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Accelerated Postnatal Growth Increases Lipogenic Gene
Expression and Adipocyte Size in Low—Birth Weight Mice
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OBJECTIVE—To characterize the hormonal milieu and adipose
gene expression in response to catch-up growth (CUG), a growth
pattern associated with obesity and diabetes risk, in a mouse
model of low birth weight (LBW).

RESEARCH DESIGN AND METHODS—ICR mice were food
restricted by 50% from gestational days 12.5-18.5, reducing
offspring birth weight by 25%. During the suckling period, dams
were either fed ad libitum, permitting CUG in offspring, or food
restricted, preventing CUG. Offspring were killed at age 3 weeks,
and gonadal fat was removed for RNA extraction, array analysis,
RT-PCR, and evaluation of cell size and number. Serum insulin,
thyroxine (T4), corticosterone, and adipokines were measured.

RESULTS—At age 3 weeks, LBW mice with CUG (designated U-C)
had body weight comparable with controls (designated C-C); weight
was reduced by 49% in LBW mice without CUG (designated U-U).
Adiposity was altered by postnatal nutrition, with gonadal fat
increased by 50% in U-C and decreased by 58% in U-U mice (P <
0.05 vs. C-C mice). Adipose expression of the lipogenic genes Fasn,
Accl, Lpinl, and Srebf1 was significantly increased in U-C com-
pared with both C-C and U-U mice (P < 0.05). Mitochondrial DNA
copy number was reduced by >50% in U-C versus U-U mice (P =
0.014). Although cell numbers did not differ, mean adipocyte diam-
eter was increased in U-C and reduced in U-U mice (P < 0.01).

CONCLUSIONS—CUG results in increased adipose tissue lipo-
genic gene expression and adipocyte diameter but not increased
cellularity, suggesting that catch-up fat is primarily associated
with lipogenesis rather than adipogenesis in this murine model.
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ow-Dbirth weight (LBW) infants are at increased

risk for hypertension, type 2 diabetes, and meta-

bolic syndrome (1). Mechanisms remain ill de-

fined but may involve epigenetic regulation of
development and gene expression (2,3). Accelerated post-
natal, or catch-up growth (CUG), is common in LBW
infants and heightens these risks (4,5).

Why CUG has deleterious effects is not well understood,
but the rapid adipose tissue expansion accompanying
CUG (termed catch-up fat) likely plays a key role. LBW
newborns have reductions in both lean and fat mass. While
reduced lean mass persists, fat mass accrues preferentially
during CUG (6), and LBW adults have increased adiposity
(7). Such fat accumulation during childhood is a strong
determinant of insulin sensitivity in LBW adults (8). Sim-
ilar patterns are observed during weight recovery after
starvation in adults, where increased food intake and
decreased thermogenesis enhance adipose accretion (9).
It is unknown whether similar mechanisms contribute to
catch-up fat in LBW.

We developed a mouse model of LBW associated with
CUG, with obesity and glucose intolerance in adulthood
(10). In this model, prevention of early postnatal CUG
normalizes glucose intolerance and reduces adiposity (11).
To identify mechanisms contributing to catch-up fat, we
analyzed hormone secretion, adipose gene expression, and
histology in LBW mice with and without CUG. We found
that postnatal CUG is associated with lipogenic patterns of
gene expression and increased adipocyte size.

RESEARCH DESIGN AND METHODS

Animal protocol. Female ICR mice (Harlan, Indianapolis, IN) aged 6-8
weeks were caged with ICR males; pregnancies were dated by vaginal plug
(day 0.5). Pregnant females had ad libitum access to standard chow (Purina
9F; Purina Mills, St. Louis, MO), with 21% of calories from protein, 21% from
fat, and 56% from carbohydrate (wheat/corn). On day 12.5, females were
randomly assigned to either a control or undernutrition group. Undernutrition
group dams were 50% food restricted from days 12.5 to 18.5 (calculated from
intake in gestational day-matched controls). At birth, litters were equalized to
eight. During suckling, dams were randomly assigned to ad libitum chow or
continued 50% food restriction (versus postpartum day-matched dams). This
yielded four experimental groups (Fig. 1A): C-C ad libitum chow in utero, ad
libitum during suckling; U-C in utero undernutrition, ad libitum during
suckling; C-U ad libitum in utero, undernutrition during suckling; and U-U in
utero undernutrition, undernutrition during suckling.

Pups were weaned at day 21 to ad libitum Purina 9F chow. Twenty-four—
hour food intake was measured in individual mice following a 1-day acclima-
tion in metabolic cages. Comparisons of C-C versus U-C mice are a paradigm
for the effects of birth weight, while U-C versus U-U comparisons model the
effects of postnatal growth in LBW.

