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TASK-3 (Exton, 1996; Chemin et al., 2003; Lopes et al., 2005; 
Chen et al., 2006) in a similar fashion as I

KL
 (McCormick, 1992a; 

Salt, 2002).
Recently, it has been shown that the reduction of the stand-

ing outward current (I
SO

), and the depolarization induced by the 
activation of m

1
AChR and m

3
AChR, depends on the action of Gα

q
 

in TC neurons (Broicher et al., 2008b). Acetylcholine is one of 
several neurotransmitters that play a major role in the modulation 
of thalamic states of activity. Thus, we were interested in other 
neurotransmitter systems depending on the presence of Gα

q
 and 

involved in Gα
q
-mediated signaling in TC neurons. We used the 

same genetic strategy to investigate the role of mGluR and metabo-
tropic 5-HT receptors (5-HTR) in conditional forebrain-specific 
Gα

q
/Gα

11
-double-deficient mice (Gα

q
/Gα

11
−/−) (Wettschureck 

et al., 2004b).

Materials and Methods
Mice
All animal handling and procedures were approved by the local 
authorities. Generation of forebrain-specific Gα

q
/Gα

11
 deficient 

mice and genotyping of the gnaqflox allele, of gna11-wildtype 

introduction
The thalamocortical (TC) network takes up two states of activity: 
slow and highly synchronized oscillatory burst activity during slow 
wave sleep, and tonic generation of action potentials alongside fast 
oscillations during mental alertness and REM sleep. Slow oscil-
latory activity has a frequency of <15 Hz, while fast oscillations 
occur at ∼40 Hz (Steriade et al., 1997). Chemically-coded pro-
jections from the brainstem activate the forebrain by releasing 
acetylcholine (ACh), noradrenalin (NA), and serotonin (5-HT). 
These neurotransmitters mainly act on G-protein-coupled mem-
brane receptors (McCormick, 1992a). In a similar way, the arousing 
action of glutamate, released from corticothalamic axons, is medi-
ated by metabotropic glutamate receptors (mGluR) (Salt, 2002). 
A common action of these neurotransmitters is a depolarizing 
shift of the membrane potential of TC neurons, causing rhyth-
mic bursting to cease and tonic activity to commence. Membrane 
depolarization is caused to a large part by the inhibition of a leak 
K+ conductance (I

KL
), the molecular correlate of which are the 

two pore-domain K+ (K
2P

) channels TASK-1 and TASK-3 (Meuth 
et al., 2003, 2006). The activation of muscarinic ACh receptors 
(mAChR) and mGluR1 coupled to G

q
/G

11
 inhibits TASK-1 and 
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In thalamocortical relay (TC) neurons, G-protein-coupled receptors play an important part in 
the control of activity modes. A conditional Gαq knockout on the background of a constitutive 
Gα11 knockout (Gαq/Gα11

−/−) was used to determine the contribution of Gq/G11 family G-proteins 
to metabotropic serotonin (5-HT) and glutamate (Glu) function in the dorsal part of the 
lateral geniculate nucleus (dLGN). In control mice, current clamp recordings showed that 
α-m-5-HT induced a depolarization of Vrest which was sufficient to suppress burst firing. This 
depolarization was concentration-dependent (100 μM: +6 ± 1 mV, n = 10; 200 μM: +10 ± 1 mV, 
n = 7) and had a conditioning effect on the activation of other Gαq-mediated pathways. The 
depolarization was significantly reduced in Gαq/Gα11

−/− (100 μM: 3 ± 1 mV, n = 11; 200 μM: 
5 ± 1 mV, n = 6) and was apparently insufficient to suppress burst firing. Activating Gαq-coupled 
muscarinic receptors affected the magnitude of α-m-5-HT-induced effects in a reciprocal 
manner. Furthermore, the depolarizing effect of mGluR1 agonists was significantly reduced in 
Gαq/Gα11

−/− mice. Immunohistochemical stainings revealed binding of 5-HT2CR- and mGluR1α-, 
but not of 5-HT2AR-specific antibodies in the dLGN of Gαq/Gα11

−/− mice. In conclusion, these 
findings demonstrate that transmitters of ascending brainstem fibers and corticofugal fibers 
both signal via a central element in the form of Gq/G11-mediated pathways to control activity 
modes in the TC system.
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and -knockout alleles, and of the Cre-transgene has been 
described previously (Wettschureck et al., 2001, 2004b). The 
genetic background was predominantly C57BL6/N (4th gen-
eration backcross). As controls, littermates with the genotype 
Camkcre4−/−; gnaqfl/fl; gna11−/− (named Gα

11
−/− in the following) 

were used. Former studies have shown that no significant dif-
ferences exist between Camkcre4−/−; gnaqfl/fl; gna11−/− and non-
littermate C57BL6/N mice (Offermanns et al., 1998; Broicher 
et al., 2008b). For this reason, we have also included control 
experiments with C57BL6/N mice.

