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Abstract: The development of new, more productive varieties of agricultural crops is becoming an
increasingly difficult task. Modern approaches for the identification of beneficial alleles and their
use in elite cultivars, such as quantitative trait loci (QTL) mapping and marker-assisted selection
(MAS), are effective but insufficient for keeping pace with the improvement of wheat or other
crops. Metabolomics is a powerful but underutilized approach that can assist crop breeding. In this
review, basic methodological information is summarized, and the current strategies of applications
of metabolomics related to crop breeding are explored using recent examples. We briefly describe
classes of plant metabolites, cellular localization of metabolic pathways, and the strengths and
weaknesses of the main metabolomics technique. Among the commercialized genetically modified
crops, about 50 with altered metabolic enzyme activities have been identified in the International
Service for the Acquisition of Agri-biotech Applications (ISAAA) database. These plants are reviewed
as encouraging examples of the application of knowledge of biochemical pathways. Based on the
recent examples of metabolomic studies, we discuss the performance of metabolic markers, the
integration of metabolic and genomic data in metabolic QTLs (mQTLs) and metabolic genome-wide
association studies (mGWAS). The elucidation of metabolic pathways and involved genes will help
in crop breeding and the introgression of alleles of wild relatives in a more targeted manner.

Keywords: metabolites; metabolic pathways; lipids; mass spectrometry; nuclear magnetic resonance;
sample preparation; marker-assisted selection; mQTL; mGWAS; genetically modified crops

1. Introduction

The rapid accumulation of genomic data, the development of genetic approaches and
their application in plant breeding over the past decades have significantly modernized plant
breeding. Approaches based on the association of DNA markers with beneficial traits, such as
marker-assisted selection (MAS), have become a common tool in plant breeding [1–4]. Quan-
titative trait loci (QTL) mapping and genome-wide association studies (GWAS) are currently
widely applied for the identification of genes or genomic regions associated with traits of
interest [5–7]. Despite this progress, producing new crop varieties does not always result in
noticeable success [8,9]. For example, trends in wheat yields in France, Germany, Great Britain
and other European countries with high modern yields (over 50,000 hg/ha) have gradually
reached a plateau over the past decade (Figure 1).

This stagnation in wheat yields occurs at a time when a large number of loci are
identified that are responsible for many of the beneficial characteristics of wheat (collected
in WheatQTLdb [10]).

To further improve yields, a better understanding of the physiological processes that
underlie the beneficial properties of crops is needed. Other “omics” besides genomics, such
as transcriptomics, proteomics and metabolomics, provide valuable information about the
functions of the uncharacterized genes and molecular mechanisms that are involved in
specific plant processes.
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Metabolomics studies metabolite profile, a repertoire of small molecules of a cell,
tissue or biological fluid and differences in profiles, depending on environment and geno-
types [11].

Figure 1. Wheat yield in 1961–2019 in European countries with a current yield of over 50,000 hg/ha. Countries are divided into
three panels to avoid overlapping graphs. (Source: FAOSTAT, online database, http://www.fao.org/faostat/en/#data/QCL,
accessed on 19 September 2021. Map was drawn at http://mapinseconds.com, accessed on 20 September 2021).

The level (concentration) of a specific metabolite depends on the activity of metabolic
(biochemical) pathways that results in its generation and its utilization, as well as the
pathways that consume or generate the precursors of the given metabolite. Many proteins
are involved in these processes directly as enzymes, and indirectly, as regulatory proteins,
proteins of intracellular transport and scaffold, proteins that maintain the optimal redox
state, etc. Further, the expression and performance of these proteins depend on the tem-
perature, availability of nutrients and stresses. Thus, the level of metabolites integrates
multiple gene × gene (G×G) and gene × environment (G×E) interactions and “serves as
direct signature of biochemical activity” [11,12].

Transcriptomics and proteomics, while valuable tools, still overlook much of the
interaction between G×G and G×E. Moreover, the allelic forms of a gene can barely be
differentiated using transcriptomics and can hardly be distinguished using proteomics.
Metabolomics would differentiate these allelic forms if they were functionally different and
affect the level of metabolites. Indeed metabolomics and its integration with other “omics”
is a powerful approach for the elicitation of meaningful information of plant biochemical
and physiological mechanisms and improving crops. By now, the most fruitful results are
derived in metabolomics on plant stress response [12].

In this review, we (1) argue the limitations of purely genetic tools for the plant traits
improvement and the growing need for functional studies. We then focus on (2) metabo-
lites as the basal elements of metabolomics and metabolism as the central organizational
framework of metabolomics, (3) metabolomics as a set of experimental methods with their

http://www.fao.org/faostat/en/#data/QCL
http://mapinseconds.com
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strengths and weaknesses and (4) we will illustrate the different types of metabolomics
research with examples related to crop breeding.

2. The Growing Need in Functional Knowledge for Crop Improvement

In the last decades, breeders, using direct genetics approaches, have significantly
improved yields and other desirable crop traits. A recent genetic analysis and QTL mapping
of dozens of traits using 16 historical UK bread wheat varieties and over 500 recombinant
inbred lines (RILs) derived from them revealed the genetic basis of the improvement of
wheat crop from 1935 to 2004. This improvement appeared to be based on (1) the search
for the optimal combination of alleles with little effect by “shuffling” these alleles for poly-
genic traits and (2) the introduction of a small number of loci with a large effect from wide
crossings, such as Rht semi-dwarfing alleles and introgression of large disease-resistant
genomic segments from other species. This study indicated that most QTL are likely to
have pleiotropic effects that make it harder to improve crops, as improving one trait can
negatively affect others; for example, an increase in yield usually results in a decrease in
protein content [13].

Simulation models showed the inefficiency of blind-breeding for the generation of
novel beneficial combinations of alleles. However, it was concluded that the selection for
dozens of loci makes crop improvement possible. It is expected that further improvement
of crops will be assisted by genomic selection and driven by the introgression of selected
exotic alleles and genome-wide introduction of diverse haplotypes [13].

Indeed, harnessing the genetic potential of wild relatives is seen as a powerful solution
for further crop improvement. The wild relatives are much more genetically diverse and
better fit to environmental stresses than domesticated cultivars and can be sources of new
alleles, especially for disease resistance [14]. Furthermore, it was reported that roughly
56,000 domesticated hexaploids, 19,000 domesticated tetraploid and almost 4000 crop wild
relatives of wheat, in the collections of The International Maize and Wheat Improvement
Center’s (CIMMYT) and International Center for Agricultural Research in the Dry Areas
(ICARDA) germplasm banks, still have unexplored genetic diversity [15].

Nevertheless, breeding new varieties of crops with improved traits inevitably becomes
more and more difficult as the best existing alleles of genes are identified and maintained
in elite cultivars. The majority of agronomic traits are complex traits that are determined
by several or many genes with varying degrees of influence (effect) on the trait [16]. It can
be assumed that for the crop improvement, genes with a strong effect are optimized first,
then breeders optimize the combination of more genes with a weaker effect, and gradually,
to continue improving the plant, a very large number of genes need to be optimized.

The situation becomes even more complicated if considering the pleiotropic effect
of genes and epistasis, that is, the interaction between genes. The epistasis manifests
as enhancing (positive epistasis) or inhibiting (negative epistasis) the effect of a gene on
a trait by other genes. It also means that the same allele of a gene can contribute to a
trait differently in a different genetic background [17,18]. Epistasis was suggested as an
explanation of missing heritability [19]. The idea of epistasis was extended in the omnigenic
theory, which states that complex traits are controlled by all genes of the organism [20].

The determination of the full effect of epistasis is extremely difficult from experimental
and computational points of view [21]. QTL mapping and GWAS do not take into account
epistasis and consider all genetic variations as independent factors influencing the trait
and calculate the cumulative effect of variants as additive. In some modifications, these
genetic mapping methods apply very limited models for defining epistasis, but even with
them, it is possible to notice the presence of epistasis [16]. Some efforts are being made to
reveal epistatic effects in plant and human genomes. However, the search for gene–gene
interaction requires at least 10–100-fold bigger sample sizes than are required for equivalent
additive gene effects determined in QTL and GWA studies [22]. Currently, such genetic–
trait association studies are performed using hundreds or thousands of lines at a time, such
as 4500 bread wheat lines in a study on wheat genetic diversity [23]. Increasing the number
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of lines by a factor of 10–100 would be a difficult task. In another work, the number of
samples for determining the interaction of only two genes using GWAS is estimated at
10,000 while there are millions of millions of gene pairs [20]. It can be summarized that
currently, we do not have adequate tools to comprehensively evaluate the epistasis [21].

As with plants, the association of human traits with genotypes using SNPs arrays is a
powerful tool. In humans, it allowed the revealing of “thousands of genetic variants affect-
ing hundreds of human traits” [24]. Nonetheless, in 2020, the National Human Genome
Research Institute, the leading institution of Human Genome Project, in the Strategic vision
for improving human health at The Forefront of Genomics, stated that the connection of
specific genomic variants to phenotype, beside the cases of monogenic traits and some more
complex cases, is challenging, and the progress in this area requires global collaboration
and the integration of different experimental approaches beyond the genomics [25]. The
ultimate goal is to identify the molecular mechanisms responsible for the appearance and
manifestation of the traits of interest. In a closer perspective, other “omics” can determine
non-genomic markers associated with desired traits, such as grain yield. Aside from the
major “omics”—transcriptomics, proteomics, and metabolomics with lipidomics—there
are more specialized branches, such as epigenomics, miRNAomics, interactomics [26],
phospho-proteomics (global analysis of protein phosphorylation status) [27] and kinomics
(activity of the complete set of kinases) [28], that can generate a wealth of information.
If “phenotype” refers to the observable physical properties of an organism [29,30], then
each of the “omics”, besides genomics, describes the phenotype of an organism in its own
manner. The further the “omics” from the genome on the way of the translation of genetic
information to phenotype, the more it reflects the complex interactions between genes and
between the genes and the environment. Metabolomics, which characterizes the profiles of
small molecules, is the last in the chain of major “omics”—it follows after transcriptomics
and proteomics. Thus, metabolomics reflects the largest contribution of the gene–gene
and gene–environment interactions of all “omics”, and in the chain of the deployment of
the genetic program into the organism stands just before the final morphological pheno-
type [11,31]. Sometimes the metabolome, proteome or transcriptome is called intermediate
endophenotypes [32] or intermediate phenotype [33,34]. However, the term “intermediate
phenotype” has other meanings, such as a phenotype between the two extreme phenotypes
of the parents, and therefore, this term sounds ambiguous.

