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Abstract

Background: Investigating the genetic and environmental causes of variation in genome-

wide average DNA methylation (GWAM), a global methylation measure from the

HumanMethylation450 array, might give a better understanding of genetic and environ-

mental influences on methylation.

Methods: We measured GWAM for 2299 individuals aged 0 to 90 years from seven twin

and/or family studies. We estimated familial correlations, modelled correlations with co-

habitation history and fitted variance components models for GWAM.
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Results: The correlation in GWAM for twin pairs was �0.8 at birth, decreased with age

during adolescence and was constant at �0.4 throughout adulthood, with no evidence

that twin pair correlations differed by zygosity. Non-twin first-degree relatives were cor-

related, from 0.17 [95% confidence interval (CI): 0.05–0.30] to 0.28 (95% CI: 0.08–0.48), ex-

cept for middle-aged siblings (0.01, 95% CI: �0.10–0.12), and the correlation increased

with time living together and decreased with time living apart. Spouse pairs were corre-

lated in all studies, from 0.23 (95% CI: 0.3–0.43) to 0.31 (95% CI: 0.05–0.52), and the correl-

ation increased with time living together. The variance explained by environmental

factors shared by twins alone was 90% (95% CI: 74–95%) at birth, decreased in early life

and plateaued at 28% (95% CI: 17–39%) in middle age and beyond. There was a

cohabitation-related environmental component of variance.

Conclusions: GWAM is determined in utero by prenatal environmental factors, the

effects of which persist throughout life. The variation of GWAM is also influenced by en-

vironmental factors shared by family members, as well as by individual-specific environ-

mental factors.
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Introduction

DNA methylation, mainly occurring at cytosine-guanine di-

nucleotide (CpG) where cytosine is converted to 5-methylcy-

tosine (5meC), has been proposed to play a critical role in

the aetiology of complex traits and diseases.1,2 DNA methy-

lation has been found to be associated with environmental

and lifestyle-related disease risk factors and diseases, such as

body mass index,3 smoking,4 maternal plasma folate5 and

cancers.6–9

Global DNA methylation refers to the level of 5meC con-

tent relative to total cytosine. The global methylation can be

accurately measured by labour- and resource-intensive high-

performance liquid chromatography (HPLC),10 or can be

estimated by quantifying methylation of DNA repetitive

elements such as long interspersed numerical elements

(LINE) and Alu elements.11 With the technology of genome-

wide methylation profiling, the Illumina Infinium

HumanMethylation450 (HM450) BeadChip array can be

used to quantify a measure of global methylation, which is

usually calculated as the mean or median methylation value

from CpGs across the genome.6–9 Being enriched for gene-

associated CpGs, particularly those surrounding CpG-rich is-

lands,12 the global methylation measure based on this assay

is potentially highly relevant to gene function.

The global methylation measure based on the HM450

assay in peripheral blood has been found to be negatively

associated with increased cancer risks: the mean beta-value

across CpGs has been found to be associated breast cancer,
6,7 and the median M-value has been found to be associated

with mature B-cell neoplasms8 and urothelial cell carcin-

oma.9 Assessed by the odds per adjusted standard deviation

(OPERA),13 which enables comparison of the strengths of

risk gradients in differentiating cases from controls, this

global methylation measure is among the stronger known

risk-discriminating factors for cancers: the OPERAs were

estimated to be 1.5� 1.6 for breast cancer and 1.4 for super-

ficial urothelial cell carcinoma. In comparison, the OPERAs

for breast cancer risk factors are �1.5 for polygenic risk

Key Messages

• This study is the largest collaboration of twin and/or family studies on DNA methylation.

• This study is the first to investigate the genetic and environmental influences on genome-wide average DNA methyla-

tion (GWAM), a global methylation measure and a strong risk factor for cancers.

• This study provides important evidence that GWAM is determined in utero by prenatal environmental factors, the ef-

fects of which persist throughout the whole life.