Mice were housed in a National Institutes of Health Office of Laboratory
Animal Welfare-approved facility, with controlled temperature, humidity, and
light-dark cycle (0700 h-1900 h). Protocols approved by the Joslin Diabetes
Center Institutional Animal Use and Care Committee (Principles of Labora-
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FIG. 1. A: Experimental schema. B: White adipose tissue mass (WAT mass represents sum of epididymal, perirenal, and flank subcutaneous fad
pads), age 3 weeks. * and T denote P < 0.05 vs. C-C; groups with different symbols have statistically significant differences (P < 0.05). C: Daily
food intake in 4-week-old animals expressed as grams of food per grams of body weight per 24 h. *Denote P < 0.05 vs. C-C. D: Agouti-related
peptide staining in the periventricular nucleus of the hypothalamus of 6-month-old animals. Note the increase in signal intensity in the C-U and
U-U panels. E: Agouti-related peptide fiber density, quantitated by image analysis. *Denote P < 0.05 vs. C-C. (A high-quality digital representation

of this figure is available in the online issue.)

tory Animal Care [available at http:/grants1.nih.gov/grants/olaw/references/
phspol.htm]) were followed.

Measurement of glucose, hormones, and adipokines. Fed glucose was
measured between 9:00 A.m. and 11:00 A.m. in tail vein blood samples (Ascensia
Elite; Bayer, Pittsburgh, PA) before pentobarbital anesthesia (150 mg/kg i.p.)
and blood sampling via cardiac puncture. Insulin was measured using rat
insulin enzyme-linked immunosorbent assay (ELISA) with mouse standards
(Crystal Chem, Downers Grove, IL), leptin and adiponectin via ELISA (Crystal
Chem and Linco, St. Charles, MO, respectively), and corticosterone by enzyme
immunoassay (Immunodiagnostic Systems, Fountain Hills, AZ). Total T4 and
T4 charcoal binding were analyzed as described (12), and adipokines (tumor
necrosis factor [TNF]-«, interleukin [IL]-6, monocyte chemoattractant protein
[MCP]-1, plasminogen activator inhibitor [PAI]-1, and resistin) measured by
multiplex ELISA (Millipore, Billerica, MA).

Microarray analysis of gene expression. We chose to study white adipose
tissue gene expression at age 3 weeks because white fat is largely absent from
neonatal mice, and 3 weeks is the minimum age at which sufficient tissue
could be isolated from all four experimental groups. Epididymal fat was
dissected from 3-week-old males for RNA extraction and complementary RNA
(cRNA) preparation for hybridization to Affymetrix M430A v2 arrays (Santa
Clara, CA). Analysis was performed on globally scaled data (MAS 5.0; median
1,5600) for samples from five mice in C-C and U-C and four in U-U groups.
Multigroup and between-group comparisons of microarray data were per-
formed with significance analysis of microarrays (SAM) (13). MAPPFinder
(http://www.genmapp.org) was used for pathway-based analyses. Gene net-
work enrichment analysis (GNEA) was also used to determine whether
specific gene sets were overrepresented in cumulatively differentially ex-
pressed gene networks in two-way comparisons (14).

Quantitative real-time PCR and mitochondrial DNA copy number.
Complementary DNA (cDNA) was generated from 1 pg RNA using oligo-dT
primers (Takara Bio, Mountain View, CA) and used for PCR with SYBRGreen
(Applied Biosystems, Foster City, CA). Expression was normalized to cyclo-
philin or TATA box binding protein, as indicated. Primer sequences are
available upon request. Mitochondrial DNA (mtDNA) was quantitated in
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epididymal fat DNA by RT-PCR (DNAzol extraction, 5 ng DNA input), using
ratio of mitochondrial-encoded (NADH dehydrogenase 1, or ND1; cytochrome
C oxidase, subunit 2; or Cox2) to nuclear-encoded genes (3-globin).
Adipocyte quantitation. Epididymal fat was dissected from 3-week-old (C-C
and U-C mice, n = 10-12/group) and 6-week-old males (all four experimental
groups, n = 8/group) and collagenase digested (1 mg/ml) for fixation in osmic
acid (15) and cell counting (16). This protocol requires a minimum of ~0.1-0.2
g of adipose tissue; 6 weeks is the earliest age at which this could readily be
harvested from all four experimental groups.