In some cases, a metabolite can be an essential desirable or undesirable trait, such as
specific compounds in medicinal plants [35], sugar in sugar cane and sugar beet, organic
acids, vitamins, flavonoids, flavors in fruits [36] or unwanted anti-nutritional factors, such
as saponins, phytic acid [37]. In other cases, a metabolite can be a precursor for an essential
trait, such as sugars and amino acids, as building blocks for storage polysaccharides and
proteins in cereals [38]. Universally, metabolites can reflect the environmental conditions
and the adaptation to environmental stresses.

As an ultimate goal, the metabolome of a plant should be deciphered as a set of biochem-
ical pathways with known enzymes and transporters and with measured fluxes of the key
metabolites along different biochemical pathways and between the compartments [38–40]. This
knowledge should allow the selection of optimal alleles not by random testing of different
alleles but by using an educated choice. It also should allow the introduction of the specific
mutations to create alleles beyond naturally available variants and, if the social acceptance of
genetically modified plants will prevail, rationally design the optimal biochemical makeup of
the plants [41].

3. Metabolism and Metabolites

Metabolism, as a set of specific chemicals and, in the case of photosynthesis, photo-
chemical processes, is one of the central attributes of life. Metabolites are small molecules,
usually considered in the range of molecular weight of up to 1500–2000 Da or g/mol, that
are formed during metabolism [42]. Virtually all plants generate metabolites by assimilating
carbon dioxide as the sole carbon source. A few metabolites are non-carbon molecules, such
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as hydrogen peroxide, ammonium derived from assimilated nitrates and pyrophosphate
formed during ATP hydrolysis. All metabolites are divided into two groups—primary
(central) metabolites and secondary (specialized) metabolites.

Primary (central) metabolites are small molecules that are absolutely required for
the viability of a cell in an organism. They participate in the central carbon metabolism,
metabolism of amino acids, nucleotides and lipids and other processes that have a lot
in common with different branches of living organisms [43]. The number of primary
metabolites in plants is estimated under 10,000 and is assumed slightly higher than in other
biological kingdoms since plants are autotrophs and require photosynthetic metabolic
pathways [44]. The perturbation of these metabolites is of interest since their availability
affects the ability of the cell to generate energy, build the necessary macromolecules,
cellular structures and generate secondary metabolites. Among the primary metabolites,
several small molecules stand out due to their high thermodynamic instability, which
allows them to participate in and promote catabolic reactions. These molecules are ATP,
which readily donates phosphoryl or nucleotidyl groups and provides energy in reactions
coupled with its cleavage; electron donor nicotinamide adenine dinucleotide (NADH)
and its phosphorylated form NADPH, acyl group donor acetyl coenzyme A (acetyl-CoA)
and molecules that are donors of several other groups: S-adenosylmethionine (SAM),
isopentenyl pyrophosphate (IPP), ADP-glucose (adenosine diphosphate glucose) and UDP-
glucose (uridine diphosphate glucose) [45].

Secondary (specialized) metabolites are small molecules that are not necessary for
the viability of individual plant cells but are essential for the viability of the organism.
Secondary metabolites mediate intercellular regulation and communication. Plants are
sessile in nature, and chemicals play a major role in the plant–environment interaction.
These secondary metabolites protect plants against biotic and abiotic stresses, protect from
herbivores, attract pollinating and seed-dispersing insects and animals. The generation of
a number of secondary metabolites are responses to environmental stress [46].

Given the functional and regulatory role of small molecules, the study of the metabolome
can be expected to identify small molecules that are associated with important agronomic traits.

The total number of metabolites produced by the plant kingdom is estimated at
approximately 200,000—1 mln, and a single plant species can generate dozens of thousands
of metabolites [44,47]. The recent efforts to compile the known natural products from
all currently existing databases resulted in the collection of over 400,000 non-redundant
substances with molecular masses below 4000 Da. For 32% of these substances, there is an
indication in which organisms they are contained, and of these substances, 88,000 are of
plant origin, which is 66% of all natural products with an indication of origin [48,49].

Different cell organelles are responsible for different metabolic pathways. Chloroplasts
are the sites of abundant generation of energy (ATP) and reducing potential (NADPH)
equivalents in light-dependent reactions of photosynthesis. In following light-independent
reactions of photosynthesis, known as Calvin or reductive pentose phosphate (RPP) cy-
cle, the molecules of ATP and NADPH are consumed for the incorporation of CO2 to
ribulose-1,5-bisphosphate (RuBP) followed by the hydrolysis of the resulted product into
3-phosphoglycerate (3PG), its reduction to glyceraldehyde-3-phosphate (G3P) and resyn-
thesizing of RuBP. The major gain from the Calvin cycle is G3P, which is generated in excess
of what is needed for the continued functioning of the Calvin cycle and is used for carbo-
hydrate synthesis in the cytoplasm. Other metabolic pathways in chloroplasts are fatty
acid synthesis and the shikimate pathway that links primary and secondary metabolisms
by producing chorismite, the common precursor for aromatic amino acids and a range of
secondary metabolites [50]. Some secondary metabolites are also stored in plastids.

Mitochondria are the site of oxidative phosphorylation that generates ATP and the
Krebs cycle that generates ATP and NADPH, the important metabolites that provide
reducing potential. Mitochondria also harbor several central metabolism pathways, such as
the citrate cycle and the metabolism of amino acids. The study of mitochondria metabolites
is still challenging. A Mito-AP protocol for plant mitochondria isolation from the leaves
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of genetically modified Arabidopsis has been recently developed. The transgenic plant
expresses a mitochondrial outer membrane protein fused to a GFP: Strep-tag that allows
a quick (0.5–1 h) isolation of mitochondria using affinity beads. Isolated mitochondria
maintain membrane integrity, membrane potential and respiratory activity. However, the
ratios of NADH/NAD and ATP/ADP are not normal for active mitochondria, which
indicates the inactivation of mitochondria during the isolation. Thus, even this quick and
gentle method is suitable for the analysis of the entire group of metabolites, such as ATP +
ADP + AMP, and for stable metabolites, such as lipids [51].

Cytosol harbors several important metabolic pathways: glycolysis, the oxidative
pentose phosphate pathway, amino acid biosynthesis, fatty acid metabolism, one-carbon
metabolism (methionine and folate cycles) and vitamin B5 synthesis [52]. Vacuoles of
plant cells are mainly storage organelles. They store inorganic nitrates and phosphates,
sugars and amino acids. Amino acids are released in vacuoles as a result of the degradation
of proteins since plants do not have lysosomes, and the catabolism of proteins occurs in
vacuoles. Furthermore, vacuoles accumulate and store secondary metabolites [53].

In many cases, the synthesis of a metabolite requires multiple enzymes localized in
different compartments. For example, the synthesis of the plant hormone jasmonic acid
begins in the chloroplast and ends in the peroxisome [54].

The highest concentration of some metabolites can be in sites different from the
synthesis. At the cellular level, such storage organelle is often vacuole. At the level of the
whole plant, there are sink organs (usually seeds and roots), where sugars and amino acids
are transported from the source organ (leaves) and stored in a polymeric form.

4. Lipids—A Class of Metabolites with Distinct Properties. Classification
and Metabolism

Lipids are a group of structurally different molecules that share the common property—
they are hydrophobic (lipophilic) or amphipathic (contains both hydrophobic and hy-
drophilic parts), due to which they form bilayer membranes, lipid droplets and bind with
the hydrophobic residues of proteins [55]. Since lipids differ from other metabolites in
their functions in the cell and in the experimental methods used to study them, lipidomics,
although it can be considered as a subdivision of metabolomics, stands apart.

Lipids are necessary for any cell to form a plasma membrane and membranes of
cellular organelles and vesicles. Aside from the creation of compartments, membranes
serve as scaffolds for integral membrane proteins and proteins associated with membrane
surfaces. The organization of biological membranes were studied mostly for human and
animal cells and revealed that the lipid composition varies between cell organelles and
plasma membrane. Further, the membranes are not uniform laterally (in the plane of
membrane) and have some microdomains enriched with specific lipids, such as lipid rafts
enriched by cholesterol and sphingomyelin [56,57]. Even more, two leaflets, at least for
plasma membrane, are different in their lipid composition, despite the energy expenses
that are required to maintain this difference.

Aside from the structural role, lipids also serve as storage for energy that can be
released through oxidation and for carbon building blocks for transformation into other
metabolites, including some vitamins (A, D, E, K), coenzyme Q, carotenoids and signal
molecules, such as a phytohormones brassinosteroids and jasmonates.

