
Local Diffusion Homogeneity (LDH): An Inter-Voxel
Diffusion MRI Metric for Assessing Inter-Subject White
Matter Variability
Gaolang Gong*

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

Abstract

Many diffusion parameters and indices (e.g., fractional anisotropy [FA] and mean diffusivity [MD]) have been derived from
diffusion magnetic resonance imaging (MRI) data. These parameters have been extensively applied as imaging markers for
localizing white matter (WM) changes under various conditions (e.g., development, degeneration and disease). However,
the vast majority of the existing parameters is derived from intra-voxel analyses and represents the diffusion properties
solely within the voxel unit. Other types of parameters that characterize inter-voxel relationships have been largely
overlooked. In the present study, we propose a novel inter-voxel metric referred to as the local diffusion homogeneity
(LDH). This metric quantifies the local coherence of water molecule diffusion in a model-free manner. It can serve as an
additional marker for evaluating the WM microstructural properties of the brain. To assess the distinguishing features
between LDH and FA/MD, the metrics were systematically compared across space and subjects. As an example, both the
LDH and FA/MD metrics were applied to measure age-related WM changes. The results indicate that LDH reveals unique
inter-subject variability in specific WM regions (e.g., cerebral peduncle, internal capsule and splenium). Furthermore, there
are regions in which measurements of age-related WM alterations with the LDH and FA/MD metrics yield discrepant results.
These findings suggest that LDH and FA/MD have different sensitivities to specific WM microstructural properties. Taken
together, the present study shows that LDH is complementary to the conventional diffusion-MRI markers and may provide
additional insights into inter-subject WM variability. Further studies, however, are needed to uncover the neuronal
mechanisms underlying the LDH.
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Introduction

Diffusion MRI is a unique, non-invasive method for exploring

the anatomical and physical connectivity of the human brain

through measuring the motion of water [1]. One key application

of diffusion MRI is to infer the underlying fiber orientation within

each voxel. The collective fiber orientations can then be used to

reconstruct and extract white matter (WM) tracts. This process is

known as diffusion tractography. The virtual WM tracts derived

from diffusion tractography allow 3D fiber pathways to be

rendered in an intuitive manner. This method has been

increasingly used by neurosurgeons [2]. Moreover, diffusion

tractography has made it possible to determine the presence and

strength of the anatomical connections between grey matter (GM)

regions and voxels in-vivo. These measurements are essential for

reconstructing and analyzing human neuroanatomical networks

[3,4,5]. A map of these neuroanatomical networks is the goal of

the ongoing human connectome project [6].

Diffusion MRI also yields many diffusion parameters and

indices that are putatively related to the microstructural properties

of brain tissue (particularly WM) within the voxel. Fractional

anisotropy (FA) and mean diffusivity (MD) are the most well

known indices among these diffusion parameters, which are based

on the diffusion tensor (DT) model [7,8,9]. Specifically, FA

represents a normalized ratio of diffusion directionality, whereas

MD quantifies the bulk mobility of water molecules. Other

diffusion indices, such as radial diffusivity (RD), axial diffusivity

(AD) and ellipsoidal area ratio (EAR), are also frequently applied

[10,11]. These diffusion indices are believed to reflect the

biological fiber-packing density, fiber diameter, or the degree of

myelination of the WM [12,13]. Thus, these parameters are of

great interest to neuroscience and clinical neurology. They have

been extensively applied as markers for studying WM under-

normal and pathological conditions [1,14,15].

The vast majority of diffusion MRI-derived indices (e.g., FA and

MD), however, reflect diffusion properties solely within the voxel.

Several studies have introduced inter-voxel diffusion indices that

are informative and useful. For instance, the lattice index (LI)

measures the similarities of the DTI-derived principle orientations

between adjacent voxels [7]. This index has revealed significant

region-specific WM changes under pathological conditions such as

Alzheimer’s disease [16], stroke [17], Williams syndrome [18], and
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multiple sclerosis [19]. In addition, a recent nonhuman primate

study applied another inter-voxel index that measures the standard

deviation of the angle of the first eigenvector projection within a

neighborhood. This study demonstrated WM abnormalities

during the chronic stage of induced cerebral ischemia [20].