Measurement of adipocyte size. Epididymal fat from 3-week-old males
(n = 4/group) was fixed in 10% formalin and paraffin embedded; 4-pm sections
were hematoxylin/eosin stained. Eight digital images (600X) from nonover-
lapping fields were taken from each slide (total 32 fields per group) and
adipocyte diameters calculated (ImageJ [http://rsb.info.nih.gov/ij/]).
Hypothalamic paraventricular nucleus staining for agouti-related
peptide. To assess neural regulation of appetite in mature animals, males
(n 4/group) were killed at 6 months for quantitation of hypothalamic
agouti-related peptide (AgRP) neuronal projections (17). Mice were anesthe-
tized before dissection, postfixation, and cryoprotection (18). Thirty-microme-
ter coronal sections were blocked, incubated with rabbit anti-AgRP (Phoenix
Pharmaceuticals, Burlingame, CA) and then Alexa 594 -conjugated donkey
anti-rabbit, and mounted onto slides (ProLong Antifade; Invitrogen). Images
were obtained with FluoView 500 Confocal Microscope (Olympus, Center
Valley, PA) (Image Analysis Core, Diabetes Research and Training Center,
University of Michigan). AgRP fiber density was quantified in three represen-
tative paraventricular nucleus (PVN) regions using MetaMorph software
(Molecular Devices). Background intensities were subtracted and normalized
by 1-pm z-stack slice number (28-29/animal) to obtain pixel intensity/pm.
Statistical analyses. Data are presented as means * SE. Multigroup
comparisons of body weight, hormonal parameters, adipocyte measurements,
and expression data were assessed by ANOVA (Statview, Cary, NC), with post
hoc pairwise comparisons assessed by Fisher’s protected least-significant
difference. P < 0.05 was considered significant.
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TABLE 1
Growth and hormonal data, age 3 weeks

C-C C-U U-C U-U
Birth weight (g) 1.59 = 0.01 1.56 = 0.03 1.23 = 0.05* 1.09 = 0.02%
Body weight (g) 164 = 1.1 7.7 £ 0.8%% 17.8 £ 0.7 8.4 = 0.9%%
Body length (cm) 7.8 0.1 6.0 = 0.2%F 7.7 +0.1 6.2 = 0.2%f
Gonadal fat weight (g) 0.18 £ 0.02 0.018 = 0.004%* 0.25 * 0.03§ 0.041 = 0.005*%
Gonadal fat/body weight (%) 1.1 0.1 0.22 = 0.04*% 1.4 = 0.1§ 0.40 = 0.04*%
Sum of fat pad weights/body weight (%)# 2.8 0.2 0.5 £ 0.1%% 3.7 £ 0.38 1.2 = 0.1§
Blood glucose (mmol/1) 8.9 0.2 5.5 * 0.58§ 82+ 0.3 6.1 = 1.1§
Corticosterone (ng/ml) 151 = 18 234 + 14 167 + 21 341 = 63||Y
Insulin (pmol/l) 445 £ 70 115 + 35§ 545 + 100 275 + 408
T4 (ng/dl) 8.7+ 0.7 7.1+09 8.8+ 0.8 6.1 = 0.2%F
T4 resin binding (%) 40.8 = 1.2 40.0 = 1.6 415+ 1.5 36.2 £ 1.6%
Leptin (ng/dl) 6.1 +04 0.8 = 0.2%% 59 04 2.0 = 0.5%F
Adiponectin (ng/ml) 78 1.2 13.3 = 4.1%q 52+ 0.9 89+ 1.1
Resistin (ng/ml) 2.6 =03 1.3 = 0.1% 2.0 £ 0.28 1.9 = 0.3§
IL-6 (pg/ml) 4.0 + 0.3 52 %09 48 + 1.1 4.7+ 0.5
MCP-1 (pg/ml) 47+ 4 60 = 8 36 =6 49 + 8
PAI-1 (ng/ml) 45+ 04 59 * 0.2§ 3.6 =0.3 4.4 * 0.6
TNF-a (pg/ml) 9.5+ 0.5 84 +04 9.1+04 109 = 1.2

Data are means = SE. Growth data, glucose homeostasis, and hormonal data in male mice, age 3 weeks. n = 5-9 per group, depending on
the assay. Multigroup comparisons were done by ANOVA, and pairwise comparisons were done by Fisher’s protected least-significant
difference. *P < 0.001 vs. C-C; 1P < 0.05 vs. U-C; £P < 0.001 vs. U-C; §P < 0.05 vs. C-C; ||P < 0.01 vs. C-C; P < 0.01 vs. U-C; #sum of weight

of gonadal, subcutaneous flank, and perirenal fat pads.

RESULTS

Growth and body composition. Food restriction of
pregnant dams reduced birth weight by 25% (control:
1.58 = 0.06 g, LBW: 1.18 ® 0.04; P < 0.0001) (Table 1). By
3 weeks of age, body weight and length were equivalent in
C-C and U-C offspring, indicating CUG in U-C mice. Weight
and length were significantly reduced in mice with post-
natal food restriction (P < 0.0001, C-U and U-U mice vs.
C-C and U-C mice) (Table 1). By 3 weeks, U-C mice had
increased gonadal and total white adipose weight (P <
0.05 vs. all other groups) (Table 1) (Fig. 1B).