The chemical diversity of lipids is high. The LipidBank database contains over 7000 natu-
ral lipid structures, including fatty acids, glycerolipids, sphingolipids, steroids and vitamins
(http://www.lipidbank.jp/ accessed on 1 October 2021; [58]). Lipid Metabolites and Path-
ways Strategy (LIPID MAPS) lists in their lipid database LMSD, 24,285 biologically-relevant
manually-curated lipid structures (the total number of structures including computer-generated
is over 46,000 entries) (https://www.lipidmaps.org/resources/databases/ accessed on 1 Octo-
ber 2021; [59]). Moreover, LIPID MAPS maintains the LMPD database of lipid-related genes
and proteins that currently contains 1829 genes and 2447 proteins for Arabidopsis thaliana
(https://www.lipidmaps.org/resources/databases/index.php?tab=lmpd accessed on 1 Octo-
ber 2021; [60]).

http://www.lipidbank.jp/
https://www.lipidmaps.org/resources/databases/
https://www.lipidmaps.org/resources/databases/index.php?tab=lmpd
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The majority of the lipidomic research is focused on humans and animals; thus, the
majority of the entries are not plant lipids. However, the plant lipidomics are being devel-
oped. The classification of naturally occurring lipids developed by LIPID MAPS divides all
biological-relevant lipids into eight categories based on their chemical structure. The most
numerous is the fatty acyls category, with 8219 curated structures (cs), glycerolipids (285 cs)
with fats and oils in this category, glycerophospholipids (1645 cs) the major constituents
of the membranes belongs to this category, sphingolipids (1707 cs), sterol lipids (3056 cs),
prenol lipids (1536 cs), sacccharolipids (32 cs) and polyketides (6996 cs). The fatty acyls
category with 8219 curated structures in the LIPID MAPS database is the most numerous
category of lipids. Fatty acids that are the members of this category are usually present
in plants and other organisms in their free form in very low concentrations. However,
in chemically-bound forms, fatty acids constitute a significant part of any plant tissue or
cell lipid mass, being the fundamental building blocks of more complex lipids, such as
phospholipids and triglycerides. The fatty acyls category also includes oxylipins [61], such
as phytohormones jasmonic acids, and products of fatty acids enzymatic oxidation and
oxidation by reactive oxygen species, such as hydroperoxy fatty acids, phytoprostanes
and phytofurans.

Lipid droplets (also known as lipid or oil bodies, oleosomes and spherosomes) origi-
nate from the endoplasmic reticulum and are the storage organelles for triacylglycerols for
energy and for carbon backbone [62,63].

Lipids are relatively big molecules compared to the majority of other metabolites with
a relatively complex structure. The utilization of generally accepted universal guidelines
defined by the International Union of Pure and Applied Chemists and the International
Union of Biochemistry and Molecular Biology (IUPAC-IUBMB) Commission on Biochemi-
cal Nomenclature (https://iupac.qmul.ac.uk/lipid/, accessed on 1 October 2021) for lipids
results in bulky systematic names. Moreover, experimental techniques, despite the constant
development, still often reveal just partial structural information [64] that makes a problem
for the application of systematic names. A shorthand nomenclature was developed to
standardize and simplify reporting lipid species, which is also useful for experimental
findings since it is suitable for reporting lipids molecules at the different levels of revealing
their exact structure [65].

For example, a glycerolipid diacylglycerol at different levels of resolution would be
recorded as DG 34:1 (Species Level; 34 stands for total carbon atoms in acyl chains, 1 is
the number of double bonds in these chains), DG 16:0_18:1 (Molecular Species Level; the
acyl chains are now resolved as fully saturated 16-carbon and 18-carbon chain with one
double bond), DG 16:0/18:1/0:0 (sn-Position Level; now the hydroxyl groups in glycerol
that are esterified by acyl chains are defined), DG 16:0/18:1(9Z)/0:0 (Full Structure Level;
9Z means the position of a double bond between the 9th and 10th carbon atoms counting
from acyl carbon and cis geometry of the double bond).

Lipid synthesis in plants occurs in plastids (chloroplasts), cytoplasm (in the endoplas-
mic reticulum, ER) and to some extent in mitochondria. Fatty acids (FA) are an essential
part of most lipid molecules that provide hydrophobic properties and enable them to
generate lipid bilayer, or lipid monolayer and hydrophobic core in lipid droplets.

The essential role for the synthesis of FA plays plastids, where palmitic (16:0) and
stearic (18:0) acids are synthesized by an FA synthase complex of seven polypeptides
encoded by nuclear DNA [66], using a substantial number of NADPH molecules (14 for
palmitic acid). The plant FA synthesis site is different from the animal cells and other
eukaryotes, where FA synthesis happens in ER in the cytoplasm. Further, in plastids,
the stearic (18:0) acid is converted to monounsaturated oleic (18:1) acid. The synthesis of
various glycerolipids from FA occurs both in plastids and in ER in the cytoplasm [67].

To release the energy stored in triacylglycerols (TAG) in lipid droplets, cells first carry
out lipolysis by TAG lipases located on the surface of peroxisomes. Then FA catabolism
occurs by β-oxidation, which is the major pathway for the utilization of FAs for the
generation of energy and for building carbon skeletons for other metabolites. This process

https://iupac.qmul.ac.uk/lipid/
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of fuel germination and early seedling growth provides energy in leaves in the form of
ATP for stomatal opening after the plant transfer from dark to light [68]. Unlike mammals,
where β-oxidation occurs in mitochondria, in plants, β-oxidation occurs in peroxisomes.
The FAs that are released during lipolysis are transported into peroxisomes by ATP binding
cassette (ABC) transporter subfamily D of the peroxisomal membrane. β-Oxidation results
in the degradation of FA to acetyl-CoA.

Thus, besides the membranes and lipid droplets, the lipid-related organelles in plants
are plastids, peroxisomes and in a lesser degree in mitochondria.

5. Genetically Modified Plants with Altered Activity of Metabolic Enzymes

Metabolomics is a younger field than other omics and is just beginning to contribute to
crop improvement. Beyond metabolic markers, metabolomics has to identify biochemical
pathways underlying the desired traits. In this, metabolomics is similar to biochemistry
but uses another, more data-rich approach. To evaluate the applicability of biochemical
knowledge to crop improvement, the commercialized genetically modified (GM) crops
with altered metabolic activities were selected from the GM Approval Database that is
maintained by the International Service for the Acquisition of Agri-biotech Applications
(ISAAA). About 50 metabolic enzymes that are directly involved in metabolism were found
altered in this set of GM crops (see Table 1).

With regard to metabolic changes caused by the introduction of additional metabolic
enzymes or suppression of the activities of endogenous enzymes, almost 30 types of
metabolically altered GM have been found; for some types, many crop accessions have
been reported. These alterations were done in fifteen different crops, mainly in staple food
crops (four in maize, four in soybeans, two in potato), oilseeds (four in Argentine canola),
fruits (two in tomato) and in industrial crops (two in sugarcane).

In most cases (41 times in the considered GM crops) the genetic intervention was
aimed to achieve a gain of function. For this, the heterologous genes were transferred
from various sources. The most abundant source of transgenes in our set of GM crops was
marine microalgae, reflecting the need for many different enzymes to alter the oil/fatty acid
properties and good fit of algae enzymes for the generation of desired fatty acid variants.
Twelve genes from various microalgae were employed. For the same purpose, three genes
from oomycetes and one gene from moss from fungi and yeast were also used.

In other GM crops, two fungal genes have been used to break down plant small-
molecule phytate in maize (BVLA430101 from Origin Agritech (China)) and Argentine
canola (Phytaseed™ Canola from BASF) to release phosphorus and make it available to
humans and monogastric animals.

In some cases, the loss of function was employed (~20 times considering GM crops)
that was achieved by RNA-mediated gene silencing. This means the Innate® Cultivate and
other GM potato cultivars were generated by J.R. Simplot Co. suppressing Asparagine
synthetase 1 (Asn1), polyphenol oxidase 5 (Ppo5), starch phosphorylase L (PhL), glucan
water dikinase (R1) and, in some cultivars, vacuolar invertase (VInv). The resulted GM
potato does not develop black-spot bruise due to less Ppo5; when fried, it produces much
less acrylamide due to less asparagine (lower Asn1 activity) and is not as brown as the
original potato due to having fewer reducing sugars (less R1 and VInv activity) [69].

Many GM crops have stacked many modified genes. For example, Argentine canola
(Brassica napus) LBFLFK (BASF) received 10 genes from microalgae, oomycetes and moss
to increase omega-3 long-chain (20 or longer carbons) polyunsaturated fatty acids (PUFA),
the health-promoting lipids that are contained in fish oil. Indeed, LBFLFK produces seed
oil that contains ~7% eicosapentaenoic acid (EPA; 20:5n-3), one of the major omega-3
PUFA [70].
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Table 1. List of selected genetically modified (GM) crops that have been approved for public use. Accessions that were selected for the table are plants with genetically modified metabolic
enzymes 1. The data and descriptions (with some modifications) are taken from “GM Approval Database” of International Service for the Acquisition of Agri-biotech Applications
(ISAAA): Source: https://www.isaaa.org/gmapprovaldatabase/default.asp (accessed 30 September 2021).

GM Crop GM Trait Gene Gene Source Gene Product Gene Function Example(s) 2
Developer
3-Year of

Approval 4

Tomato-Lycopersicon
esculentum

Delayed fruit softening pg (sense or antisense) Lycopersicon esculentum No functional polygalacturonase enzyme is produced (transcription of
the endogenous enzyme is suppressed by a gene silencing mechanism)

Inhibits the production of polygalacturonase enzyme responsible for the breakdown of
pectin molecules in the cell wall, and thus causes delayed softening of the fruit

SYN-ØØØØB-6 Z-1995
FLAVR SAVR M-1992

Melon-Cucumis melo Delayed
ripening/senescence sam-k Escherichia coli

bacteriophage T3 S-adenosylmethionine hydrolase enzyme Causes delayed ripening by reducing the S-adenosylmethionine (SAM), a substrate for
ethylene production 35-1-N A-1996

Tomato-Lycopersicon
esculentum

Delayed
ripening/senescence anti-efe Lycopersicon esculentum Antisense RNA of 1-amino-cyclopropane -1-carboxylate oxidase (ACO)

gene (no functional ACO enzyme is produced)
Causes delayed ripening by suppressing the production of ethylene via silencing of the

ACO gene that encodes an ethylene-forming enzyme Huafan No 1 HAU-1997

Tomato-Lycopersicon
esculentum

Delayed
ripening/senescence accd Pseudomonas chlororaphis 1-amino-cyclopropane-1-carboxylic acid deaminase enzyme Metabolizes the precursor of the fruit ripening hormone ethylene, resulting in delayed

fruit ripening CGN-89322-3 M-1995

Carnation-Dianthus
caryophyllus

Delayed
ripening/senescence acc (truncated) Dianthus caryophyllus Modified transcript of 1-amino-cyclopropane -1-carboxylic acid (ACC)

synthase gene
Causes reduced synthesis of endogenous ethylene through a gene silencing mechanism

and thus delayed senescence and longer vase life FLO-ØØØ66-8 F-1995 (c.o.)