Intriguingly, the studies that have applied both inter- and intra-

voxel indices (e.g., FA and MD) have shown discrepant results

between the indices. These results imply that these indices have

different sensitivities to distinct WM properties. Furthermore,

these discrepancies have been identified mainly under pathological

conditions. The differences between the intra- and inter-voxel

indices under normal conditions, however, have not yet been

characterized. This analysis can provide important baseline

information on the relationship between both types of indices.

Though very few inter-voxel metrics have been applied with

diffusion MRI data to date, the metrics are uniformly based on

diffusion tensor imaging (DTI) outputs. For instance, LI was

defined as the degree of coherence of the principle diffusion

directions derived from DTI [7]. However, it is well known that

the DT model is problematic when assuming that a simple

Gaussian profile can be applied to water diffusion in complex

structures, such as in regions where fibers cross [21]. As a result,

the existing DTI-derived inter-voxel indices (e.g., LI) are

vulnerable to errors as a result of assuming false orientations,

particularly in complex structural regions. Though non-DT

models have been proposed to attempt to resolve the issues

surrounding the analysis of complex structures [22,23,24], these

models are mathematically complex and make quantifying model

similarity (essential for defining an inter-voxel metric) difficult.

In the present study, we propose a novel inter-voxel metric

referred to as local diffusion homogeneity (LDH), which is not

dependent on any prior diffusion model. This metric is defined to

capture the overall coherence of water molecule diffusion within a

neighborhood, supposely reflecting the microstructural coherence

of the underlying WM fibers. This proposed metric is expected to

be complementary to the conventional diffusion parameters (e.g.,

FA and MD) and provide additional insights into the across-

subject WM differences. To investigate its distinguishing features,

the LDH metric will be systematically compared with the FA and

MD metrics. Then, to illustrate potential applications, LDH and

FA/MD will be both applied to measure age-related WM changes

in a normal aging dataset. The results will be discussed.

Methods

Subjects
The present study included data from 23 young adults (males,

11; females, 12; age, 17–24 years) and 17 elderly individuals

(males, 8; females, 9; age, 54–77 years). All subjects were recruited

from the campus and the local community. Subjects with a history

of neurological or psychiatric disorders were excluded from this

study. The research protocol and consent procedure were

approved by the Research Ethics Committee of the Beijing

Normal University. Written informed consent was obtained from

each participant.

MRI acquisition
All scans were performed using the 3.0 T Siemens Tim Trio

MRI scanner in the Imaging Center for Brain Research, Beijing

Normal University. Diffusion MRI was acquired by using a single-

shot echo planar imaging-based sequence. The diffusion MRI

parameters included coverage of the whole brain; 2-mm slice

thickness with no inter-slice gap; 68 axial slices; repetition time

(TR), 9000 ms; echo time (TE), 92 ms; 64 optimal nonlinear

diffusion-weighted directions with b = 1000 s/mm2 and additional

images without diffusion weighting (i.e., b = 0 s/mm2); number of

average, 4; acquisition matrix, 1286124; field of view (FOV),

2566248 mm2.

Image pre-processing
To correct for eddy-current induced image distortion and

simple head motion, the diffusion-weighted images (DWI) were

first coregistered to a reference volume (i.e., the b0 image) using an

affine transformation. The voxel-wise diffusion tensor matrix was

then calculated for each subject in the native space. Next,

diagonalization was performed to yield three pairs of eigenvalues

and eigenvectors. Based on the three eigenvalues, fractional

anisotropy (FA) and mean diffusivity (MD) were computed on a

voxel-by-voxel basis. To compare between subjects, the framework

of Tract-Based Spatial Statistics (TBSS) was used to establish the

WM correspondence between subjects [25]. Specifically, the FA

image of each subject was nonlinearly registered to the

FMRIB58_FA template in the standard space. The mean of all

aligned FA images was then calculated, and the WM skeleton was

generated based on the mean FA image. As recommended, the

WM skeleton was thresholded at 0.2. This step led to a binary

skeleton mask. All FA and MD data were then projected onto the

skeleton mask. The TBSS framework avoids the necessity of

choosing a spatial smoothing procedure, a step that is required for

typical voxel-based analysis (VBA). In addition, the framework

provides better alignment, sensitivity, objectivity and interpret-

ability when it is applied to multi-subject diffusion data [25]. For

these reasons, our analyses of FA/MD/LDH were confined to the

WM skeleton mask derived from the TBSS. All of the procedures

described above were implemented by the PANDA toolbox [26].