PreParation of brain slices for electroPhysiological 
exPeriMents
At postnatal days 18–24 (Gα

11
−/− and Gα

q
/Gα

11
−/−) or 11–28 

(C57BL6/N) mice were deeply anesthetized using isoflurane and 
decapitated as described earlier (Meuth et al., 2006). Briefly, tha-
lamic slices were prepared as coronal sections on a vibratome (Series 
1000 Classic, St. Louis, USA) in an ice-chilled solution containing 
(in mM): Sucrose, 200; PIPES, 20; KCl, 2.5; NaH

2
PO

4
, 1.25; MgSO

4
, 

10; CaCl
2
, 0.5; dextrose, 10. The pH was adjusted to 7.35 with 

NaOH. Prior to recording, slices were kept at room temperature 
submerged in artificial cerebrospinal fluid (ACSF) that contained 
(in mM): NaCl, 125; KCl, 2.5; NaH

2
PO

4
, 1.25; NaHCO

3
, 24; MgSO

4
, 

2; CaCl
2
, 2; dextrose, 10. The pH was adjusted to 7.35 by gassing 

with carbogen (95% O
2
, 5% CO

2
).

Patch-claMP recordings
Whole-cell recording pipettes (2–3 MΩ) were prepared from 
borosilicate glass capillaries [GT150T-10(F), Clark Electromedical 
Instruments, Pangbourne, UK] and filled with an intracellular solu-
tion containing (in mM): K-gluconate, 95; K

3
-citrate, 20; NaCl, 10; 

HEPES, 10; MgCl
2
, 1; CaCl

2
, 0.5; BAPTA, 3; Mg-ATP, 3; Na-GTP, 

0.5. The pH was adjusted to 7.25 with KOH, the osmolality was 
295 mOsm/kg. In the recording chamber, slices were continu-
ously superfused with a solution containing (in mM): NaCl, 120; 
KCl, 2.5; NaH

2
PO

4
, 1.25; HEPES, 30; MgSO

4
, 2; CaCl

2
, 2; dextrose, 

10. The pH was adjusted to 7.25 with HCl and osmolality was 
305 mOsm/kg. Recordings were performed at room temperature. 
Whole-cell patch-clamp electrodes were attached to an EPC-10 
amplifier (HEKA Elektronik, Lamprecht, Germany), and digitized 
signals were saved to a computer using Pulse software (HEKA). 
During current clamp recordings, the instantaneous frequency (f

i
) 

of action potential generation was determined by analyzing the 
first two action potentials that were generated upon a depolarizing 
current pulse.

Recordings were only performed on recombined TC neu-
rons. We distinguished these from non-recombined GABAergic 
interneurons based on our previously established physiological and 
morphological criteria (Broicher et al., 2008a). All cells had a rest-
ing membrane potential negative of −60 mV, the access resistance 
was in the range of 5–15 MΩ and series resistance compensation 
of 30% or more was routinely applied. A liquid junction potential 
of 8 ± 2 mV (n = 10) was measured and taken into account.

All results are presented as mean ± SEM and differences were 
considered significant when p < 0.05. Substance effects were tested 
for statistical significance using a modified Student’s t-test for 
small samples.

drugs
(±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), 
(RS)-3,5-Dihydroxyphenylglycine (DHPG) and α-methyl-5-
hydroxytryptamine (α-m-5-HT) were obtained from Tocris (Biozol, 
Eching, Germany) or from Biotrend (Biotrend Chemikalien GmbH, 
Cologne, Germany). Muscarine was obtained from Sigma-Aldrich 
(Sigma, Deisenhofen, Germany) and CP 809101 was purchased from 
Biozol (Eching, Germany). Drugs were prepared as stock solutions 
in distilled water or directly added to the perfusion medium.

iMMunofluorescence
Gα

q
/Gα

11
−/− mice (postnatal days 18–27) were deeply anesthetized 

using pentobarbital (50 mg/kg body weight) and transcardially per-
fused with PBS, followed by an ice-cold 4% PFA/PBS for 35–40 min. 
Brains were removed, postfixed for 4 h in 4% PFA/PBS and cryopro-
tected with 25% sucrose. Coronal sections (40 μm) were cut at the 
level of the dLGN, washed several times with TBS, and blocked with 
10% normal horse serum (NHS), 2% BSA, and 0.3% Triton X-100 
in TBS for 2 h to minimize non-specific binding before incubation of 
slices with primary antibodies in 2% NHS, 2% BSA, and 0.3% Triton 
X-100 in TBS at 4°C for 16–18 h. The following antibodies were used: 
rabbit anti-5-HT