Pineapple-Ananas
comosus

Delayed
ripening/senescence acc Ananas comosus 1-aminocyclopropane-1-carboxylic acid synthase Involved in catalyzing the penultimate step in ethylene biosynthesis

Rosé DM-2016
Modified fruit color

b-Lyc Ananas comosus Gamma-carotene Increases lycopene accumulation using RNAi technology
e-Lyc Ananas comosus Delta-carotene Increases lycopene accumulation using RNAi technology

Psy (Phytoene Synthase) Tangerine (Citrus
reticulata) Phytoene Increases lycopene and/or beta-carotene levels

Sugarcane-Saccharum sp. Drought stress tolerance EcBetA Escherichia coli Choline dehydrogenase Catalyzes the production of the osmoprotectant compound glycine betaine conferring
tolerance to water stress NXI-1T P-2011

Sugarcane-Saccharum sp. Drought stress tolerance RmBetA Rhizobium meliloti Choline dehydrogenase Catalyzes the production of the osmoprotectant compound glycine betaine conferring
tolerance to water stress NXI-4T P-2013

Rice-Oryza sativa L. Enhanced Provitamin A
Content

crt1 Pantoea ananatis Phytoene desaturase enzyme CRTI Catalyzes the conversion of 15-cis-phytoene to all-trans-lycopene
Golden Rice IRRI-2017

psy1 Zea mays Phytoene synthase ZmPSY1 Converts geranylgeranyl diphosphate into phytoene, and acts upstream of CRTI in the
carotenoid biosynthesis pathway

Cotton-Gossypium
hirsutum L. Low Gossypol dCS Gossypium hirsutum L.

dsRNA that suppresses the expression of d-cadinene synthase gene
that encode d-cadinene synthase, a key enzyme involved in gossypol

biosynthesis, thru RNAi pathway
Silence the endogenous dCS genes TAM-66274-5 TAM-2018

Potato-Solanum
tuberosum L.

Lowered Free
Asparagine asn1 Solanum tuberosum Double stranded RNA Designed to generate dsRNA to down regulate Asn1 transcripts which lowers asparagine

formation
All 5 transgenes:

Innate®Acclimate,
Innate®Hibernate.

All transgenes except VInv:
Innate®Cultivate,
Innate®Generate,

Innate®Accelerate,
Innate®Invigorate

JRS-2014 (2015
for Vlnv-

containing
accessions)

Reduced Black Spot ppo5 (polyphenol
oxidase 5) Solanum verrucosum Double stranded RNA Designed to generate dsRNA to down regulate Ppo5 transcripts which lowers black spot

bruise development

Lowered Reducing
Sugars

PhL Solanum tuberosum Double stranded RNA Designed to generate dsRNA to down regulate PhL transcripts which lowers reducing
sugars

R1 Solanum tuberosum Double stranded RNA Designed to generate dsRNA to down regulate R1 transcripts which lowers reducing
sugars

Vlnv Solanum tuberosum Double stranded RNA Downregulates VInv transcripts which lowers reducing sugars
Maize-Zea mays L. Male sterility zm-aa1 Zea mays Alpha amylase enzyme Hydrolyses starch and makes pollen sterile when expressed in immature pollen 32138 SPT maintainer DP-2011

Maize-Zea mays L. Modified alpha amylase amy797E synthetic gene derived
from Thermococcales spp. Thermostable alpha-amylase enzyme Enhances bioethanol production by increasing the thermostability of amylase used in

degrading starch Enogen™ Sy-2007

Maize-Zea mays L. Modified amino acid cordapA Corynebacterium
glutamicum Dihydrodipicolinate synthase enzyme Increases the production of amino acid lysine Mavera™ Maize, Mavera™

YieldGard™ Maize R-2003

Carnation-Dianthus
caryophyllus Modified flower color

dfr Petunia hybrida Dihydroflavonol-4-reductase (DFR) hydroxylase enzyme Catalyzes the production of the blue-coloured anthocyanin pigment delphinidin and its
derivatives

All have dfr, some have bp40 or
hfl:Moondust™,
Moonshadow™,

Moonshade™, Moonlite™,
Moonaqua™, Moonvista™

F-1995 or 1998
if with bp40

(c.o.)bp40 (f3′5′h) Viola wittrockiana Flavonoid 3′ ,5′ -hydroxylase (F3′5′H) enzyme
Catalyzes the production of the blue-coloured anthocyanin pigment delphinidin and its

derivatives

hfl (f3′5′h) Petunia hybrida Flavonoid 3′ ,5′ -hydroxylase (F3′5′H) enzyme
Catalyzes the production of the blue-coloured anthocyanin pigment delphinidin and its

derivatives

sfl (f3′5′h) Sage (Salvia splendens) Flavonoid 3′ ,5′ -hydroxylase Involved in the biosynthesis of a group of blue coloured anthocyanins called delphinidins
Moonique™ (also has dfr,

bp40 (f3′5′h)) Su-2008 (c.o.)

dfr-diaca Carnation (Dianthus
caryophyllus) Dihydroflavonol-4-reductase enzyme Functions in the biosynthesis pathway of the pink/ red-coloured anthocyandin

3-O-(6-O-malylglucoside) pigment in carnations
Moonpearl™, Moonberry™
(also have dfr, bp40 (f3′5′h))

cytb5 Petunia (Petunia hybrida) Cytochrome b5
Cyt b5 protein acts as an electron donor to the Cyt P450 enzyme and is required for full

activity of the Cyt P450 enzyme Flavinoid 3′ 5′ hydroxylase in vivo and the generation of
purple/ blue flower colours.

Moonvelvet™ (also has hfl
(f3′5′h))

Su-2008 (c.o.)

Rose-Rosa hybrida Modified flower color 5AT Torenia sp. Anthocyanin 5-acyltransferase (5AT) enzyme Alters the production of a type of anthocyanin called delphinidin WKS82/130-4-1 (also has
bp40 (f3′5′h)) Su-2008 (c.o.)

Argentine
Canola-Brassica napus Modified oil/fatty acid te Umbellularia californica

(bay leaf) 12:0 ACP thioesterase enzyme Increases the level of triacylglycerides containing esterified lauric acid (12:0) Laurical™ Canola M-1994

https://www.isaaa.org/gmapprovaldatabase/default.asp
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Table 1. Cont.

GM Crop GM Trait Gene Gene Source Gene Product Gene Function Example(s) 2
Developer
3-Year of

Approval 4

Argentine
Canola-Brassica napus Modified oil/fatty acid

Lackl-delta12D Lachancea kluyveri Delta-12-desaturase Converts oleic acid to linoleic acid

DHA Canola N-2018

Micpu-delta-6D Micromonas pusilla Delta-6-desaturase Convert a-linolenic acid to stearidonic acid
Pavsa-delta-4D Pavlova salina Delta-4-desaturase Converts docosapentaenoic acid to docosahexaenoic acid
Pavsa-delta-5D Pavlova salina Delta-5-desaturase Converts eicosatetraenoic acid to eicosapentaenoic acid

Picpa-omega-3D Pichia pastoris Delta-15-/omega-3-desaturase Converts linoleic acid to a-linolenic acid
Pyrco-delta-5E Pyramimonas cordata Delta-5-elongase Converts eicosapentaenoic acid to docosapentaenoic acid
Pyrco-delta-6E Pyramimonas cordata Delta-6-elongase Convert stearidonic acid to eicosatetraenoic acid

Argentine
Canola-Brassica napus Modified oil/fatty acid

OtD5E Ostreococcus tauri Delta-5 elongase
Catalyzes the decarboxylation Claisen-like condensation of two carbons from

malonyl-CoA to C20:5n-3-CoA generating C22:5n-3-ß-keto-C oA, which is then converted
to C22:5n-3-CoA by endogenous enzymes

LBFLFK B-2019 (c.o.)

OtD6D Ostreococcus tauri Delta-6 desaturase Converts C18:2n-6 fatty acids into C18:3n-6 fatty acids
PiO3D Phytophthora infestans Omega-3 desaturase Converts C20:4n-6 into C20:5n-3

PirO3D Pythium irregulare Two copies of the coding sequence for an omega-3 desaturase,
cO3D(Pir)1 and cO3D(Pir)2 Converts C20:4n-6 into C20:5n-3

PlD4D Pavlova lutheri Delta-4 desaturase Convert C22:5n-3 into C22:6n-3

PpD6E Physcomitrella patens Delta-6 elongase
Catalyzes the decarboxylation Claisen-like condensation of two carbons from

malonyl-CoA to C18:3n-6-CoA generating C20:3n-6-ß-keto-CoA, which is then converted
to C20:3n-6-CoA by endogenous enzymes

PsD12D Phytophthora sojae Delta-12 desaturase Convert C18:1n-9 into C18:2n-6
TcD4D Thraustochytrium sp. Delta-4 desaturase Converts C22:5n-3 into C22:6n-3

TcD5D Thraustochytrium sp. Two copies of the coding sequence for a delta-5 desaturase, cD5D(Tc)1
and cD5D(Tc)2

TpD6E Thalassiosira pseudonana Delta-6 elongase
Catalyzes the decarboxylation Claisen-like condensation of two carbons from

malonyl-CoA to C18:3n-6-CoA generating C20:3n-6-ß-keto-CoA, which is then converted
to C20:3n-6-CoA by endogenous enzymes

Safflower-Carthamus
tinctorius L.