Local diffusion homogeneity (LDH)
For a diffusion MRI dataset, the diffusivityD

g! along the

diffusion-weighted gradient direction g! can be calculated as

follows:

D
g!~

1

b
ln (

s0

s
g!

) ð1Þ

Where s0 is the signal without diffusion weighting (i.e., b = 0 s/

mm2); s
g! is the signal along the gradient direction g! with

diffusion weighting and b is the weighting factor (i.e., b-value in

the sequence). For each gradient direction, the voxel-wise D
g! was

computed after correcting for the eddy-current artifacts in the

original DWI. Given that multiple gradient directions are sampled

in each diffusion MRI scan, a series of D
g! can be extracted for

each voxel (Fig 1). The length of the series (i.e., the sample size) is

simply the total number of sampled gradient directions.

The LDH of a given voxel was defined as the overall similarity

of the D
g! series within its nearest neighborhood. The neighbor-

hood can be 7 voxels (including the neighbors adjacent to the

surface), 19 voxels (including the neighbors adjacent to the surface

and edge) or 27 voxels (including the neighbors adjacent to the

surface, edge and vertex) in the 3D image space. Kendall’s

coefficient concordance (KCC) [27] was applied to quantify this

overall similarity (i.e., LDH) as follows:

Local Diffusion Homogeneity: An Inter-Voxel Metric
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KCC~

Pn

i~1

(Ri)
2{n(R)2

1
12

K2(n3{n)
ð2Þ

Ri~
XK

j~1

ri,j

Where ri,j represents the rank of the D
g! of i-th diffusion

gradient direction in the entireD
g! series for the j-th voxel in a

defined neighborhood; Ri is the sum of the ri,j for all K voxels

within the neighborhood and R is the mean of Ri for all n diffusion

gradient directions; K is the number of voxels for the pre-defined

neighborhood (i.e., 7, 19 or 27); n is the length of the D
g! series

(e.g., 64 in the current dataset). The KCC is a non-parametric

statistic ranging from 0 (no agreement) to 1 (complete agreement),

here representing the overall similarity of the D
g! series within the

neighborhood. The LDH maps with the three types of neighbor-

hoods (i.e., 7, 19 or 27) were calculated for each subject in the

native space (Fig 2). To compare between subjects, the LDH

images were then projected onto the WM skeleton mask in the

standard space using the procedure for the TBSS framework

described above.

To test the effect of the gradient direction number (i.e., sample

size) on the reliability of LDH, diffusion-weighted gradient

directions from a total of 64 gradient directions were sampled

from the dataset. The sample size was defined as a number from 6

to 63 because 6 represents the minimum number of gradient

directions in any DTI acquisition. For each sample size, random

sampling was repeated 50 times for each of the 40 subjects. For

each sample, the LDH images were then calculated using the

procedures described above. To quantify the reliability of LDH for

each sample size, the intra-class coefficient (ICC) was computed, as

shown below [28]:

ICC~
MSb{MSw

MSbz(K{1)MSw

ð3Þ

Where MSb is the between-subject variance of the LDH for a

given sample size, MSw is the within-subject variance and K is the

number of repeated observations per subject. Notably, the LDH

value measured from the entire set of gradient directions (i.e., the

reference) and the LDH value measured from each sample were

considered two repeated observations (i.e., K = 2). Therefore, each

sample with a given sample size had a calculated ICC value for

each voxel (50 in total). To avoid the intensive computation and

disk-space requirements of the resampling procedures

(4065065863 images), 10 voxels were randomly selected on a

random slice in the standard space (Fig 3). These voxels were then

inversely transformed back to the native space of each subject.