Glucose, adipogenic hormones, and adipokines. Be-
cause insulin is a potent adipogenic hormone and alter-
ations in insulin sensitivity have been linked to CUG (19),
we assessed glucose homeostasis in LBW versus con-
trols, with and without CUG, at age 3 weeks. Fed
glucose was comparable in U-C and C-C mice but
significantly decreased in C-U and U-U mice (P < 0.01
vs. C-C) (Table 1). Serum insulin levels were reduced by
74% in C-U mice (P = 0.04 vs. C-C) but tended to be
higher in U-C mice.

Both corticosteroids and thyroid hormone have adipo-
genic effects, and altered regulation has been associated
with LBW (20,21). Serum corticosterone was similar in
C-C, C-U, and U-C mice but increased twofold in U-U mice
(P < 0.05vs. C-C) (Table 1). Total T4 did not differ in LBW
mice with CUG, but both total and free T4 were signifi-
cantly reduced in LBW mice with postnatal food restric-
tion (Table 1).

To evaluate adipocyte secretory function, we measured
serum adipocytokines. Leptin paralleled nutritional status
and was decreased in postnatally food-restricted C-U and
U-U groups (87 and 67% decrease, respectively, P < 0.0001
vs. C-C) (Table 1). Conversely, both adiponectin and PAI-1
were increased in C-U mice (71 and 31% increase, respec-
tively, P < 0.05 vs. C-C). Resistin was reduced in all groups
(P < 0.05 vs. C-C). TNF-«, IL-6, and MCP-1 were not
altered by prenatal or postnatal nutrition.
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Early postnatal nutrition alters orexigenic hypotha-
lamic AgRP fiber density in adult life. We next asked
whether altered food intake contributes to increased adi-
posity in mice with CUG. At age 4 weeks, the earliest time
point at which mice could tolerate individual metabolic
cages, we detected no differences in weight-adjusted 24-h
food intake between C-C and U-C groups, consistent with
prior data at older ages (10,11). Interestingly, C-U mice
had higher food intake than either C-C or U-C mice (P <
0.05) (Fig. 1C). Because subtle differences in appetite can
be difficult to detect through measurements of food intake,
we performed immunostaining for AGRP neuronal projec-
tions in the PVN in fully mature animals. AgRP fiber
density was not altered in LBW mice with CUG compared
with controls. However, mice exposed to postnatal under-
nutrition had increased AgRP fiber density (P < 0.05, C-U
and U-U vs. C-C) (Fig. 1D and E).

Early nutrition alters adipose gene expression. To
determine whether adipose gene expression is dysregulated
during CUG, we performed microarray analysis in adipose
tissue from C-C, U-C, and U-U mice (n = 4-5/group). While
growth data, glucose levels, and hormonal analyses were
similar to the entire cohort, gonadal fat weight was not
significantly different between U-C and C-C mice in this
subgroup (online appendix Table 2 [available at http:/
diabetes.diabetesjournals.org/cgi/content/full/db08 —1266/
DC1]). Primary microarray data are available at http:/
www.ncbi.nlm.nih.gov/geo. Official names of genes are
provided in online appendix Table 1.

To identify individual genes differentially expressed
between groups, we performed multigroup comparisons
using SAM (13). A total of 1,778 genes were differentially
regulated with false discovery rate (FDR) =0.25 (393 with
FDR <0.15) (online appendix Table 3). To determine
pathways overrepresented in these comparisons, we per-
formed GNEA. Top-ranking gene sets included insulin
signaling, T-cell receptor, and IL-3 through IL-9, but these
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TABLE 2
Pathway analysis (MAPPFinder)

Regulation by antenatal nutrition
Upregulated in U-C versus C-C

Regulation by postnatal nutrition
Upregulated in U-C versus U-U

Pathway Z score P ormutea Pathway Z score P ermutea

Cholesterol biosynthesis 3.9 0.003 Krebs-TCA cycle 6.4 <0.001
Pentose phosphate pathway 4.4 0.001
Electron transport chain 3.6 0.004
Glycolysis and gluconeogenesis 3.6 0.003

Proteasome degradation 2.5 0.026 Fatty acid p-oxidation BiGCaT 2.9 0.012
Prostaglandin synthesis regulation 2.9 0.009
Fatty acid synthesis BiGCaT 2.9 0.02
Triacylglycerol synthesis BiGCaT 2.7 0.017

Downregulated in U-C versus C-C Downregulated in U-C versus U-U

Pathway Z score P, rmutea Pathway Z score P, rmutea

Ribosomal proteins 10.8 <0.001 mRNAprocessing 3.3 0.001

Translation factors 5.2 <0.001

mRNA processing 44 <0.001

Results of MAPPFinder pathway analysis comparing patterns of gene expression in C-C versus U-C and U-C versus U-U. Genes are considered

up- or downregulated if expression is changed by =25% and permuted P value (P,
genes in a pathway is compared with the frequency in the array as a whole; a

pathways with Z score >2.5 are presented in the table.

reached only marginal significance (FDR = 0.259) (online
appendix Table 4).