Modified oil/fatty acid fad2.2 Carthamus tinctorius Fad2.2 gene-no functional enzyme is produced Production of FAD2.2 (delta-12 desaturase enzyme) is suppressed by RNA interference
GOR-73226-6 G-2018

fatB Carthamus tinctorius FatB gene-no functional enzyme produced Production of FATB enzymes (acyl-acyl carrier protein thioesterases) is suppressed by
RNA interference

Soybean-Glycine max L. Modified oil/fatty acid gm-fad2-1 (partial
sequence) Glycine max

No functional enzyme is produced (expression of the endogenous
fad2-1 gene encoding omega-6 desaturase enzyme was suppressed by

the partial gm-fad2-1 gene fragment)

Blocks the formation of linoleic acid from oleic acid (by silencing the fad2-1 gene) and
allows accumulation of oleic acid in the seed Treus™, Plenish™ DP-2009

Soybean-Glycine max L. Modified oil/fatty acid gm-fad2-1 (silencing
locus) Glycine max

No functional enzyme is produced (production of endogenous delta-12
desaturase enzyme was suppressed by an additional copy of the

gm-fad2-1 gene via a gene silencing mechanism)

Blocks the conversion of oleic acid to linoleic acid (by silencing the endogenous fad2-1
gene) and allows accumulation of monounsaturated oleic acid in the seed DD-Ø26ØØ5-3 DP-1997

Soybean-Glycine max L. Modified oil/fatty acid
fad2-1A (sense and

antisense) Glycine max No functional enzyme is produced (production of delta-12 desaturase
enzyme is suppressed by RNA interference)

Reduces desaturation of 18:1 oleic acid to 18:2 linoleic acid; increases the levels of
monounsaturated oleic acid and decreases the levels of saturated linoleic acid in the seed Vistive Gold™ M-2011

fatb1-A (sense and
antisense segments) Glycine max

No functional enzyme is produced (production of FATB enzymes or
acyl-acyl carrier protein thioesterases is suppressed by RNA

interference)

Decreases the transport of saturated fatty acids out of the plastid, thereby increasing their
availability to desaturation to 18:1 oleic acid; reduces the levels of saturated fatty acids and

increases the levels of 18:1 oleic acid

Soybean-Glycine max L. Modified oil/fatty acid Nc.Fad3 Neurospora crassa Delta 15 desaturase protein Desaturates certain endogenous fatty acids resulting in the production of stearidonic acid
(SDA), an omega-3 fatty acid MON87769 M-2011

Pj.D6D Primula juliae Delta 6 desaturase protein Desaturates certain endogenous fatty acids resulting in the production of stearidonic acid
(SDA), an omega-3 fatty acid

Potato-Solanum
tuberosum L.

Modified
starch/carbohydrate

gbss (antisense
fragment) Solanum tuberosum

No functional granule-bound starch synthase (GBSS) enzyme is
produced; production of GBSS enzyme is suppressed by a gene

silencing mechanism
Reduces the levels of amylose and increases the levels of amylopectin in starch granules Amflora™, Starch Potato B-2010

Tobacco-Nicotiana
tabacum L. Nicotine reduction NtQPT1 (antisense) Nicotiana tabacum Antisense RNA of quinolinic acid phosphoribosyltransferase (QPTase)

gene; no functional QPTase enzyme is produced
Suppresses the transcription of the QPTase gene, thereby reducing the production of

nicotinic acid, a precursor for nicotine Vector 21-41 V-2002 (c.o.)

Apple (Malus x
Domestica) Non-Browning PGAS PPO suppression

gene Malus domestica

PGAS is a chimeric sense suppression transgene; it consists of 394 to
457 bp regions of four apple PPO (Polyphenol oxidase) genes (PPO2,

GPO3, APO5, and pSR7) in tandem that upon transcription is designed
to suppress the expression of these four members of the apple PPO

gene family

Double stranded RNA (dsRNA)from the suppression transcript is processed into small
interfering RNAs (siRNAs) that direct the cleavage of the target mRNA through sequence
complementarity and suppresses PPO resulting in apples with a non-browning phenotype

Arctic™, Arctic™ Fuji
Apple, Arctic™ "Golden

Delicious" Apple
OSFI-2015

Argentine
Canola-Brassica napus Phytase production phyA Aspergillus niger var. van

Tieghem 3-phytase enzyme Increases the breakdown of plant phytates which bind phosphorus and makes the latter
available to monogastric animals Phytaseed™ Canola B-1998

Maize-Zea mays L. Phytase production phyA2 Aspergillus niger strain
963 Phytase enzyme Degrades phytate phosphorus in seeds into inorganic phosphate to be available to animals

when used as feed BVLA430101 OA-2009 (c.o.)

1 Enzymes conferring herbicide tolerance, nucleic acid-related enzymes such as barnase, DNA adenine methylase are not included; 2 Example(s) of the accessions: Trade Name, or Name, or Code; 3 Abbreviations
for the companies/institutions in this table: A: Agritope Inc. (USA); B: BASF; DM: Del Monte Fresh Produce Company; DP: DuPont (Pioneer Hi-Bred International Inc.); F: Florigene Pty Ltd. (Australia); G: Go
Resources Pty Ltd; HAU: Huazhong Agricultural University (China); IRRI: International Rice Research Institute; JRS: J.R. Simplot Co.; M: Monsanto Company (including fully and partly owned companies);
N: Nuseed Pty Ltd; OA: Origin Agritech (China); OSFI: Okanagan Specialty Fruits Incorporated; P: PT Perkebunan Nusantara XI (Persero); R: Renessen LLC (Netherlands); Su: Suntory Limited (Japan); Sy:
Syngenta; TAM: Texas A&M AgriLife Research University; V: Vector Tobacco Inc. (USA); Z: Zeneca Plant Science and Petoseed Company; 4 For an accession with several years of approval (for different countries
and different applications-cultivation, feed or food) and for several accessions of the same type only the earliest year of approval is indicated. Since crop cultivation in most cases assumes some kind of utilization,
accessions that have never received approval for food or feed are marked as “c.o.” (“cultivation only”) (not applicable for flowers, but still marked for the consistency).
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The introduction of two variants of choline dehydrogenase from different bacteria, EcBetA
and RmBetA, by PT Perkebunan Nusantara XI (Persero) into sugarcane improved drought
stress tolerance. Choline dehydrogenase produces glycine betaine, a metabolite that has been
shown to have a protective effect against abiotic stresses (osmolyte; see Section 10.1). The
first cultivar NXI-1T (with choline dehydrogenase EcBetA) received approval in Indonesia in
2011 for food and in 2013 for cultivation, and two other cultivars with choline dehydrogenase
RmBetA, NXI-4T and NXI-6T, received approval in 2013 in Indonesia for cultivation, food and
feed, and for cultivation and food, respectively (Table 1).

Overall, metabolic alterations in GM suggest that genes from taxonomically very
distant biological sources work well in crops.

6. Methods of Metabolomics
6.1. General Considerations

Unlike genomics and similarly to transcriptomics, proteomics and other “omics”,
metabolomic profiles in the organism differ in the spatial aspect (differ between organs,
tissues, cell types and subcellular structures), in the temporal aspect (differ at different
stages of development, phases of the cell cycle for dividing tissues and diurnal cycle) and
depend on environmental conditions (temperature, light, water and nutrient availability,
stress factors). Thus, for metabolomic experiments, the consistency in growth conditions
of plants and consistency in sample preparation is of great importance. Moreover, some
metabolites are not stable chemicals and get hydrolyzed or oxidized quickly, for example,
NADPH. Special precautions should be considered for the analysis of such metabolites.

Metabolic studies can be targeted when a set of certain metabolites that are expected
to be affected under the experimental conditions is analyzed, or untargeted (global), when
a wide range of metabolites is analyzed without any preference for specific metabolites. In
terms of determining the chemical structure of metabolites, metabolic studies can result
in the list of metabolites with known structures or provide just “molecular features” (or
“metabolite features” or “mass features” for mass spectrometry; MF)—a list of peaks,
which correspond to undefined metabolites. Each MF, such as the m/z peak obtained
by mass spectrometry or chemical shift peak obtained by nuclear magnetic resonance,
can originate from different metabolites, and one metabolite can produce several MFs.
MFs can be used as markers associated with desired traits of a plant. Metabolic studies
that identify MFs are suitable for the classification of samples and are commonly referred
to as “metabolic fingerprinting” rather than “metabolic profiling” [71–73]. Whether the
chemical structures of the metabolites are determined or metabolic study results in MF
data, usually the concentrations of metabolites are obtained in relative units. A reliable
absolute quantification (i.e., quantification in units, such as mg/mL of the sample) can be
done by the addition of the known amount of stable isotope-labeled metabolite of interest
to the sample as an internal control.

6.2. Mass Spectrometry

Two major analytical technologies are currently used in metabolomics for the identifica-
tion of small molecules—mass spectrometry (MS) and nuclear magnetic resonance (NMR).
MS systems, apart from rare and highly advanced systems, such as Fourier-transform
ion cyclotron resonance (FTICR), can only resolve a relatively limited number of small
molecules at a time. Therefore, they are coupled with chromatographic systems to separate
a complex mixture of metabolites and reduce the number of substances entering the MS
at each point in time. The type of chromatography—gas chromatography (GC) or liquid
chromatography (LC)—determines the possible ionization methods. Thus, MS coupled
with GC (GC-MS) and MS coupled with LC (LC-MS) have specific features beyond the
differences in chromatographic separation.