• The variation of GWAM across the lifespan is also influenced by environmental factors shared by family members,

as well as by individual-specific environmental factors.
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scores,14 �1.4 for mammographic density adjusted for age

and body mass index and �1.2 for mutations in BRCA1 and

BRCA2,13 and the OPERA is �1.5 for methylation levels at

CpGs15 and epigenetic clock16 for lung cancer.

The genetic and environmental causes of variation in

this global methylation measure are unknown. To investi-

gate these causes and get a better understanding of genetic

and environmental influences on methylation, we used

data from seven twin and/or family studies of genetically

related and genetically unrelated individuals across differ-

ent stages of the lifespan, from birth to old age, and studied

the mean beta-value across the genome, the genome-wide

average DNA methylation (GWAM). Note that, although

the average of the heritability estimates of the individual

CpGs covered by the HM450 assay has been estimated to

be approximately 20% under the assumptions of the clas-

sic twin model,17–19 this is not the same as the heritability

of the average methylation level, the GWAM.

Methods

Subjects

We used data for 2299 individuals aged from 0 to 90 years

from 816 families in seven twin and/or family studies

(Table 1). These studies, listed in the order of the mean age

of monozygotic (MZ) twins, are the Peri/postnatal

Epigenetic Twins Study (PETS),20 Brisbane Systems Genetic

Study (BSGS),19 Korean Healthy Twin Study (KHTS),21

Australian Mammographic Density Twins and Sisters

Study (AMDTSS),22 Multiple Tissue Human Expression

Resource (MuTHER) Study,17 Older Australian Twins

Study (OATS)23 and Melbourne Collaborative Cohort

Study (MCCS).24 Details of these studies are described in

the Supplementary material, available at IJE online.

DNA methylation measurement

DNA was extracted from buccal cells in the PETS, from

adipose tissue in the MuTHER and from whole blood in

the other studies. Each study measured DNA methylation

using the HM450 assay and performed data processing in-

dependently. Details are described in the Supplementary

material. GWAM was calculated as the average beta-value

across autosomal CpGs (Supplementary Table 1, available

as Supplementary data at IJE online). In the PETS, methy-

lation in cord blood mononuclear cells was also measured

for 17 newborn monozygotic twin pairs and nine newborn

dizygotic (DZ) twin pairs, by the Illumina Infinium

Table 1. Characteristics of subjects within each studya

Characteristics PETS (birth) PETS

(18 months)

BSGS KHTS AMDTSS MuTHER OATS MCCS

Families 14 10 177 97 130 246 108 43

Individuals MZ twins 18 12 134 182 132 186 216 –

DZ twins 10 8 222 – 132 306 – –

Twins’ siblings – – 119 64 215 – – –

Parents or spouses – – 139 136 – – – 86

Age (years) MZ twins 0 1.5 13.961.9 39.266.9 55.668.4 57.469.3 71.166.0 –

DZ twins 0 1.5 13.262.0 – 57.067.2 61.069.3 – –

Twins’ siblings – – 15.462.8 38.3610.8 56.668.0 – – –

Parents or spouses – – 46.665.6 62.869.3 – – – 59.866.6

Sex Male 16 12 313 188 – – 80 43

Female 12 8 301 194 479 492 136 43

Tissue Buccal cells Buccal cells Whole blood Whole blood Whole blood Adipose Whole blood Whole blood

GWAMb MZ twins 43.3960.31 43.6860.36 50.5760.29 53.5961.53 52.9560.32 48.1060.08 51.5660.59 –

DZ twins 43.1960.29 43.0460.16 50.6060.32 – 52.9960.32 48.0960.08 – –

Twins’ siblings – – 50.5360.29 52.4161.63 52.9860.32 – – –

Parents or spouses – – 50.3160.31 52.3361.59 – – – 53.1860.50

GWAM by agec – – �0.08 (0.01) 0.003 (0.02) 0.02 (0.02) 0.01 (0.004) �0.05 (0.05) �0.08 (0.09)