2A
 (1:500, ImmunoStar, Hudson, WI, USA), rabbit 

anti-5-HT
2C

 (1:1000, ImmunoStar), rabbit anti-mGluR1a (1:1000, 
Novus Biologicals Inc., Littleton, CO, USA), mouse anti-NeuN (1:150, 
Millipore, Schwalbach, Germany), and mouse anti-MAP2 (1:200, 
Sigma). After washing (3 × 10 min with TBS), sections were exposed 
to Cy2- or Cy3-conjugated donkey-IgG (1:300, Dianova, Germany) 
for 1.5 h, washed again, and cover slipped with Immumount. For 
negative controls, occlusion of the primary antibody from the staining 
procedure was routinely performed with no positive immunological 
signal detected. Densitometric analysis of immunofluorescence was 
performed by using the fluorescence measuring function of ImageJ 
software (public domain, National Institutes of Health). One hundred 
square areas (30 μm × 30 μm) were placed on different positions of 
dLGN images and the mean fluorescence intensity was determined 
after background subtraction. This analysis was repeated for three 
slices taken from different animals.

results
5-ht recePtor signaling and coMPetition between different 
recePtor classes in gαq/gα11

−/− Mice
In order to mimic an arousal by brainstem and cortical inputs to 
the thalamus, we have chosen the paradigm described in the fol-
lowing. A hyperpolarized membrane potential negative to −70 mV 
is necessary to achieve burst firing of TC neurons in response to a 
depolarizing current step in vivo (Steriade, 1991), and thus, cells 
were held at about −71 mV by DC current injection. Rather small 
sleep-related variations of the membrane potential (∼10 mV) found 
in TC neurons are sufficient to mediate a switch between burst and 
tonic firing in vivo (Hirsch et al., 1983). The experiments described 
below tested to what extent the knockout of Gα

q
 has affected the 

ability of TC neurons to perform this switch.
Acetylcholine plays a major role in the modulation of thalamic states 

of activity and the function of this transmitter depends on Gα
q
-coupled 

muscarinic receptors. However, it is unknown which G-proteins 
are targeted by the other brainstem neurotransmitters. Thus, we 
tested neurotransmitter candidates expected to be connected to  
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membrane  potential of TC neurons by 6 ± 1 mV (n = 10) and 
10 ± 1 mV (n = 7), respectively (Figure 1B). We also tested the 
effect of a more specific agonist for 5-HT

2C
 receptors (CP 809101) 

on the membrane potential in current clamp recordings (Siuciak 
et al., 2007). This agonist produced comparable depolarizations 
(10 μM: 8.3 ± 2.0 mV, n = 5; 100 μM: 17.5 ± 1.4 mV, n = 4). This 
suggests that 5-HT

2C
 receptors in the dLGN could be responsible 

for a large portion of the observed effect. The response to α-m-
5-HT was significantly reduced in Gα

q
/Gα

11
−/− (100 μM: 3 ± 1 mV, 

n = 11, p < 0.001; 200 μM: 5 ± 1 mV, n = 6, p < 0.01). In the presence 
of 200 μM α-m-5-HT, depolarizing current steps elicited tonic 
firing in Gα

11
−/− (f

i
 = 69 ± 14 Hz, n = 7; data not shown). During 

application of 100 μM α-m-5-HT in Gα
q
/Gα

11
−/− burst firing was 

either preserved (f
i
 = 126 ± 6 Hz, n = 4) or the LTS was crowned by 

a single action potential (n = 7, Figure 1A, lower right trace). For 
the other two recording conditions (100 μM in controls, 200 μM 
in Gα

q
/Gα

11
−/−) depolarizing current steps either evoked an inter-

mediate response with slow bursting (f
i
 ≈ 100 Hz) followed by 1–4 

tonic action potentials (not shown) or passive membrane responses 
(Figure 1A, upper right trace). See also Sherman (1996).