The separation using GC can only be performed for relatively volatile compounds,
and these compounds should be thermally stable at the conditions of separation (usually
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in the range 150–450 ◦C). To achieve it, metabolites are subjected to chemical derivatization
prior to GC-MS analysis for converting of non-volatile compounds to volatile products.
Several classes of metabolites can be analyzed by this method: amino acids, various sugars
(sugars, sugar phosphates, sugar acids and sugar alcohols) and organic acids [73]. GC-MS
is suitable for the determination of phytohormones, such as salicylic acid (SA), jasmonic
acid (JA), jasmonoylisoleucine (JA-Ile), indole-3-acetic acid (IAA), in-dole-3-carboxylic acid
(ICA), indole-3-butyric acid (IBA) and 2-cis,4-trans-abscisic (ABA), and phytohormone
precursors, such as benzoic acid (BA), trans-cinnamic acid (CA) and 12-oxo-phytodienoic
acid (OPDA) [74,75]. However, LC-MS is now more commonly used for the determination
of phytohormones than GC-MS [76].

Analysis of lipids, which is often considered to be related to but distinct from the area
of metabolomics, called lipidomics, also can be performed by GC-MS, although it is not the
preferred method nowadays [77,78]. When using GC-MS, part of the structural information
is lost, since triglycerides are hydrolyzed for subsequent chemical derivatization, and in
the resulting sample there is no way to determine which fatty acid residues were in which
positions in the original phospholipids, triglycerides, and other lipid molecules.

Electron (or electron impact) ionization (EI) is a common ionization method in GC-MS,
and besides ionization, it causes the fragmentation of molecules. As a result of EI, each
chemical substance generates a specific pattern of fragments, and the comparison of this
pattern with patterns in a library allows the identification of the metabolite.

The number of identified metabolites in the sample depends on the type of mass
analyzer. The higher the mass resolution (the ability to distinguish two adjacent ions),
the ion mass range, and the acquisition rate (the rate of the scan for the full mass range),
the more individual metabolites can be identified and quantified in a sample. The most
affordable GC-MS systems are equipped with a quadrupole (Q) analyzer and are well
suited for targeted metabolomics when high sensitivity is not required, and are also suitable
for non-targeted metabolomics to measure up to 100 of the most abundant metabolites
(practically speaking, several dozen of metabolites). GC-MS systems with a time of flight
(TOF) analyzer can measure up to 1000 metabolites in untargeted metabolomic studies
(practically speaking, several hundred metabolites), and can also be used in targeted
metabolomics for measurements of low abundance metabolites that are obscured by major
metabolites in Q analyzers due to their lower resolution. Orbitrap and especially Fourier
transform ion cyclotron resonance (FTICR) are high-end analyzers that are very powerful
and can measure roughly the entire metabolome [79].

MS systems with triple quadrupoles (QqQ) allow separation of selected ion(s) for the
fragmentation step, thus providing tandem (MS/MS) capability for the analysis. The ions
that are generated from the precursor (parent) ion provide additional structural information
on the parent ion in the untargeted metabolomic approach. The MS/MS capability is
extremely useful in the targeted metabolomics approach for accurate quantification of
low-abundant metabolites, such as phytohormones. While several metabolites can produce
the ions of the same or near the same mass-to-charge ratios (m/z), the MS/MS systems are
capable of picking specific ion(s) for further destruction that produces product (daughter)
ions with a different m/z depending on the structure of the original (precursor or parent)
ion. Monitoring such specific product ion allows a specific quantitative determination of the
concentration of the metabolite of interest. This tandem MS quantification method is called
SIM (Single Son Monitoring). Likewise, the MRM (Multiple Reaction Monitoring) allows
the quantitative determination of the concentrations of several metabolites of interest.

LC-MS systems do not have limitations on the size and volatility of the metabolites,
which makes them more universal than GC-MS systems. However, the ionization with the
EI method is not possible for LC-MS since the analyte enters the mass spectrometer in a
huge excess of the liquid phase. Ionization methods in LC-MS have some limitations. The
widely used electrospray ionization (ESI) works well for analytes that are charged in the
LC mobile phase, but ESI cannot be used for the determination of non-charged analytes.
Furthermore, the detection of a less-charged metabolite will be suppressed by a more-
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charged metabolite if both metabolites leave the LC column at the same time (i.e., they have
the same retention time in LC protocol). Quantification of the concentrations of metabolites
by the intensity of the MS signal using ESI requires special attention. Atmospheric pressure
photo ionization and chemical ionization (APPI, APCI) also have some disadvantages.
However, due to the wider range of analytes that can be analyzed by LC-MS compared
to GC-MS and easier sample preparation (no chemical modification required), LC-MS is
in many cases the preferred method for the metabolomic studies. Also, the advantage of
ESI ionization is that it can be adjusted to be delicate enough to observe unfragmented
analytes or less delicate to fragment analytes with the desired degradation depth.

An untargeted metabolomics study generally requires more powerful equipment. The
ideal choice is MS with an FTICR mass analyzer coupled with chromatography or used
in a shotgun approach (direct infusion of sample into the MS instrument without prior
separation on a chromatographic column) [79]. LC-MS and GC-MS with TOF ion analyzer
are less powerful but still useful instruments for untargeted metabolomics, especially if the
identification of chemical metabolites is not the primary goal.

Tandem MS (MS/MS) instruments are very well suited for targeted metabolomics
since they can highly selectively detect the presence of the metabolite of interest even
in the presence of other metabolites that have not been separated chromatographically.
The relatively affordable LC-MS/MS systems equipped with quadrupole mass analyzers
can be used for the targeted metabolomic studies. GC-MS can also be used for targeted
metabolomic if the metabolites of interest can be converted into volatile derivatives. The
most affordable systems are GC-MS systems with a quadrupole analyzer.

For non-targeted metabolomics, the key factors are the high resolution of the method
and a wide dynamic range for the determination of metabolites.

MS and especially MS/MS are sensitive methods and are powerful tools for the
identification of metabolites. A single instrument can generate hundreds of thousands
of MS/MS spectra per day, and the proper automated interpretation of the results is
crucial. The straightforward approach for the automatic identification of a compound is
the comparison with MS/MS spectra from spectral libraries, obtained using the reference
samples. However, the libraries have spectra for just a small fraction of all possible
compounds. High-resolution MS and computer-based approaches help to draw conclusions
about the structure of the unknown compound. First, the analysis based on the mass
differences caused by various content of stable isotopes in the same molecules helps to
distinguish different compounds [80]. Second, the predicted fragmentation is calculated
for virtually any possible small molecule since the fragmentation of molecules occurs by
some rules, and the fragmentation products can be predicted. To infer the structure of
unknown compound based on MS data, a predicted fragmentation tree (fragmentation of
original molecule and fragmentation of the fragments) are used. The state-of-the-art tool,
SIRIUS 4, uses a database of over 70 million unique chemical structures to reconstruct the
combination of metabolites that generated a given pattern of fragmentation products [81].

6.3. Mass Spectrometry Imaging (MSI)

Currently, the isolation of organelles for metabolome analysis is the only way to
reveal the intracellular distribution of the metabolites. Furthermore, some clues regard-
ing the intracellular sites of metabolite formation can be obtained from information on
the intracellular localization of metabolic enzymes. MSI provides a direct way to deter-
mine metabolites in a plant sample by the ionization of small spots on the surface of
samples followed by MS analysis of the evaporated ions. In a recent study on 20-µm-thick
cross-sections of a green asparagus spear, the spatial resolution by MSI reached was ap-
proximately 200 µm [82]. Light microscopy of stained sections allowed the identification of
the type of tissue—ground, developing, epidermis (about 200 µm thick) and metaxylem
and protoxylem in vascular bundles (with a diameter or about 400 µm). MSI with an
FTICR mass spectrometer determined 11,365 mass features (MFs) in the sections with a
spatial resolution of about 200 µm. Some MFs were recognized as specific metabolites.
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Thus, a health-promoting metabolite rutin (quercetin 3-O-rutinoside) was produced in the
epidermis, developing stem tissue and protoxylem. All the MFs were divided into seven
patterns using segmentation analysis. The distribution of the patterns across the section
corresponded to the type of tissue.

MSIs have not yet reached a subcellular level of the analysis; however, it holds the
promise to be a valuable tool in the fine determination of the location of the metabolites
within tissues and cells.

6.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR is an alternative to MS methods for metabolomic studies. NMR instruments are
much more expensive than MS systems besides the most advanced MS systems, such as
MS with FTICR mass analyzer, which uses a magnetic field comparable in strength to the
magnetic field used in NMR instruments. As reported in 2019, NMR is applied four to five
times less often than MS [83]. NMR spectroscopy instruments measure chemical shifts in
molecules containing atoms with a spin different from one, such as hydrogen (1H), stable
isotopes of carbon (13C) and nitrogen (15N). An obvious advantage of NMR is the possibility
of non-destructive measurements and measurements without sample preparation for both
liquid, semi-liquid and solid samples. NMR measurements do not damage living samples;
therefore, NMR provides a unique opportunity to measure metabolic fluxes in living
objects. However, laborious sample preparation significantly improves the sensitivity
and resolution.

NMR measurements are quantitative, highly reproducible, can be performed with
high throughput, although longer measurements and measurements for both 1H and 13C
strongly improve the results. The downsides of NMR are low sensitivity, especially for
13C and nitrogen 15N, and low resolving power. Thus, just up to the 100 most abundant
metabolites can be recognized and quantified. However, in addition, NMR spectra have
a vast number of minor peaks (more than ten thousand), which cannot be assigned for
specific metabolites but can be utilized to characterize biological samples as molecular
features (MF). Two-dimensional NMR (usually 1H and 13C) helps in the identification of
some MFs as specific molecules; however, the 13C abundancy in natural samples is low
and 13C NMR provides information on the metabolites with a high concentration in the
sample. Thus, NMR is well-suited for untargeted metabolomic studies.

7. Metabolomics Studies

Metabolomics methods serve to determine chemical makeup at the level of small
molecules in plant samples. Usually, plants of different varieties or grown in different
conditions are compared. The information obtained using metabolomics helps in under-
standing the physiologic processes in plants and can be used on its for identification of
metabolic markers of genotype performance or as diagnostic markers for the determination
of specific stresses [84].

