyde (an end
product of lipid peroxidation) and Ca2+ (mediate cardiomyocyte
injury), caspase-3 (implicated in cardiomyocyte apoptosis), and
myeloperoxidase (which recruits inflammatory leukocytes), and
improved cardiac contractile function (Perna et al., 2005).
According to this, other authors have found that relaxin also
protects from the damage induced by ischemia and reperfusion
in rat heart by a similar mechanism, so that intravenous relaxin
injection 30 min before ischemia diminished the extension of
the damaged areas, ventricular arrhythmias, the recruitment
and accumulation of neutrophils and morphological signs
of myocardial cell injury, by decreasing oxygen-derived free
radicals, preventing the Ca2+ overload in the myocardial tissue,
and reducing hypercontraction of myofibrils, mitochondrial
calcification, and cell necrosis (Bani et al., 1998). Moreover, in
rats with isoproterenol-induced myocardial injury, it was found
a compensatory up-regulation of myocardial relaxin expression,
and when relaxin was co-administered with isoproterenol for
10 days, it attenuated myocardial injury and fibrosis, and
improved cardiac function (Zhang et al., 2005). In this line,
in a rat model with myocardial infarction, subcutaneously
administrated relaxin during 2 weeks was probed to attenuate
tachyarrhythmia and cardiac dysfunction in the healing infarcted
heart, to reduce the dispersion of action potential duration
in post-infarcted hearts, to reduce myocardial apoptosis and
cardiac fibrotic collagen deposition and to inhibit protein
expression levels of tumor growth factor (TGF) β1, α-SMA,
and type I collagen (Wang et al., 2016). In a different murine
model of myocardial infarction, it has been shown that relaxin
administration (1 h prior to ischemia or as a reperfusion
therapy) attenuates myocardial ischemia/reperfusion injury by
reducing infarct size and left ventricular dysfunction after 24
h through a mechanism that involves eNOS signaling and the
attenuation of the activation of the Nod like receptor containing

a pyrin domain-3 (NLRP3)-inflammasome (Valle Raleigh et al.,
2017), which is a macromolecular structure that functions as a
platform for the production of pro-inflammatory cytokines of
the IL-1 family (i.e., IL-1b and IL-18) and is involved in the
impairment of heart function and remodeling after myocardial
injury (Mezzaroma et al., 2011; Lamkanfi and Dixit, 2012; Bracey
et al., 2013).

After the induction of myocardial infarction in swine and rats,
the transplantation of skeletal myoblasts overexpressing relaxin
was probed as an effective treatment to increase vascularization,
increase collagen turnover, reduce fibrosis, and improve left
ventricular function, compared to non-overexpressing skeletal
myoblast (Formigli et al., 2007; Bonacchi et al., 2009).

Relaxin and Atrial Fibrillation
Atrial fibrillation (AF), defined as a supraventricular
tachyarrhythmia due to uncoordinated atrial activation with
deterioration of the atrial mechanical function, is nowadays
one of the cardiovascular events that are causing an extremely
costly public health problem, being sex, age and hypertension
the main risk factors for its development (Fuster et al., 2006).
Thus, the understanding of the mechanisms related to AF
development/prevention is of a great interest.

In spontaneously hypertensive rats, relaxin treatment for
14 days was shown to suppresses AF through the inhibition
of fibrosis and hypertrophy, and the increase in conduction
velocity, and in human cardiomyocytes derived from inducible
pluripotent stem cells, relaxin treatment for 48 h was probed to
up-regulate voltage-gated Na+ channels, a mechanism suggested
by the authors to participate in the suppression of AF (Parikh
et al., 2013), a result also observed in aged rats (Henry et al.,
2015). As well, in mice with myocardial infarction, relaxin
treatment after myocardial infarction for 14 days also reduces AF
through the decrease on fibrosis and hypertrophy, the increase
in conduction velocity, and, moreover, the decrease of the pro-
inflammatory cytokine IL-1β expression (Beiert et al., 2017).

In humans, circulating relaxin was found to be increased in
patients with AF and to be associated with serum concentration
of fibrosis-related markers, as well as with the occurrence of heart
failure in AF patients (Zhou et al., 2016).

Relaxin Effects on Cardiac Cells
Apart from the numerous studies regarding relaxin effects on
the cardiovascular system and in heart physiology, there are also
some reports concerning relaxin direct effects on cardiomyocytes
and cardiac fibroblasts.

In neonatal rat atrial and ventricular fibroblasts in culture,
relaxin was shown to decrease collagen secretion and deposition
by the inhibition of fibroblasts proliferation and differentiation,
and the enhancement of matrix metalloproteinase activity, an
effect also observed in two models of cardiac fibrosis in vivo, in
which relaxin is able to revert collagen overexpression (Samuel
et al., 2004; Mookerjee et al., 2005; Wang et al., 2009). In cardiac
fibroblasts, relaxin co-treatment with high glucose was suggested
to inhibit high glucose-associated cardiac fibrosis partly through
the decrease in total expression and translocation of PKCβ2 (Su
et al., 2014).
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In mouse neonatal immature cardiomyocytes, relaxin
promotes cell proliferation and maturation (Nistri et al., 2012),
an effect that is also potentiated when are co-cultured with relaxin
overexpressing skeletal myoblasts (Formigli et al., 2009). In fact,
relaxin has been shown to potentiate intercellular coupling
between myoblasts and cardiomyocytes by up-regulating the
transcellular exchange of regulatory molecules between both cell
types (Formigli et al., 2005).