GWAM by sexb Male 43.2860.12 43.2360.30 50.4860.33 52.6861.69 – – 51.5060.57 53.0960.47

Female 43.3760.46 43.7160.45 50.5660.32 53.1561.64 – – 51.6060.60 53.2760.52

PETS, Peri/postnatal Epigenetic Twins Study; BSGS, Brisbane Systems Genetic Study; KHTS, Korean Healthy Twin Study; AMDTSS, Australian

Mammographic Twins and Sisters Study; MuTHER, Multiple Tissue Human Expression Resource Study; OATS, Older Australian Twins Study; MCCS,

Melbourne Collaborative Cohort Study; MZ, monozygotic; DZ, dizygotic; GWAM, genome-wide average DNA methylation.
aCategorical variables are presented as counts, and continuous variables are presented as mean6SD.
bGWAM is presented as the percentage of methylation, that is beta-value � 100. Reported GWAM was adjusted for batch effects through a linear mixed effects

model in the PETS, BSGS, KHTS, MuTHER and OATS.
cThe linear regression coefficient (standard error) between GWAM and age. Reported as the change in percentage of methylation per 10-year increment in age.

The regressions in the KHTS, OATS and MCCS were adjusted for study design or sampling factors.
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HumanMethylation27 BeadChip array.25 GWAM was

also calculated for these twins.

Statistical methods

Within each study, we performed a two-stage adjustment

on GWAM to minimize batch effects and to adjust for the

effects of covariates, as described in the Supplementary

material. It has been suggested that retaining group differ-

ences in batch effects adjustment might be problematic.26

To avoid such potential bias, no group difference was re-

tained in the batch effects adjustment stage. Residuals

from the adjustments were used in subsequent analyses.

We estimated the familial correlations in the residuals

for different pairs of family members in each study

(Supplementary Table 2, available as Supplementary data

at IJE online) using a multivariate normal model.27,28

Sensitivity analyses were performed to examine the robust-

ness of results to adjustment for cell mixture and to CpG

selections, as described in the Supplementary material. The

correlation in GWAM from cord blood mononuclear cells

was also estimated for the 26 newborn pairs in the PETS,

and was compared with the correlation from buccal cells

for newborns to examine tissue heterogeneity.

We modelled the familial correlation as a function of

cohabitation history using the combined data from all

studies. To account for the different distributions of

GWAM across studies, a standardised normal Z-score

[mean ¼ 0, standard deviation (SD) ¼ 1] was calculated

from the residuals within each study and used in the mod-

elling. In the modelling, each study had its own mean and

covariance functions for the Z-score. According to the fa-

milial correlation estimates in each age range, and follow-

ing previous theoretical and empirical studies of familial

covariance as a function of cohabitation status,29–31 we fit-

ted a model in which the pair correlation increases or

decreases with cohabitation history. Details are described

in the Supplementary material.

We fitted variance components models using the com-

bined data from all studies (Z-score as above). We assumed

that the residual variance can be partitioned into four vari-

ance components: rA
2, the effects of additive genetic fac-

tors; rT
2, the effects of environmental factors shared by

twins alone and assumed to be shared to the same extent

within MZ and DZ pairs; rC
2, the effects of environmental

factors shared by all family members (including twins) and

assumed to be shared to the same extent within all pairs;

and rE
2, the effects of individual-specific environmental

factors and measurement error. According to the results of

familial correlation modelling, we fitted the variance com-

ponents dependent on cohabitation history. Details are

described in the Supplementary material.

The correlations and variance components were esti-

mated using the program FISHER.32 Other statistical ana-

lyses were performed using R [https://www.R-project.org/

]. Inference was based on asymptotic likelihood theory,

and the likelihood ratio test was used for comparisons be-

tween nested models.

Results

Table 1 shows the characteristics of subjects in each study.

GWAM decreased with age in the BSGS and increased

with age in the MuTHER, and there was no evidence that

GWAM changed with age in the other studies. GWAM

was higher for females than for males in the PETS at 18

months, and in BSGS, KHTS and OATS.