Methods of metabolomics, unlike genetic ones, require expensive equipment even
for relatively simple tasks and greater care in sample preparation. It is not surprising that
they are used much less frequently than genetic methods. However, metabolic studies are
gradually becoming more common, with thousands of articles published annually. These
studies can be divided into two main groups—purely metabolic studies and studies using
other ohmic methods.

Pure metabolic studies can be focused on several goals. One of them is the identifi-
cation of previously unknown secondary metabolites that are important by themselves,
such as active substances of medicinal plants and essential flavor components of edible
plants, coffee and tea. Another goal may be the identification of metabolic markers that
report the current state of the plant, such as environment-dependent or stress responding
primary and secondary metabolites or metabolites that can predict the desired traits. When
the metabolites of interest are known or have been identified, they can be monitored in
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plants for the metabolic marker selection, plant diagnostics, testing of elicitors of secondary
metabolites, etc. (Figure 2, Step 1).

Purely metabolomic research is not necessarily fast if the identification of metabolites
is desired. An example of the decades-long work on the elucidation of the structures of
active substances is the ginseng plant, which is widely used in traditional Chinese medicine.
Medicinal as well as aromatic crops are high-value crops and are used in the cosmetic and
pharmaceutical industries. Ginseng produces ginsenosides—secondary metabolites of the
saponin family. Due to their complex steroid-like chemical structure, it takes a lot of effort
to decipher this structure. At least 170 ginsenosides are currently known. Of them, over
fifty ginsenosides were isolated from 2000 to 2019. The pharmacological effects of these
metabolites still have to be determined [85]. Overall, plants are an important source of
complex chemical substances. Natural products and semi-synthetic compounds account for
about 30% of all FDA (the United States Food and Drug Administration agency) approved
drugs [86].

Figure 2. A general scheme of metabolic studies and their integration with QTL mapping and GWAS. Plant samples
(leaves, roots, grains etc.) for metabolomics analysis should be collected with special care (see Section 6.1). Typically, plant
samples are collected from different crop accessions, or the same accessions grown under different conditions, or samples
are collected at different growth stages. In the first step, the metabolomics research methods are applied. The results of such
studies are usually the determination of metabolites or metabolic features (see Section 6.1) with different concentrations
between the samples. These metabolites can then be monitored as metabolic markers of agronomically important traits or as
valuable traits by themselves. (see Section 7). Step 2 assumes integration of the genetic data. The metabolite concentrations
obtained in the first step can be used as quantitative traits for QTL mapping analysis (which requires defined breeding
protocol for generation of plant samples) or GWAS (which requires substantial number of genetically diverse plant samples
of the cultivar of interest). It results in the identification of metabolic QTLs. Then, metabolic QTLs can be used for the
development of genetic markers and their application for MAS (see Section 9). Also, valuable genes and gene sets can be
identified in related and unrelated plant species to improve crops.
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8. Metabolic Markers and Their Performance

Since the metabolome is almost at the very end of the manifestation of the genetically
encoded design of the organism, it has taken into account a large portion of gene–gene and
gene–environment interactions. The metabolome contains “condensed information” [87]
on the performance of the genotype in the specific growth conditions tested. Indeed,
plant metabolites can be informative for the prediction of agronomically valuable traits.
Metabolic markers are quantitative traits that are intensities of MS or NMR signals that
represent their concentrations and are usually expressed in relative units. They can be
correlated with quantitative phenotype traits. Here are some examples of the potential of
metabolic markers for predicting agronomic traits.

A recent study demonstrated that corn yield and maturity biomass can be well pre-
dicted by metabolic parameters at a relatively early stage when the collar of the seventh
leaf becomes visible (V7 stage), which occurs approximately a month after seeding, about
a month before the corn begins to silk or about 3 months before the corn ripens. At this
stage, the corn is growing rapidly; the kernel row determination is just beginning. The
ratio of leaf starch and net carbon assimilation at the V7 stage correlated very well with
the yield and maturity biomass (the correlation coefficients were −0.87 for yield and −0.96
correspondingly). The correlations were negative: the higher leaf starch content per net
carbon assimilation, the lower the yield and maturity biomass of the three corn hybrids
tested in the field [88].

An untargeted metabolomic study on the metabolome of rice seeds found that a
number of metabolites are associated with the heading date of the plant that produced
these seeds. Twenty-three metabolites of different classes (flavonoids, nucleic and amino
acids and others) in mature seeds were associated with the heading date with the correlation
coefficients +/− 0.50–0.68. Just to list some metabolites, they were flavonoid C-hexosyl-
apigenin O-hexoside (R = 0.60), nucleic acid 5′-Deoxy-5′-(methylthio)adenosine (R = 0.59),
anthocyanin Petunidin 3-O-rutinoside (R = 0.54) and amino acid L-Tryptophan (R = −0.53).
Several metabolites with the highest correlation coefficients were not identified. It has
been observed that the grain metabolome is highly dependent on the state of the grain—
whether they are in the grain filling stage or mature seeds or germinating seeds. Among
800–850 metabolites observed, 372 metabolites were common for all three stages. Several
metabolites were correlated with heading date at all three tested states of grains: fatty acid
9,10-epoxy-18-hydroxy-octadecanoic acid (R = 0.34 to 0.39), terpene Momilactone (R = 0.30
to 0.41) and a sugar derivative Methyl di-alpha-L-rhamnoside (R = 0.31 to 0.36) [89].

Fernandez et al. summarized coefficients of correlation of metabolic markers with
phenotype traits from a number of various studies. Metabolites correlate with agronomic
traits with |R| in the range of 0.2 to 0.8 [84].

The heritability of metabolite traits (metabolite levels) was investigated in a study of
2628 samples from 565 spring barley malting lines harvested in 3 years in two locations.
Six phenotypic traits (filtering speed, wort clearness, extract yield, wort color, beta glucan
and wort viscosity) and metabolomic data consisting of 24,018 MFs for corresponding
wort samples were obtained. The MFs in this study were peaks in the NMR spectra that
were not attributed to any particular metabolites. The heritability of almost 36% MFs was
significantly different from 0, about 4% of MFs had moderate heritability (0.2 to 0.5) and
0.04% had high heritability (0.5 to 0.52). The NMR peaks with high heritability were similar
to peaks of amino acids, such as tyrosine, phenylalanine and alanine. The MFs with the
absence of heritability or low heritability perhaps were not the metabolite-related signals
and appeared due to the extended range of chemical shifts obtained by NMR analysis. The
correlation between MFs with significant heritability and phenotypic traits was weak, with
|R| typically less than 0.30 [90].

9. Integration of Metabolomics Data with QTL and GWAS Data

A number of studies combine metabolomics data with genetic data and with other “omics”
data. The most utilized approach is the genomic mapping of metabolites using metabolite-based
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(or metabolic or metabolome) QTL mapping (mQTL) and GWAS (mGWAS). As the quantitative
traits, metabolite levels in QTL mapping and GWAS are treated as any other quantitative
phenotypic trait. In QTL, traits mapping relies on recombination events in controlled crosses of
two or more parents (biparental and multiparental populations). GWAS is performed using a
set of diverse accessions of a crop of interest with an unknown degree of relationship [92]. In
both approaches, differences in metabolite concentration between individuals are explained by
the genetic control of the metabolite by the locus or loci. Mapping a metabolite to this specific
locus (or loci) adds the genetic information known for this locus, such as a gene located in it.
The opposite is also true—the associated metabolite may shed light on the possible function
of gene(s) in the locus. From a practical point of view, mQTL and mGWAS allow to replace
metabolite marker by a more convenient genetic marker for subsequent studies and breeding
programs (Figure 2, Step 2).

In the metabolomic study on rice seeds at three states (seeds during grain filling,
mature seeds and germinating seeds), mentioned in the previous chapter [89], mQTL
application allowed the genetic determinants of the metabolic differences of two rice
cultivars to be determined. The RILs (recombinant inbred lines) generated from the parent
cultivars were substantially different in the metabolomic profiles of seeds, and more than
1500 mQTLs were found for each seed state that was associated with roughly 80% of
all detected metabolites. The metabolites were controlled by one to seven mQTLs, and
each mQTL mostly determined less than 20% of metabolite variation; however, above
1% of mQTLs determined more than 50% of metabolite variability. Thirty-five candidate
genes were found within the determined mQTL. Overexpressing one of these genes in a
transgenic plant confirmed its disturbing effect on the levels of amino acids [89].

Given the effectiveness of the mQTL and mGWAS methods for functional genomics,
it is not surprising that they are actively used. More than 20 genome mapping studies of
rice, wheat, corn, barley, tomato and rapeseed are listed in the review of Sharma et al. [90].

10. Metabolomics of Plant Stress Response

Abiotic and biotic stresses cause global changes in the plant metabolome. The stress
response is probably the area in which metabolomics has focused the most attention.

Plants respond to abiotic stress through phytohormone- and Ca2+-dependent signaling
that activates transcription factors and induces the expression of stress-responsive genes.
The stress also induces the generation of reactive oxygen species (ROS) [91].

The general scheme of response to pathogens is similar. The reception of biotic stress
signals activates signaling pathways and hormonal regulation through primarily salicylic
acid (mostly in response to biotrophic pathogens) and jasmonate with ethylene (mostly in
response to necrotrophic pathogens), but other hormones (gibberellins, auxin, brassinolide,
cytokinins and abscisic acid) also contribute to the response [92].

All these responses result in ROS generation and metabolic response.

10.1. Metabolomics for Abiotic Stress Responses and Tolerance

A metabolic response to drought stress was reported long before the term “metabolomics”
was coined. The accumulation of amino acid proline was observed in 1954 in wilted rye. In
the 1970–1990s, the list of metabolites accumulated in plants subjected to osmotic stresses
(drought and soil salinity) was expanded [93]. The main role of elevated concentrations of
these metabolites under osmotic stresses is to maintain turgor, and these metabolites have been
named “compatible solutes” (not interfering with cell metabolism) and “osmolytes”. It has also
been found that osmolytes, in addition to osmotic stresses, accumulate under a variety of other
abiotic stresses.