Effect of LBW on adipose gene expression (U-C ver-
sus C-C mice). No individual genes were significantly
upregulated in adipose tissue as a function of birth weight
(U-C versus C-C mice) (SAM, FDR =0.25). However,
pathway analyses (MAPPFinder) demonstrated that cho-
lesterol biosynthesis (Z score = 3.9, P, oymutea = 0-003) and
proteasome degradation (Z score = 2.5, P, uteq = 0.026)
pathways were upregulated in LBW (Table 2). Fifteen
genes were downregulated in LBW (U-C vs. C-C mice, FDR
=0.25) (online appendix Table 5A). Significantly down-
regulated pathways in LBW (U-C versus C-C mice) in-
cluded ribosomal proteins (Z score = 10.8, P < 0.001),
translation factors (Z score = 5.2) P < 0.001), and mes-
senger RNA (mRNA) processing (Z score = 4.4, P < 0.001)
(Table 2; online appendix Table 6A).

Effect of CUG on adipose gene expression (U-C ver-
aus U-U mice). To identify genes for which adipose
expression is modulated by CUG, we compared array data
in LBW mice with CUG (U-C) to those without CUG (U-U).
A total of 157 genes were upregulated in U-C versus U-U
(FDR <0.25) (online appendix Table 5B). Multiple gene
sets related to oxidative and lipid metabolism, including
Krebs cycle, electron transport, glycolysis and gluconeo-
genesis, B-oxidation, and triglyceride/fatty acid synthesis,
were upregulated in mice with CUG (Z score >2.5,
P ermutea <0.05) (Table 2; online appendix Table 6C). A
total of 516 genes were significantly downregulated in
LBW mice with CUG (U-C versus U-U mice, FDR =0.25)
(online appendix Table 5B); pathways downregulated in
U-C mice included mRNA processing (Z score = 3.3, P =
0.01) (Table 2; online appendix Tables 6D and 8C).

LBW and CUG alter expression of genes regulating
adipocyte differentiation and function. Because gene
and pathway analyses indicated that genes involved in
adipocyte metabolism were upregulated as a function of
CUG in LBW mice (Table 2), we assessed expression of
genes related to differentiation and function by RT-PCR in
adipose from all four experimental groups (Fig. 2). While
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ermutea) 15 <0.05. The frequency of up- or downregulated
5 score and a P value is generated for each pathway. All

expression of the adipogenic transcription factors Cebpa,
Cebpb, and Pparg tended to be higher in U-C mice,
expression of the insulin-responsive glucose transporter
Glut4 was increased by 60% in U-C mice (P = 0.03 vs. C-C)
and reduced by 20% in U-U mice (P = 0.02). Expression of
the differentiated adipocyte marker aP2 did not differ signif-
icantly. Ribosomal proteins were also identified in pathway
analysis as downregulated in U-C mice. However, differences
in expression were low in magnitude for individual genes,
and differences were not confirmed by PCR.

We observed marked differences in expression of two
imprinted genes linked to early developmental patterning
in adipose tissue. Consistent with array data, expression of
Mest, a paternally imprinted adipocyte gene associated
with increased cell size (22), was increased ninefold in
LBW mice with CUG compared with LBW mice without
CUG (P = 0.005 U-C vs. U-U) (Fig. 2A). Moreover, expres-
sion of Prefl, an inhibitor of adipogenesis expressed by
preadipocytes, was significantly increased in mice with
postnatal undernutrition (P = 0.002 C-U vs. C-C; P < 0.001
U-U vs. C-C) (Fig. 24).

We next assessed expression of nuclear receptors
known to regulate adipocyte differentiation and/or lipid
metabolism. We detected no significant differences in
expression of Fxr, Lxra, Lxrp, Smrt/Ncor2, or Nripl/
Rip140 as a function of either LBW or CUG (not shown).
However, expression of several nuclear receptors in-
volved in retinol signaling was increased in LBW mice
and normalized by postnatal food restriction, including
Rxra (increased twofold in U-C mice; P = 0.008 vs. C-C)
and Rarb (increased threefold in U-C vs. U-U, P < 0.05
trend for increase vs. C-C, P = 0.07) (Fig. 2B). In
addition, retinol binding protein 4 (Rbp4), a marker and
potential inducer of insulin resistance (23), was in-
creased nearly twofold in U-C mice (P < 0.05 vs. both
C-C and U-U) (Fig. 2B).