Table 2 shows the familial correlation estimates in

GWAM within each study. MZ and DZ pairs were corre-

lated in all studies. There was no evidence from any study

for a difference in GWAM correlation according to zygo-

sity (all P > 0.09). Combining MZ and DZ pairs, the cor-

relation for twin pairs was about 0.8 both at birth and at

age 18 months, and about 0.4 in adulthood. Non-twin

first-degree relatives were correlated, from 0.17 [95% con-

fidence interval(CI): 0.05–0.30] to 0.28 (95% CI: 0.08–

0.48), except for middle-aged sisters in the AMDTSS

(0.01; 95% CI: �0.10–0.12) whose separation time was

the longest. Spouse pairs were correlated, from 0.23 (95%

CI: 0.3–0.43) to 0.31 (95% CI: 0.05–0.52), in all studies.

From the sensitivity analyses, the familial correlations

were robust to adjustment for cell mixture (Supplementary

Table 3, available as Supplementary data at IJE online).

Similar results were observed when GWAM was based

on CpGs common to the seven studies or on non-noisy

CpGs (Supplementary Tables 4 and 5, available as

Supplementary data at IJE online), or on CpGs located in

gene bodies or promoters (Supplementary Tables 6 and 7,

available as Supplementary data at IJE online). The correl-

ations in GWAM from cord blood mononuclear cells for

PETS newborns were 0.80 (95% CI: 0.75–0.84) for MZ

pairs, 0.80 (95% CI: 0.72–0.86) for DZ pairs and 0.80

(95% CI: 0.76–0.84) for twin pairs combined, similar to

the correlations in GWAM from buccal cells.

From the modelling of correlation as a function of co-

habitation history, there was no difference between MZ

and DZ pairs (P ¼ 0.08), so we combined MZ and DZ

pairs to model the correlation for twin pairs. For similar

reasons, we combined sibling pairs and parent-offspring

pairs to model the correlation for non-twin first-degree

relatives (P ¼ 0.91 for comparison). The estimate of the

correlation when non-twin pairs started living together, e,

was 0.08 (95% CI: �0.44–0.60) for non-twin first-degree

relatives, and 0.10 (95% CI: �0.18–0.37) for spouse pairs.
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Neither estimate was different from zero, so we set them to

zero.

Figure 1 (and Supplementary Table 8, available as

Supplementary data at IJE online) show the results from the

modelling. The twin pair correlation decreased (ktwin ¼ 0.12;

95% CI: 0.04–0.19) from 0.85 (95% CI: 0.74–0.94) at birth

to 0.37 (95% CI: 0.30–0.44) in old age. The correlation for

non-twin first-degree relatives increased with time living to-

gether (k1st ¼ 0.03; 95% CI: 0.003–0.06) and decreased

with time living apart (�¼ 0.06; 95% CI: 0.004–0.12). The

spouse-pair correlation increased with time living together

(kspouse ¼ 0.08; 95% CI: 0.01–0.15).

From the fitted variance components model

(Supplementary Table 9 and Supplementary Figure 1, avail-

able as Supplementary data at IJE online), the variance ex-

plained by additive genetic factors (rA
2) was estimated to

be �7% (95% CI: �25%–10%). The variance explained

by environmental factors shared by twins alone (rT
2) was

90% (95% CI: 74%–95%) at birth, decreased during ado-

lescence and plateaued at about 28% (95% CI: 17%–39%)

in adulthood. The variance explained by environmental fac-

tors shared by all family members (rC
2) increased with time

living together to about 26% (95% CI: 9%–44%) and

decreased with time living apart. The variance explained by

individual-specific environmental factors (rE
2) increased

with age, especially during adolescence.