G
q
/G

11
-mediated signaling pathways. Because of the known coupling 

of 5-HT
2
 receptors to G

q
/G

11
 family G-proteins (Roth et al., 1998), 

we applied the 5-HT
2
 receptor agonist α-m-5-HT and monitored 

changes in TC neurons under current clamp conditions. A shift 
from burst to tonic firing relies on the initial membrane potential. 
In order to provide comparable conditions between neurons with a 
different resting membrane potential and to ensure robust bursting 
with two or more action potentials riding on top of a low-threshold 
Ca2+ spike (LTS), all TC neurons investigated here were set to a mem-
brane potential of −70.7 ± 0.2 mV (n = 70) by DC offset. The resting 
membrane potential was −69.4 ± 0.9 mV and the applied DC offset 
current was −10 ± 2.4 pA (n = 70). Of 70 neurons investigated under 
these conditions, only 1 had a resting membrane potential positive 
to −65 mV (−63 mV) and almost all (68 of 70 TC neurons) were 
able to generate a LTS. Cells with a membrane potential positive to 
−65 mV and cells that could not generate a LTS were excluded from 
further analysis. Step depolarization resulted in high-frequency 
burst firing in both mice genotypes (Gα

11
−/−: f

i
 = 151 ± 7 Hz, n = 17;  

Gα
q
/Gα

11
−/−: f

i
 = 159 ± 8 Hz, n = 17; Figure 1A). In Gα

11
−/−, the 

application of 100 and 200 μM α-m-5-HT depolarized the  resting 

FiGure 1 | Membrane potential and muscarinic signaling are influenced 
by α-m-5-HT. (A) Firing pattern in a control mouse (upper panel) and in Gαq/
Gα11

−/− (lower panel) under control conditions (left traces) and in the presence 
of α-m-5-HT (right traces). The insets show the low-threshold Ca2+ potentials 
at a ten times expanded timescale. (B) Mean bar graph representation of the 
depolarization induced by two different substance concentrations as 
indicated. (C) Voltage vs. time plot of two individual cells from control animals 
(black line: application of 100 μM α-m-5-HT followed by application of 50 μM 

muscarine; gray line: application of 200 μM α-m-5-HT followed by application 
of 50 μM muscarine). Arrows illustrate plateau of the substance effects. 
Muscarine was applied in the continuous presence of α-m-5-HT. (D) Plot of 
the depolarization induced by α-m-5-HT vs. the depolarization induced by 
muscarine in individual cells from control animals (filled circles). Open circles 
represent the numerical sum of the two depolarizations. Straight black 
line = linear regression of the data points. Dashed line = mean value of the 
summed effects.



Frontiers in Cellular Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 132 | 4

Coulon et al. Gq/11 signaling in the thalamus

As shown in Figure 1D, the variability of a combined effect of 
the two agonists, namely α-m-5-HT and muscarine is rather small 
(open circles). Moreover, the variation in the effect of α-m-5-HT is 
comparable to the variation in the effect of muscarine. Still, when 
applied together, the combined effect does not exceed a given value. 
Or, in other words, both agonist effects vary, depending on how 
occupied the system is by the presence of the respective other ago-
nist. This suggests that both mechanisms of activation involve a 
common and limiting mechanism.

In summary, these data demonstrate that serotonergic signaling 
depends on G

q
-type G-proteins, and suggest that the same pool of 

G-proteins can be accessed by different transmitter pathways.

MetabotroPic glur-Mediated signaling in gαq/gα11
− /− Mice

Since glutamate and mGluR1 are also known to depolarize TC 
neurons by their action on I

KL
 (McCormick and von Krosigk, 

1992; Salt, 2002) and, moreover, are known to be coupled to G
q
/G

11
 

(Wettschureck et al., 2004a), we investigated the effect of the mGluR 
agonist t-ACPD on the TC neurons’ firing patterns. TC neurons set 
to a membrane potential of −71.2 ± 0.3 mV (n = 28) by DC offset 
showed burst responses to depolarizing current steps as described 
above (Gα

11
−/−: f

i
 = 139 ± 5 Hz, n = 16; Gα

q
/Gα

11
−/−: f

i
 = 146 ± 4 Hz, 

n = 12; Figures 2A,B, left panels). Application of t-ACPD resulted in a 
depolarizing shift of the membrane potential, the amplitude of which 
was significantly (p < 0.001) larger in Gα

11
−/− (50 μM: 23 ± 1 mV, n = 7; 

100 μM: 17 ± 2 mV, n = 8) than in Gα
q
/Gα

11
−/− (50 μM: 11 ± 2 mV, 

n = 7; 100 μM: 8 ± 2 mV, n = 6; Figures 2C,D). The effects of 50 
and 100 μM t-ACPD were not  significantly different, indicating a 

To further characterize G
q
-dependent signaling in TC neurons 

we applied muscarine (50 μM) on top of different concentrations 
of α-m-5-HT in Gα