Postnatal nutrition modulates mtDNA copy number.
Pathway analyses demonstrated increased expression of
nuclear-encoded genes involved in mitochondrial oxida-
tive function in LBW mice with CUG, the group at highest
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risk for obesity and diabetes. However, we did not observe
any significant differences in expression of regulators of
mitochondrial biogenesis or function, including Pgc-1a,
Esrra, Pprcl, Dio2, or Thrb (Fig. 3A), or in Ucpl or genes
encoding components of the electron transport chain
(Atp5c, Cox8b, not shown). By contrast, mtDNA copy
number, assessed by the relative expression of Cox2 to
B-globin, was reduced by >50% in LBW mice with CUG (U-C)
versus LBW mice without CUG (U-U) (P = 0.014). Similar
patterns were observed for ND1, which tended to be reduced
in U-C versus U-U mice (P = 0.055) (Figs. 3B and O).
Lipogenic gene expression is increased in LBW mice
with CUG. A consistent pattern of gene expression in
LBW mice with CUG was upregulation of lipogenic and
cholesterol synthesis genes. PCR confirmed that expres-
sion of Fasn, Hmgcsl1, Accl, and Acss2 was increased two-
to threefold in U-C mice (P < 0.05 vs. C-C). Scdl was not
differentially expressed in U-C but was increased in C-U
mice (P < 0.05 vs. C-C) (Fig. 4A).

To determine which transcriptional regulators might
contribute to increased lipogenic gene expression in LBW,
we analyzed expression of Adpn, Chrebp, Insigl, Ir, Igf1r,
Lipin-1a, Lipin-1B3, and Srebfl by RT-PCR (Fig. 4B).
Expression of both Srebf1 and Adpn was increased two- to
threefold in U-C mice (P = 0.013 vs. CC); similar trends
were observed for Chrebp (P = 0.08 C-C vs. U-C). Both
isoforms of lipin, a triacylglycerol synthesis enzyme and
regulator of lipogenesis (24), were upregulated in U-C
mice (lipin la: two-fold increase, lipin 1B: 2.5-fold in-
crease, both P = 0.02 vs. C-C). Expression of Insigl, a
negative regulator of Srebf~-mediated lipogenesis (25), was
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also increased twofold in U-C mice (P = 0.026 vs. C-C).
While expression of insulin receptor mRNA tended to be
increased in U-C versus U-U mice (P = 0.05), expression of
Igf1r was not altered.

Adipocyte size, but not number, is increased in LBW
with CUG. We next asked whether LBW followed by CUG
alters adipocyte number (implicating altered differentia-
tion) or increases adipocyte size (suggesting increased
lipogenesis). Adipocyte number was similar in LBW mice
with CUG (U-C) and in controls (C-C) at both 3 weeks (not
shown) and 6 weeks of age (Fig. 5A). By contrast, adipo-
cyte number was reduced in C-U mice (P = 0.004 vs. C-C)
and tended to be reduced in U-U mice (P = 0.1 C-C vs.
U-U) at 6 weeks of age (Fig. 5A).

While adipocyte number did not differ as a function of
antenatal nutrition, adipocyte size was significantly in-
creased in LBW mice with CUG (U-C) (Fig. 5B and O).
Adipocyte diameter was reduced in C-U and U-U mice
(C-C: 245 = 0.7 pm; C-U: 9.9 = 0.2; U-C: 41.5 = 1.4; and
U-U: 16.9 = 0.3; P < 0.0001 between all groups). In parallel,
we noted a marked increase in adipocytes larger than 30
pm in U-C mice (rightward distribution shift) (Fig. 5B),
whereas C-C, C-U, and U-U mice had relatively few or no
large adipocytes. Adipocytes in C-U mice tended to be
small and multilocular, whereas adipocytes in U-C mice
were large and unilocular.

DISCUSSION

LBW and postnatal CUG are associated with increased
adiposity in humans (7) and animal models (26). To
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examine hormonal and molecular processes contributing
to increased adiposity, we utilized our mouse model of
LBW induced by maternal caloric restriction. LBW pups
with CUG have greater adipose mass than controls, similar
to human catch-up fat phenotypes. In this model, early
postnatal CUG is more closely linked to adult phenotypes
than birth weight, and prevention of CUG by early post-
natal caloric restriction prevents subsequent obesity and
type 2 diabetes (11). We now demonstrate that CUG
results in several dominant patterns in fat: 1) increased
adipocyte size, 2) minimal alterations in adipogenic gene
expression, 3) increased expression of lipogenic genes,
and 4) reduced mtDNA content. Importantly, each of these
phenotypes was reversed by attenuation of early postnatal
weight gain. Together, these data suggest that increased
lipogenesis and/or impaired oxidative function are key
features of catch-up fat.