Relaxin was demonstrated to inhibit the ability of cardiac
fibroblast-conditioned medium to induce hypertrophy
in cardiomyocytes, and to directly attenuate apoptosis
induced by oxidative stress and by high glucose exposure
in cardiomyocytes through a protective mechanism that involves
AKT and ERK activation (Moore et al., 2007), and through
the inhibition of both extrinsic and intrinsic pathways of
apoptosis and endoplasmic reticulum stress (Zhang et al.,
2015).

RELAXIN AS A FUTURE THERAPY FOR
CARDIOMETABOLIC DISEASES: LIGHTS
AND SHADOWS

Due to the important relaxin effects not only on the
cardiovascular system but also in the development of metabolic
disorders that suppose risk factors for the development of
cardiovascular diseases (Figure 3), relaxin has been considered
in the last years as a really promising cardiometabolic hormone
that with its therapeutic modulation could help to prevent/treat
cardiovascular diseases. Although relaxin has been probed to
participate in the pathophysiological processes that lead to
CMDs, is just in the scenario of acute heart failure where
relaxin has created interest as a therapeutic agent. In this line,
human recombinant relaxin (serelaxin/RLX030) has been under
commercial development by Novartis Pharma A.G. (Basel, CHE)
and it was first tested in healthy or hypertensive rodents and

FIGURE 3 | Overview of the main relaxin actions at cardiovascular level.
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humans, proving its capacity to increase systemic vasodilatation,
global arterial compliance, cardiac index and stroke volume, and
to decrease arterial stiffness (Du et al., 2014). Subsequently, its
safety, tolerability and beneficial effect was tested in phase I
and II clinical trials in stable and acute heart failure patients
(Dschietzig et al., 2009; Teerlink et al., 2009; Sato et al., 2015),
and in 2013 there were published the results of the phase-III
multicenter, randomized and placebo-controlled (RELAX-AHF)
trial (Teerlink et al., 2013), consisted in 1,161 acute heart failure
patients; 581 patients treated with serelaxin and 580 patients
receiving placebo, showing that the infusion of serelaxin for 48 h
improved dyspnea, and reduced heart failure events, congestion,
the length of hospital stay and the intensive care, as well as it
reduced cardiovascular and all-cause mortality, blood pressure,
and renal adverse events compared with placebo, independently
of having preserved or reduced left ventricle ejection fraction
(Teerlink et al., 2013; Filippatos et al., 2014).

Despite these encouraging results, a real-world patients
(5,856) study designed to further analyze the RELAX-AHF results
showed that only 23% of all consecutive patients hospitalized
with acute heart failure met criteria of the RELAX-AHF trial,
and that the mortality rates were lower in participants of ongoing
randomized clinical trials in comparison with real-world acute
heart failure patients (Spinar et al., 2017).

Recently, it has been developed the RELAX-AHF-2 study
to corroborate the promising results of serelaxin observed in
the RELAX-AHF. RELAX-AHF-2 is a multicenter, randomized,
double-blind, placebo-controlled, event-driven, phase III trial
involving ∼6,800 patients hospitalized for acute heart failure
with persistent dyspnea and pulmonary congestion, elevated
natriuretic peptide levels, mild-to-moderate renal impairment,
and systolic blood pressure≥125 mmHg. The primary objectives
of this study are to probe that serelaxin is superior to placebo
in decreasing 180 days cardiovascular death, and the reduction
of occurrence of worsening heart failure through day 5.
Key secondary endpoints include 180 day all-cause mortality,
composite of 180 day cardiovascular death or rehospitalization
due to heart/renal failure, and in-hospital length of stay during
index acute heart failure (Teerlink et al., 2017). Although the
results from this study have not been published yet, Novartis
has recently provided a report announcing that the RELAX-
AHF-2 do not confirm the efficacy of serelaxin in acute heart
failure, so that it does notmeet its primary endpoints of reduction
in cardiovascular death through day 180 or reduced worsening
heart failure through day 5 (Novartis provides update on Phase

III study of RLX030 (serelaxin) in patients with acute heart failure
| Novartis)1. Thus, the real effect of serelaxin as an improver of
heart failure should be deeply studied.

CONCLUSION

Relaxin is a cardiometabolic hormone with important impact on
the cardiovascular pathophysiology. Although relaxin beneficial
effects on acute heart failure patients have been previously
proved, nowadays its beneficial effect is under controversy due
to the contradictory results found between the RELAX-AHF
and both the RELAX-AHF-2 and a real-world patients study.
Moreover, the precise mechanism through which relaxin act in
different CMDs is not known yet, neither the mechanisms that
regulate relaxin and its receptor expression in the different tissues
in which they are produced. Furthermore, it was also suggested
that different concentrations of relaxin can activate its receptor
in a different way (Bathgate et al., 2013), so that the regulation of
relaxin effects in different tissues depending on its concentration
could be difficult to comprehend. Overall, it seems clear that
relaxin is a new potential candidate as a therapeutic agent to
treat/prevent cardiometabolic diseases, so that it has clear effects
on vascular function, has positive chronotropic and inotropic
effects in the heart, and prevents ischemia/reperfusion injury
and atrial fibrillation. Although, further studies are needed, it
also seems to be a potential regulator of metabolism, so it could
regulate the metabolic disturbances observed in CVDs.
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