11
−/−. At the concentration we used, muscarine is 

known to depolarize Gα
11

−/− TC neurons by about 18 mV (Broicher 
et al., 2008b). 100 μM α-m-5-HT induced a depolarizing shift of the 
membrane potential of 7 ± 1 mV (n = 4; Figure 1C, black trace). 
The following muscarine-induced depolarization was only 7 ± 1 mV 
(n = 4; Figure 1C black trace). The combined depolarization was 
∼14 mV. An increased concentration of α-m-5-HT (200 μM) induced 
a stronger depolarization of 10 ± 1 mV which was accompanied by a 
reduced muscarine effect averaging 3 ± 1 mV (n = 7; Figure 1C gray 
trace), so that the combined depolarization was similar to the previ-
ous experiment. Plotting the amplitude of the muscarine effect as a 
function of the amplitude of the α-m-5-HT effect revealed a clear 
linear dependency of the two parameters (Figure 1D; closed cir-
cles), i.e., the larger the effect of α-m-5-HT, the smaller the effect of 
muscarine. The sum of the combined substance effects (Figure 1D, 
open circles) was independent of the recording conditions and aver-
aged 13.5 ± 0.4 mV (Figure 1D, dashed line). Obviously, this was 
an upper limit for a combined effect of muscarine and α-m-5-HT 
on V

M
. To verify this, we reversed the order of agonist application 

using C57BL6/N mice. Now, the initial muscarine effect (50 μM) was 
15 ± 3 mV followed by a strongly reduced α-m-5-HT effect (100 μM) 
of 3 ± 2 mV, summing up to a combined effect of 18 ± 4 mV (n = 6). 
Agonist-induced depolarization was significantly reduced in Gα

q
/

Gα
11

−/− (100 μM α-m-5-HT/50 μM muscarine: 4 ± 1 mV/2 ± 1 mV, 
p < 0.01/p < 0.001, n = 6; 200 μM α-m-5-HT/50 μM muscarine: 
5 ± 1 mV/2 ± 1 mV, p < 0.01/p = 0.27, n = 5).

FiGure 2 | t-ACPD effect on firing properties. (A,B) Functional consequences of t-ACPD administration during current clamp recordings in a control mouse (A) and 
in Gαq/Gα11

−/− (B). (C) Mean voltage vs. time plot (black squares, control animal; gray circles, Gαq/Gα11
−/−). The horizontal bar indicates substance application. (D) Mean 

bar graph representation of the depolarization induced by two different substance concentrations as indicated.
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In summary, these data indicate that the action of glutamate in 
the thalamus critically depends on intact G

q
-mediated intracellular 

signaling pathways.

exPression of 5-ht and mglu recePtor subtyPes in dlgn
To provide further evidence that Gα

q
-coupled receptors are func-

tionally expressed in TC neurons we performed immunohisto-
chemical stainings by antibody labeling.

Application of 5-HT
2A

R-specific antibodies did not lead to 
staining by binding of the secondary antibody (Figure 4B, middle 
image). Strong staining was observed upon application of 5-HT

2C
R- 

(Figure 4C, middle image) and mGluR1α-specific antibodies 
(Figure 4D, middle image). We co-stained slices with the neuron-
specific nucleus marker NeuN (Figures 4B–D left images; merged 
images to the right). This revealed that 5-HT

2C
R and mGluR1α 

were not somatically expressed in neurons of the LGN. We verified 
this by examining slices that were co-stained with a marker for 
microtubule associated protein 2 (MAP2) at a higher magnifica-
tion. The images revealed that neither the staining for 5-HT

2C
 (not 

shown) nor for mGluR1α clearly marked the outline of the soma 
(Figure S1 in Supplementary Material). We could not observe any 
differences between stainings in the dLGN of control and Gα

q
/

Gα
11

−/− mice (Figure S2 in Supplementary Material).
The densitometric analysis of 5-HT

2C
R-specific fluorescence 

revealed significant differences between control (mean fluores-
cence intensity = 32 ± 1 a.u.; n = 3 independent slices) and Gα

q
/

Gα
11

−/− mice (mean fluorescence intensity = 41 ± 1 a.u.; n = 3; data 
not shown). No differences were found for mGluR1α-specific 

saturating response. In both mouse strains, the t-ACPD-dependent 
depolarization was strong enough to induce a shift from burst to 
tonic firing of action potentials, which is also reflected in the firing 
frequency (Gα

11
−/−, 50 μM: f

i
 = 32 ± 2 Hz, n = 7; Gα

11
−/−, 100 μM: 

f
i
 = 44 ± 11 Hz, n = 8; Gα

q
/Gα

11
−/−, 50 μM: f

i
 = 38 ± 3 Hz, n = 7; 

Figures 2A,B). In Gα
q
/Gα

11
−/− at 100 μM t-ACPD four out of six cells 

revealed an intermediate response with a slow burst (f
i
 = 96 ± 9 Hz, 

n = 4) followed by 2–8 tonic action potentials (data not shown). 
Only one cell showed tonic firing (∼27 Hz), and the remaining cell 
was lost in the course of the experiment.