Discussion

We investigated the influences of unmeasured genetic and

environmental factors on variation in a global DNA

methylation measure, GWAM derived from the HM450

Table 2. Familial correlation estimates (95% confidence intervals) of genome-wide average DNA methylation within each study

Pairs PETS (birth) PETS (18 months) BSGS KHTS AMDTSS MuTHER OATS MCCS

MZ pairs 0.82 0.82 0.58 0.42 0.42 0.23 0.31 –

(0.75-0.87) (0.74-0.87) (0.47-0.66) (0.25-0.59) (0.26-0.56) (0.05-0.39) (0.16-0.45)

DZ pairs 0.85 0.89 0.40 – 0.40 0.45 – –

(0.79-0.89) (0.85-0.92) (0.28-0.51) (0.24-0.54) (0.35-0.53)

Twin pairs combined 0.83 0.84 0.46 – 0.43 0.36 – –

(0.78-0.86) (0.80-0.88) (0.37-0.53) (0.32-0.53) (0.27-0.45)

Sibling pairs – – 0.28 0.28 0.01 – – –

(0.15-0.40) (0.08-0.48) (�0.10-0.12)

Parent-offspring pairs – – 0.26 0.17 – – – –

(0.15-0.35) (0.05-0.30)

Spouse pairs – – 0.26 0.23 – – – 0.31

(0.04-0.46) (0.03-0.43) (0.05-0.52)

PETS, Peri/postnatal Epigenetic Twins Study; BSGS, Brisbane Systems Genetic Study; KHTS, Korean Healthy Twin Study; AMDTSS, Australian

Mammographic Twins and Sisters Study; MuTHER, Multiple Tissue Human Expression Resource Study; OATS, Older Australian Twins Study; MCCS,

Melbourne Collaborative Cohort Study; MZ, monozygotic; DZ, dizygotic.

Figure 1. Familial correlations in genome-wide average DNA methylation with cohabitation history. The plot shows results from modelling the famil-

ial correaltion using the combined data (Z-score) from seven studies. Solid lines were based on the combined data. Dotted lines were theoretical lines

extrapolated by the data, for which there were no data for the corresponding cohabitation duration.
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assay. The repeatability of GWAM measurement has pre-

viously been estimated to be 0.74.33 Assuming this repeat-

ability applied to our studies, the twin pair correlations at

birth and 18 months of about 0.8 (with tight confidence

intervals) were at the limit of repeatability. Therefore, tak-

ing into account measurement error, both MZ and DZ

pairs were almost perfectly correlated at birth, and were

still substantially correlated in old age (�0.4/0.74 ¼ 0.54).

Our study suggests that GWAM is determined before

birth. Plausible reasons for the non-differential and high

correlations in GWAM for newborn MZ and DZ pairs are:

shared environmental factors in utero, maternal factors be-

fore and during pregnancy and paternal factors. We found

no difference in MZ and DZ pair correlations at birth in

the PETS and therefore no evidence for a role of genetic

factors at birth. Although such a role cannot be dis-

counted, it is unlikely to be substantial given the standard

error of 0.04 for the difference between our high MZ and

DZ pair correlations. Therefore, the main source of vari-

ation in GWAM at birth would appear to be shared pre-

natal environmental factors affecting infants in utero.

Several prenatal environmental factors, such as maternal

smoking in pregnancy34 and maternal plasma folate,5 have

been found to be associated with CpG-specific DNA

methylation for newborns. Specific prenatal environmental

factors associated with GWAM remain unknown.

The twin pair correlations were substantial even in old

age, and this suggests that the intrauterine effects persist

during the whole life course. Assume that an individual’s

GWAM at birth has a direct correlation with the GWAM

in old age. Under an autoregressive model for longitudinal

data,27 and taking into account the twin pair correlation at

birth of 0.85 from the correlation modelling, the correl-

ation for twin pairs in old age of 0.37 implies that the cor-

relation between an individual’s GWAMs at birth and in

old age must be about (0.37/0.85)1/2 ¼ 0.66. Therefore, an

individual’s GWAM at birth is a substantial predictor of

his/her GWAM in old age. The empirical longitudinal cor-

relation in GWAM needs to be investigated.