LBW mice with CUG have significantly increased adipo-
cyte diameter but similar numbers of adipocytes per fat
depot. The early postnatal environment plays a key role in
LBW-associated adipocyte enlargement, as attenuation of
postnatal growth rates normalizes cell size. Adipocyte
hypertrophy may be an important contributor to LBW
phenotypes, as it has been described in other models of
developmental programming (27), and may be associated
with inflammation (28), insulin resistance (29), and type 2
diabetes, independent of fat mass (30). Altered secretion
of adipokines, including leptin, TNF-o, IL-6, and MCP-1
(31), has been postulated to link adipocyte size and insulin
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resistance. In our model, leptin levels were highest in C-C
and U-C mice, which had larger adipocytes, than in C-U or
U-U mice. While leptin levels at age 3 weeks did not differ
as a function of birth weight, we cannot exclude dynamic
differences in leptin secretion or in the neonatal leptin
surge (32). Although array analysis using GNEA suggested
a modest proinflammatory signature associated with CUG,
we found no significant differences in circulating TNF-q,
IL-6, or MCP-1. Whether inflammatory phenotypes become
more prominent with advancing age and increasing obe-
sity will be an important question for future study. Inter-
estingly, expression of Rbp4 was significantly increased in
U-C mice, possibly reflecting larger adipocyte size (33).
In parallel, lipogenic genes and pathways were mark-
edly upregulated in adipose tissue of LBW mice with CUG
(U-C). For example, we observed significant upregulation
of the prolipogenic genes Fasn, Accl, Acss2, Hmgcsl,
Adpn, Insigl, Lpinl, and Srebf1. Furthermore, expression
of these genes was largely normalized in LBW mice
without CUG. By contrast, we noted minimal changes in
expression of adipogenic genes by RT-PCR. These data,
together with the similar numbers of adipocytes in U-C
versus C-C, suggest that lipogenesis may be a more
dominant contributor to catch-up fat than adipogenesis.
Our data contrasts with observations in antenatally protein-
restricted rats, where increased adiposity was associated
with increased preadipocyte proliferation capacity (34).
Increases in lipogenic gene expression and adipocyte
hypertrophy may result from increased energy intake.
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However, we observed no alterations in food intake or
orexigenic AgRP fiber density in LBW mice with CUG. The
more dominant determinant of energy intake in our model
appears to be the postnatal nutritional environment, as
food intake is increased in C-U mice at 4 weeks, and
orexigenic AgRP projections are increased in adult C-U
and U-U animals. Together, these results suggest that
LBW-related adiposity is more likely to stem from a
lipogenic hormonal environment or alterations in adipo-
cyte transcriptional regulation.

One potent hormonal regulator of lipogenesis is insulin.
We have previously described significant increases in fed
glucose and insulin in LBW mice with CUG at 2 months of
age (10), together with increased basal insulin secretion in
isolated islets. In the current study, we noted a trend to
higher insulin in U-C mice and reduction with postnatal
nutritional modifications in the U-U group at 3 weeks.
Alterations in insulin sensitivity during early life could
contribute to enhanced lipogenesis. Indeed, studies in
LBW human infants suggest that insulin sensitivity is
increased during CUG (35). Although we were unable to
formally assess insulin sensitivity in neonatal mice, ex-
pression of both Ir and Glut4 was increased in LBW mice
with CUG. Moreover, GNEA analysis suggested that genes
differentially expressed between LBW mice with and with-
out CUG were enriched for genes related to insulin signal-
ing. Downregulation of ribosomal synthesis in U-C adipose
tissue may also represent an insulin-dependent process, as
increased ribosomal synthesis has been noted in mice with
muscle-specific insulin receptor ablation (36). It is possi-
ble that whole-body and tissue-specific insulin sensitivity
varies throughout the lifespan, with early increases in
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lipogenesis and adipose tissue accretion and subsequent
reductions in insulin sensitivity with aging (37). Further
assessement of insulin sensitivity and glucose tolerance
will help define the temporal and tissue-specific alterations
in glucose homeostasis in our model.

Thyroxine (T4) and corticosterone could also contribute
to early adipose tissue phenotypes (20,21,38). We ob-
served no differences in T4 or corticosterone in LBW mice
with CUG. Moreover, mice with reduced postnatal growth
and lipogenic expression patterns (C-U and U-U mice) had
increased levels of corticosterone; since corticosteroids
enhance adiposity, it is unlikely this plays a major role in
our model. Conversely, since total T4 is reduced in U-U
mice, decreased T4-driven lipogenesis may contribute to
the obesity-protective effects of postnatal food restriction.