To further elucidate the role of mGluR we used the selective group 
I agonist (RS)-3,5-DHPG (DHPG) (Ito et al., 1992). Application of 
DHPG (50 or 100 μM) induced a reversible depolarization of the 
membrane potential of 13 ± 2 mV (50 μM, n = 7) or 24 ± 1 mV 
(100 μM, n = 5) under current clamp conditions in Gα

11
−/− or 

C57BL6/N (Figures 3C,D). This effect was significantly (p < 0.01) 
reduced in Gα

q
/Gα

11
−/− (50 μM, 5 ± 1mV, n = 8; Figures 3C,D). In 

control mice (Figure 3A), but not in Gα
q
/Gα

11
−/− (Figure 3B), the 

DHPG-induced depolarization was accompanied by a switch to 
tonic firing of action potentials.

It could be argued that the application of a neuromodulator 
could lead to changes in interneuron firing (Sherman, 2004; Munsch 
et al., 2005), which in turn could lead to changes in RMP unrelated 
to the activation of Gα

q
-coupled receptors of the recorded cell. To 

test for this, we applied 50 μM DHPG in the presence of 0.5 μM 
TTX, eliminating all action potential firing and excluding presyn-
aptic effects. Under these conditions, the observed depolarization 
was very similar to control conditions (12 ± 3 mV, n = 3).

FiGure 3 | DHPG effect on firing properties. (A,B) Functional consequences of DHPG administration during current clamp recordings in a control mouse (A) and in 
Gαq/Gα11

−/− (B). (C) Mean voltage vs. time plot (black squares, control animal; gray circles, Gαq/Gα11
−/−). The horizontal bar indicates substance application. (D) Mean 

bar graph representation of the DHPG-induced depolarization.
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G-protein-coupled membrane receptors (McCormick, 1992a). 
In addition, the excitatory transmitter glutamate exerts powerful 
activation of thalamic neurons, thereby driving the sensory relay 
in the thalamus (Salt, 2002). Corticofugal inputs, in particular, are 
connected to mGluR (Godwin et al., 1996b).

5-HT receptor-dependent signaling
Waking, but not REM sleep, is accompanied by increased serotoner-
gic activity in the thalamus (Steriade et al., 1997). The role of 5-HT 
in the thalamus seems complex and is not yet fully understood: 
Cellular effects may be direct or indirect and show regional dif-
ferences. In vitro studies demonstrated that 5-HT causes a small 
depolarization and a shift in voltage dependency of the hyperpo-
larization activated cation current, I

h
. The latter is achieved via 

G
S
-proteins and cAMP production (McCormick and Pape, 1990; 

Lee and McCormick, 1996). Moreover, inhibition of an I
SO

 compo-
nent occurred, resembling the current mediated by TASK channels 
(S. G. Meuth and T. Budde, unpublished results). In consequence, 
oscillatory burst activity is suppressed. An indirect modulation of I

h
 

via G
q
-proteins may include IP

3
-induced Ca2+ release from intracel-

lular stores and subsequent activation of a Ca2+-dependent adenylyl 
cyclase (Lüthi and McCormick, 1998). The findings of the present 
study indicate that a significant part of the 5-HT-induced depo-
larization is mediated by G

q
/G

11
-coupled receptors. All receptors of 

the 5-HT
2
 subclass are coupled to G

q
/G

11
-proteins. These in turn, 

activate PLC-β. 5-HT
2A

 and 5-HT
2C

 are widely distributed in the 

 fluorescence (control: mean fluorescence intensity = 44 ± 1 a.u.; 
Gα

q
/Gα

11
−/−: mean fluorescence intensity = 42 ± 1 a.u.; n = 3 inde-

pendent slices each; data not shown). These findings point to an 
attempt to compensate the loss of 5-HT

2C
 receptor function by an 

increased number of receptors in Gα
q
/Gα

11
−/− mice.

discussion
The results of the present study can be summarized as follows: 
(1) The action of 5-HT and glutamate in TC neurons depends on 
G

q
-coupled intracellular signaling cascades. The effects of α-m-

5-HT, t-ACPD, and DHPG under current clamp conditions were sig-
nificantly reduced in Gα

q
/Gα

11
−/−. As a consequence, the stimulation 

of metabotropic 5-HTR and GluR could not induce a full shift from 
burst to tonic firing of action potentials in Gα

q
/Gα

11
−/− mice. (2) 

The amplitude of membrane potential depolarization by muscarine 
depends on the degree of prior utilization of the G

q
-dependent path-

way. (3) It is concluded that G
q
/G

11
 family G-proteins play a central 

role in the state-dependent control of thalamic activity modes.