Our study found that the twin pair correlations

decreased in childhood, which suggests that individual en-

vironmental effects increase during childhood. This may be

due to ‘epigenetic drift’,35 which is in effect the role of

non-genetic factors inducing variation in methylation lev-

els. However, given that the twin pair correlations were

relatively stable in adult life, our study provides evidence

that ‘epigenetic drift’ may be manifest in early life but not

in middle age and beyond.

We found evidence that GWAM is influenced by envir-

onmental factors shared within households, the effects of

which increase with the cohabitation duration of family

members (including spouse pairs) and attenuate when they

live apart. Similar cohabitation-related effects of shared en-

vironmental factors have been found for other traits, such

as blood lead level29 and bone mineral density.36

We did not find evidence that genetic factors explain

variation in GWAM, given that we did not find difference

between MZ and DZ pair correlations in any study or

from the correlation modelling of the combined data, and

the estimate of rA
2 was zero if not negative. Genetic vari-

ants influencing methylation at specific loci are called

methylation quantitative trait loci (meQTL). Several stud-

ies have examined meQTL; however, only a small propor-

tion (10–15%) of CpGs has been found to be associated

with meQTL.37–39 Given the small proportion, it is plaus-

ible that the variation in the average methylation level mix-

ing of half million CpGs is not explained by genetic factors

to an extent detectable by this study. Note that, given the

confidence interval of rA
2, we cannot exclude a small gen-

etic component of variance.

Given that GWAM has been found to be associated

with risks of breast cancer, mature B-cell neoplasms and

urothelial cell carcinoma, our results are consistent with

hypothesis that risks of these cancers are initiated in

utero.40,41 The developmental origins of health and disease

(DOHaD) hypothesis considers that epigenome reprog-

ramming during the fetal development period is one pos-

sible biological mechanism.42,43 We hypothesize that

prenatal factors might influence risks of these cancers by

altering the GWAM of the fetus. Identification of the pre-

natal factors associated with a newborn’s GWAM might

open the possibility for risk-reducing interventions before

birth. Our observation that the influences of individual-

specific environmental factors increased during adoles-

cence implies that early life is also important for interven-

tion application. Consistently, early life is recognized as a

critical window of vulnerability to breast carcinogens:

commencing during fetal life and accelerating at puberty,

the developing breast is exquisitely sensitive to carcinogens

during periods of rapid fibro-glandular tissue prolifer-

ation.44 There is also evidence that the period between pu-

berty and first completed pregnancy is a critical window

for carcinogenic exposures.45

Our study has several strengths. First, to our knowledge

our study is the first to investigate the influences of un-

measured genetic and environmental factors on global

methylation using the HM450 assay. Previous studies

focused on individual CpGs covered by this assay.17–19

Second, to our knowledge our study is the most compre-

hensive collaboration of twin studies on DNA methylation.

Third, we included individuals from birth to 90 years of

age, to obtain evidence across the lifespan. Fourth, we used

a variety of family designs that provided contrasts in terms

of shared genes and sharing of environment, and we used
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an optimal statistical analysis based on likelihood theory

and flexible and realistic modelling.

The main limitation of our study is the potential hetero-

geneity across studies due to different populations, tissues,

and aspects of DNA methylation measurement (e.g. methy-

lation data normalization). For tissue heterogeneity, the fa-

milial correlations from buccal cells and from cord blood

mononuclear cells were similar for newborn twins, which

suggests there is little difference in the degree of resem-

blance for newborn twin pairs regardless of GWAM being

measured using blood or buccal cells. Other limitations

were that cohabitation history was not collected by some

studies (although our assumption that separation occurs

on average around age 18 years is based on empirical evi-

dence), and the reliance on cross-sectional data; future

studies that follow relatives prospectively are warranted.

We conclude that GWAM is determined before birth,

possibly by prenatal environmental factors acting in utero,

the effects of which persist during the whole life. Variation

in GWAM is also influenced by individual-specific envir-

onmental factors, especially in early life, as well as by en-

vironmental factors shared by cohabiting family members,

including spouse pairs.
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