To date, dozens of osmolytes are known. Roughly, they can be divided into three
classes: soluble carbohydrates (sugars, raffinose family oligosaccharides and polyols
or sugar alcohols), amino acids (including non-proteinogenic amino acids, such as 4-
aminobutyrate) and polyamines and betaine with their derivatives, such as glycine be-
taine [12,94]. Transgenic sugar cane cultivars with increased synthesis of glycine betaine
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NXI-1T, NXI-4T and NXI-6T created by PT Perkebunan Nusantara XI (Persero) have an
increased tolerance for water stress (see Section 5). It is assumed that under conditions of
stress, osmolytes stabilize the lipid membrane structure, maintain proper protein folding
and protect macromolecules and membranes from aggregation [94].

Aside from the common osmolytes stabilization effect on membranes and lipids,
proline, perhaps the most common osmolyte, scavenges reactive oxygen species (ROS)
singlet oxygen 1O2, an excited oxygen molecule with increased reactivity. This process
occurs through a “physical” mechanism without the consumption of or damaging the
proline. Proline also scavenges another common ROS superoxide anion O2

− in some
chemical reaction(s) that converts proline to a product. Proline in both reactions is slower
than ascorbate, but considering proline’s high concentration during stresses, its contribution
to the total ROS-scavenging activity of metabolites becomes comparable to ascorbate [95].

Even a relatively small increase of proline is associated with improved crop perfor-
mance. Thus, in ten tested common wheat cultivars, the level of proline in the leaves at
heat stress during the grain filling stage increased by approximately three-fold, and this
proline level at heat stress positively correlated with the yield [96].

Plant treatment by exogenous proline during various abiotic stresses at a concentration
of 5–50 µM was protective for a number of plants. For example, the treatment of common
wheat with 20 µM proline improved the grain yield [97].

Antioxidant defense is an important part of the stress response. By increasing the
concentration of antioxidants, such as ascorbate, it is possible to increase the resistance of
plants to stress [98].

The collection of osmolytes vary for different species [99]. Proline, sucrose, glucose are
very common osmolytes for agricultural crops, and trehalose, a non-reducing disaccharide,
is more common for non-vascular plants. Still, trehalose is considered an osmolyte in
some studies of wheat and rice. Moreover, the metabolism of trehalose in vascular plants
is interconnected with the abiotic stress response. Trehalose and its precursor, trehalose
6-phosphate (T6P), regulate stomatal function in guard cells. T6P and sucrose also recip-
rocally regulate their metabolism [99,100]. An improvement in abiotic stress tolerance
following a reduction of T6P levels is a well-established observation, especially if the
reduction is localized in developing reproductive organs [101]. The overexpression in
developing maize ears of trehalose-6-phosphate phosphatase from rice reduced T6P con-
centration and improved yield by more than 10% in normal conditions and more than 30%
in drought [102].

The comparison of changes in the metabolome of plants that are resistant and suscep-
tible to a certain stress in response to this stress makes it possible to identify the metabolites
responsible for the plant’s ability to adapt to this stress. These protective metabolites should
be among the metabolites, the level of which increases more strongly in stress-resistant
plants and vice versa, metabolites that hinder adaptation should be among those small
molecules, the level of which in stress-resistant plants decreases more strongly.

In a recent comparison of the response to drought of a drought-resistant durum wheat
cultivar Cappelli and drought-susceptible cultivar Colosseo, the increased accumulation of
branch chain amino acids valine, leucine and isoleucine, as well other amino acids—proline,
glycine, glutamate, alanine—and carboxylic acids acetate and malate in the seedlings of the
resistant Cappelli was observed. In susceptible Colosseo, the changes were not so strong as
in Colosseo, and glycine and glutamate were even slightly decreased in stress. Opposite
to the amino acids, the level of sucrose in resistant Cappelli was reduced but raised in
Colosseo. In these two contrasting cultivars, chloroplastic-like branched-chain amino acid
amino-transferase TdBCAT from both A and B durum wheat genomes (TdBCAT-A and
TdBCAT-B) were upregulated during drought stress only in the resistant Cappelli, while
the expression level of TdBCAT-A virtually did not respond to the stress, and of TdBCAT-B
responded by a small increase only. This observation raises the hypothesis that TdBCAT
gene variants in Cappelli participate in the formation of drought stress tolerance [103].
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A comparison of metabolic responses of lentil seedlings of drought-tolerant cultivar
Elpida and drought-sensitive Flip03–24L showed that the drought stress strongly increased
the level of glucose (20 fold) in both cultivars, while fructose and trehalose strongly
decreased in the tolerant Elpida but strongly increased in sensitive Flip03-24L. Amino acids
were raised in stress for both cultivars except tryptophan, which was decreased in sensitive
Flip03-24L, and valine, which was decreased in Elpida and tended to be decreased in
Flip03-24L. L-asparagine responded to stress in tolerant Elpida stronger than in susceptible
Flip03-24L (20 fold vs. 7 fold). Carboxylic acid raised in stress with a stronger effect in the
tolerant Elpida: seven–ten-fold in Elpida vs. five–six-fold in Flip03-24L for 2-ketoglutaric
acid, five-fold vs. no change for malonic acid and four-fold vs. two–three-fold for citric
acid [104].

A comparative metabolomic analysis of responses to cold in leaves of cold stress-resistant
and susceptible cultivars of Tibetan hulless barley showed that the unique response of cold-
resistant cultivar to cold stress was an increase in the levels of 6-methylmercaptopurine and
coniferin [105].

It is generally accepted that environmental stress causes the increase of the levels of
osmolytes, but the dynamics and magnitude of changes in each individual metabolite and
the relationship between changes in the levels of different metabolites remains unclear.

10.2. Metabolomics for Biotic Stress Responses and Tolerance

Plants are constantly attacked by viruses, bacteria, fungi, nematodes, insects and
animals. For their protection, plants use constitutively present metabolites, phytoanticipins
that include saponins. Upon infection, plants induce oxidative stress and generate antimi-
crobial secondary metabolites of various classes named phytoalexins. Among phytoalexins
are isoprenoids (terpenoids), alkaloids and flavonoids [106].

Pathogens induce changes in the concentrations of different classes of metabolites:
amino acids, organic acids, fatty acids, phytohormones and polyamines [107].

To identify genes involved in response to a particular stress, a parallel analysis of
the transcriptome is carried out. It allows correlations between the expression of certain
genes and the appearance/accumulation of the metabolite of interest to be identified. The
participation of correlating genes in the synthesis of metabolites is assumed based on
the understanding of biosynthetic pathways. Thus, a recent metabolomic study revealed
multiple changes in the metabolite level in response to pathogens in tomato [108]. The
metabolomic response was different depending on the pathogen and elicitor type. Among
other changes to the biotic stress-induced by fungus Cladosporium fulvum, the generation of
falcarindiol was increased. Falcarindiol is an oxylipin and an acetylenic fatty acid. Based
on the general understanding of falcarindiol biosynthesis, it was suggested that the key
enzymes required for the generation of these acetylenic fatty acids are desaturases. To
reveal the possible biosynthetic pathway that is activated and results in the generation of
falcarindiol, the expression of genes was studied by RNA-seq in parallel with a metabolic
study. Several types of pathogen/elicitors and several time points underwent parallel
metabolome and transcriptome analysis. Among 40 putative desaturases found in the
tomato transcriptome, mRNA expression of three desaturases were correlated best with
falcarindiol accumulation in response to stress. Further, a putative decarbonylase was
located in the same 20 kb locus, and its expression was also positively correlated with
falcarindiol level. The generation of tomato lines with a knockout of these genes using
CRISPR/Cas9 prevented the generation of falcarindiol, and genetic complementation tests
using Agrobacterium-mediated transient overexpression of cDNA for these genes restored
falcarindiol generation. Surprisingly, knockout tomato lines that were unable to gener-
ate falcarindiol were more resistant to pathogen compared to the falcarindiol-producing
original tomato line. Even so, the combination of metabolomic study together with gene
expression was able to uncover genes involved in specific metabolite biosynthesis.
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11. Conclusions

Metabolomics is the latest and least mature among other major “omics”. It has made
a significant contribution to understanding the chemical response of plants to stresses.
However, the metabolomics studies on yield and yield components are sparse. More studies
are required for more complete and consistent data. The ability to improve plant varieties in
the long term requires the more active involvement of functional “omics”. It can be assumed
that the metabolome, in comparison with transcriptome and proteome, is the closest
to phenotype in terms of the degree of influence of gene–gene and gene–environment
interactions. Therefore metabolites can be valuable markers of agronomically-important
traits of agricultural crops. mQTL and mGWAS contribute greatly to the development
of functional genomics. It can be expected that the methodology for the application of
metabolomic methods in crop breeding will be intensively developed.

To date, a metabolism-based approach has proven useful for the creation of GM plants
with improved traits, such as abiotic stress tolerance, better nutritional qualities etc. The
introduction or suppression of one or many genes at once in one plant is an effective tool for
obtaining transgenic plants with the desired characteristics. However, this reverse genetic
approach is difficult to translate to breeding crops since there is no information of the
performance of specific alleles and genes in the available genetic pools and wild relatives.
There are two research gaps limiting the application of metabolomics: (1) the gap between
experimentally obtained datasets of metabolite concentrations and their interpretation in
terms of biochemical pathways and their perturbations and adjustments, and (2) a gap
between the agronomically important traits and their underlying biochemical pathways.
Thus, one of the future directions in metabolomics is the development of a framework
that will allow to interpret a large set of metabolite concentration as readouts of specific
metabolic processes. In the near future, the development and use of genetic markers
obtained from mQTL mapping and mGWAS studies can be expected in crop breeding.
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