gαq/gα11-dePendent signaling in the thalaMus
The flow of sensory information from the sensory organs to the 
cerebral cortex via the thalamus is highly regulated by inputs from 
the ascending activating brainstem system, releasing ACh, 5-HT, 
and noradrenalin (Steriade et al., 1997). These neuromodulators 
exert their influence onto the state of the thalamus by altering 
specific ion channels. This is achieved through the activation of 

FiGure 4 | immunohistochemical detection of mGlur and 5-HTr subtypes 
in dLGN of Gαq/Gα11

−/−. (A) Schematic drawing of a frontal brain slice showing 
the position of the dLGN. In B-D the dLGN is marked by a dashed line. Specific 
antibodies for NeuN, 5-HT2AR, 5-HT2CR, and for mGluR1α were used and labeled 

with secondary antibodies conjugated to Cy2 or Cy3. 5-HT2AR-specific antibodies 
did not cause staining (B). 5-HT2CR- (C) and mGluR1α-specific antibodies (D) 
caused strong staining. 5-HT2CR and mGluR1α did not appear to be somatically 
expressed. Scale bars indicate 100 μm.
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were unchanged in dLGN tissue (Wettschureck et al., 2006; 
Broicher et al., 2008b) and a lack of strong plastic compensa-
tion has been noted before in TC neurons of mice deficient 
for HCN2 (Ludwig et al., 2003) and TASK-1 (Meuth et al., 
2006). Nevertheless, the densitometric analysis of immu-
nohistochemical staining in the present study indicated an 
increased expression of 5-HT

2C
R in Gα

q
/Gα

11
−/− mice, the-

reby possibly showing a futile attempt to compensate the loss 
of receptor function by an increased number of membrane 
receptors.

(3) G-protein signaling outside the canonical seven tran-
smembrane domain receptors and G-protein independent 
pathways of these receptors may exist. Recent evidence 
indicates that G-proteins play important roles in receptor 
tyrosine kinase signaling and may be activated by acces-
sory proteins (Marty and Ye, 2010; Sato and Ishikawa, 
2010). Furthermore, increasing evidence indicates that 
ERK, JAK/STATs, Src-family tyrosine kinases, β-arrestins, 
and PDZ domain-containing proteins directly relay signals 
from seven transmembrane domain receptors, indepen-
dent of G-proteins (Sun et al., 2007). Future studies have 
to show the coupling of metabotropic ACh, 5-HT, and Glu 
receptors to parallel pathways, activated by βγ-subunits, by 
G-proteins not belonging to the G

q
/G

11
-family, and/or by 

G-protein-independent mechanisms.
(4) Gα

q
 may be incompletely eliminated. The CaMKII-Cre mouse 

line has been shown to express Cre in forebrain principal 
neurons, but not in forebrain interneurons (Mantamadiotis 
et al., 2002; Marsicano et al., 2003). With respect to recombi-
nation efficiency within the population of forebrain principal 
neurons it is generally assumed that recombination is com-
plete (Marsicano et al., 2003). Within a particular forebrain 
principal neuron, Cre expression always results in a complete 
inactivation of Gα

q
, since the CaMKII promoter chosen to 

drive Cre expression is very strong. We are therefore positive 
that we can rule out any partial Gα

q
 inactivation (i.e., only 

one of the two Gα
q
 alleles is recombined) in Cre-expressing 

principal neurons.

exPression of 5-ht and mglu recePtors
Immunohistochemical stainings provided evidence that Gα

q
-

coupled receptors are functionally expressed in TC neurons. 
However, the application of 5-HT

2A
R-specific antibodies failed to 

stain the tissue. Why this is the case remains unclear. The strong 
staining that was observed upon application of 5-HT

2C
R- and 

mGluR1α-specific antibodies was not reduced in Gα
q
/Gα

11
−/− mice, 

suggesting that the deletion of G
q
 does not lead to a down regula-

tion of its upstream receptors (compare Figure 4 and Figure S2 
in Supplementary Material). Co-staining slices with the neuron-
 specific nucleus marker NeuN revealed that 5-HT

2C
R and mGluR1α 

were not somatically expressed in neurons of the LGN. This was 
confirmed in a co-staining with MAP2.