Transcriptional regulators of lipogenesis may also con-
tribute to adipocyte hypertrophy and expression patterns.
Sterol regulatory element-binding protein (SREBP)-1c, a
dominant insulin-regulated mediator of lipogenic gene
expression (39), was significantly upregulated in LBW
mice with CUG (U-C). SREBP-1c coactivators, including
CAAT/enhancer-binding protein-3 or carbohydrate-re-
sponsive element-binding protein (ChREBP), may also
play an important role in mediating lipogenic expression in
adipocytes (40). Interestingly, adipose tissue Chrebp ex-
pression also tended to be increased in mice with CUG.

Lipin (Lpinl) is an important transcriptional regulator
of lipogenic gene expression and triglyceride synthesis
(41,42). Both lipin-a and -B splicing isoforms (42) were
upregulated in LBW mice with CUG (U-C), suggesting
another potential mechanism for adipocyte hypertrophy.
Lpinl overexpression in adipose tissue increases diet-
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induced obesity (24). Moreover, Lpinl expression corre-
lates with insulin-stimulated glucose uptake and Glut4
expression in adipocytes (43). Further experiments will be
essential to determine whether increased SREBP-1c
and/or lipin transcriptional activity is responsible for the
upregulation of lipogenic gene expression in LBW mice
with CUG.

A transcriptional signature of LBW with CUG (U-C) was
upregulation of mitochondrial oxidative genes, including
tricarboxylic acid cycle, oxidative phosphorylation, and
fatty acid oxidation, compared with LBW mice with re-
duced postnatal growth (U-U). Although upstream regula-
tors of many of these genes (e.g., peroxisome proliferator—
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activated receptor vy coactivator 1 family, E'srra, and Di02)
have been linked to both adipocyte metabolic function and
type 2 diabetes risk (44), we observed no differences in
adipose expression of these genes in LBW mice with or
without CUG.

mtDNA content, a potential regulator of adipose oxida-
tive capacity, was decreased in LBW mice as a function of
CUG. Reduced mtDNA content may also contribute to
increased nuclear-encoded oxidative gene expression pat-
terns (Table 2), also a feature of human mtDNA deletion
syndromes (45). Similar reductions in mtDNA content
have been observed in muscle, liver, and pancreas, follow-
ing antenatal protein restriction, (46,47) and in umbilical
cord cells from LBW babies (48). While adipocyte mito-
chondrial number may also regulate lipogenic capacity
(49), our data suggest that regulation is likely to be more
complex in the LBW setting. Interestingly, prevention of
postnatal CUG increases adipose mtDNA content in LBW
animals, again indicating a key role for the postnatal
environment to modulate phenotypes associated with
LBW. Interestingly, this increase in adipose mitochondrial
content is also observed in rodent models with prolonged
lifespan (50).

Our analysis of adipose histology and gene expression
was performed in samples obtained from mice at =3
weeks of age. Therefore, a limitation of our analysis is that
we are identifying patterns that may be a result of catch-up
fat rather than the primary mechanisms. However, our
approach was guided by practical limitations, as neonatal
mice have minimal white adipose tissue available for
analysis. Furthermore, whole-body growth rates in LBW
mice continue to exceed that of controls up to 4 weeks of
age (11), suggesting that processes mediating catch-up fat
are likely to be operative at 3 weeks of age.

In summary, we have characterized the hormonal mi-
lieu, adipose histology, and patterns of gene expression in
a mouse model of LBW and modulated postnatal growth
achieved through nutrient restriction during gestation and
lactation. In this model, LBW mice with accelerated post-
natal growth have increased adiposity in early life
(catch-up fat) and increased risk of type 2 diabetes and
obesity in adulthood. By contrast, LBW mice with reduced
postnatal growth are protected from these complications.
We observed increased adipocyte diameter and upregula-
tion of lipogenic pathways and transcriptional regulators
(Srebf, Lpinl) in LBW mice with CUG, suggesting that
lipogenesis, to a greater degree than adipogenesis, contrib-
utes to increased adiposity. Such patterns may contribute
to lifelong risk of type 2 diabetes in LBW mice. Impor-
tantly, attenuation of postnatal weight gain normalized
lipogenic gene expression and adipocyte morphology and
increased adipose mitochondrial content, illustrating the
importance of the postnatal nutritional environment in
shaping lifelong disease risk. A clearer understanding of
the mechanisms that drive adipose tissue growth during
catch-up fat will be important for the eventual develop-
ment of therapies to prevent the long-term risks of LBW
and could also shed new insight into the pathophysiology
of early adiposity rebound and childhood obesity.
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