The finding that a specific agonist for 5-HT
2C

 receptors had the 
same effect on the membrane potential in current clamp recordings 
than α-m-5-HT in control mice suggests that 5-HT

2C
 receptors in 

the dLGN could be the functionally dominant isoform.

brain and are present in the rodent dLGN (Li et al., 2004). Thus, 
the strong reduction of the effect of α-m-5-HT in Gα

q
/Gα

11
−/− is in 

good agreement with a 5-HT
2
 expression in dLGN and is possibly 

connected to the modulation of TASK channels.
In the course of this study, we made the interesting observa-

tion that muscarinic and serotonergic receptors seem to compete 
for the same G

q
-protein-coupled signaling pathway. The effect of 

activation of one receptor class is strongly and negatively corre-
lated to the strength of prior activation of the other receptor class, 
thereby suggesting convergence onto the same – limited – pool of 
G

q
-protein-coupled signaling pathways. This view is supported by 

results obtained from cat and guinea pig TC neurons that suggested 
acetylcholine- and noradrenalin-induced slow depolarizations to 
occur through the activation of the same second-messenger system 
(McCormick, 1992b).

mGluR-dependent signaling
Group I mGluRs consist of mGluR1 and mGluR5 that are posi-
tively coupled to PLC-β. Several types of mGluRs are expressed in 
the dLGN of different species, with retinal (mGluR5) and corti-
cal (mGluR1) inputs accessing specific subtypes (Godwin et al., 
1996b; Lourenco Neto et al., 2000). Application of t-ACPD and 
selective mGluR1 agonists depolarizes TC neurons and switches 
their activity mode from burst to tonic firing, thereby mediating 
TC transmission (McCormick and von Krosigk, 1992; Godwin 
et al., 1996a; Salt, 2002). The results of the present study are in line 
with these findings. However, the remaining t-ACPD effect in Gα

q
/

Gα
11

−/− indicates that mGluRs not coupled to G
q
/G

11
 contribute to 

the response. This conclusion is corroborated by the finding that 
mGluR3, mGluR4, and mGluR7 are expressed in rodent dLGN 
(Lourenco Neto et al., 2000). During postnatal development, 
specific changes in the subcellular location of mGluRs have been 
observed (Liu et al., 1998) which are the basis for the topographi-
cal association to different input systems (Godwin et al., 1996b; 
Turner and Salt, 2000).

residual effects of neurotransMitters in gαq/gα11
−/− Mice

While Gα
q
 and Gα

11
 have very similar effector-coupling properties 

and may substitute each other (Offermanns, 1999), the remaining 
effect of receptor agonists in Gα

q
/Gα

11
−/− may result from different 

mechanisms:

(1) Other G-protein families may compensate for the lack of 
Gα

q
 in deficient mice. Findings from hippocampal neu-

rons of Gα
o
-deficient mice have shown that in the absence 

of Gα
o
, ion channels will be regulated by other G-proteins 

with different properties (Greif et al., 2000). In particular 
Gα

15
 and Gα

16
 can link a variety of predominantly Gα

q
-

coupled receptors to the PLCβ pathway (Offermanns and 
Simon, 1995).

(2) Receptors, intracellular signaling proteins, and effectors of the 
Gα

q
-dependent pathways may be up-regulated. However, the 

Gα
q
/Gα

11
−/− mice develop a severe epileptic phenotype with 

a reduced life span, which argues against an effective com-
pensation mechanism (Wettschureck et al., 2006; Broicher 
et al., 2008b). Indeed, mRNA expression of effector channels 
(TASK channels, HCN channels) and all mAChR subtypes 
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conveRgence of tRansmitteR pathways
The strong convergence of several transmitter/receptor systems on 
G

q
/G

11
 family G-proteins in TC neurons leads to the question of 

the degree of redundancy in their signaling. The finding (i) of dif-
ferential subcellular locations of specific membrane receptors, (ii) 
of the topographical organization of different input systems, (iii) 
of different state-dependent releases of neurotransmitters, and (iv) 
of the formation of tight receptor/effector protein complexes in 
the forebrain indicate a separation of function between the differ-
ent G

q
/G

11
-coupled receptor classes in the same neuronal popula-

tion. Thus, spatial  separation and  state-dependent activation allow 

 divergent action of several metabotropic receptor classes, which 
seem to utilize the same pool of G

q
/G

11
-proteins. These findings, 

therefore, suggest a scenario in which G
q
/G

11
-proteins could func-

tion as a central element in thalamic physiology.
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FiGure S1 | immunohistochemical staining of mGlur1α and MAP2. Neurons of the dLGN were stained using specific antibodies against microtubule 
associated protein 2 (MAP2) and against mGluR1α conjugated to Cy2 and Cy3, respectively. While MAP2 was clearly present in the soma, mGluR1α appears to be 
absent there. Scale bars indicate 10 μm.

FiGure S2 | immunohistochemical detection of mGlur and 5-HTr subtypes in dLGN of Gα11
−/− mice. Specific antibodies and secondary antibodies were the 

same as in Figure 4. 5-HT2AR-specific antibodies again did not cause staining (A). 5-HT2CR- (B) and mGluR1α-specific antibodies (C) caused strong staining as in the 
dLGN of Gαq/Gα11

−/− mice. Scale bars indicate 100 μm.
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