Using the corresponding data in the native space, the ICC values

were then calculated for the 10 voxels. An ICC value ranging from

0.75 to 1 is considered to reflect excellent reliability [29,30].

Correlations between LDH and FA/MD
To evaluate the similarity between the across-space variabilities

of the LDH and FA/MD metrics, Pearson correlations were

computed to compare across the voxels on the WM skeleton mask

(123081 voxels in total) for each subject. For each voxel on the

WM skeleton mask, Pearson correlations were also computed to

compare between different subjects (40 in total), indicating the

similarity between the across-subject variabilities of the LDH and

FA/MD metrics. The False Discovery Rate (FDR) [31] was

applied to correct for multiple comparisons and a two-tailed value

of p,0.05 after correction was considered to be significant.

Group comparison between young adults and elderly
individuals

To demonstrate the usability of LDH in studying between-

group WM differences, the LDH values of each voxel on the WM

skeleton mask were statistically compared between the young

adults (23 subjects) and elderly individuals (17 subjects) using a

general linear model (GLM). Gender was controlled as a covariate

in the statistical model. The same GLM was also applied to the

Figure 1. The extraction of voxel-wise diffusivity series. (a)
Schematic diagram showing the processing procedures for calculating
the diffusivity (D) along the gradient directions. The vector from the
center of the sphere to a red circle on the surface represents a diffusion
gradient direction. For each gradient direction, one diffusion-weighted
image (DWI) was collected and used to calculate the diffusivity images.
(b) The diffusivity series for a sample voxel (the red voxel). A dataset
with 64 gradient directions was analyzed.
doi:10.1371/journal.pone.0066366.g001
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FA/MD analysis. Given the well-known declines of WM integrity

in elderly, a one-tailed value of p,0.05 after FDR correction was

considered to be statistically significant. The statistical results

between the LDH and FA/MD metrics were further compared.

Results

Sample LDH, FA and MD maps are illustrated in Fig 2. The

LDH maps visually resemble the FA images and display contrasts

between WM, GM and CSF. However, the degree of tissue

contrast in the LDH map is different from that observed in the FA

map. In contrast, the LDH images appear quite different than the

MD images.

The effect of gradient direction number
Next, the effect of diffusion-weighted gradient direction number

on the reliability of LDH was quantified. The ICC was calculated

for 10 randomly selected voxels (Fig 3). The LDH of the entire set

of diffusion gradient directions was used as a reference, and an

ICC value (50 in total, each for one sample) was calculated for

each sample with a given sample size (i.e., 6,63). Next, the mean

ICC minus the ICC standard deviation (i.e., mean-1std) was

plotted as a function of sample size for each voxel, indicating the

lower limit (i.e., the worst case) of LDH reliability across the

samples. As shown in Figure 3, the LDH ICC curves exhibited an

overall increasing trend that corresponded with an increase in

sample size. The LDH reliability for all 10 voxels reached the level

of excellence (i.e., ICC.0.75) when the number of gradient

directions exceeded 20,30.

Correlations between the LDH and FA/MD metrics across
space

A scatter plot comparing LDH and FA/MD across the WM

skeleton is depicted in Figure 4a–f. For each subject, the Pearson

correlation coefficient R was calculated (LDH07 vs. FA:

mean = 0.72, std = 0.02; LDH19 vs. FA: mean = 0.70, std = 0.02;

LDH27vs. FA: mean = 0.69, std = 0.02; LDH07 vs. MD:

mean = 0.04, std = 0.04; LDH19 vs. MD: mean = 0.03,

std = 0.04; LDH27 vs. MD: mean = 0.03, std = 0.03). The results

of this analysis are displayed in Figure 4 g–i. The results indicate

that the LDH and FA metrics exhibit similar across-space

contrasts to some degree within the WM skeleton mask. However,

the LDH and MD metrics did not exhibit similar across-space

contrasts.

Correlations between LDH and FA/MD across subjects
As listed in Table 1, 79.62%, 75.86% and 72.93% of the voxels

on the WM skeleton showed significant linear correlations

(p,0.05, FDR corrected) between LDH07, LDH19 and LDH27

and FA, respectively. To highlight the differences in the spatial

patterns revealed by the LDH07 and FA metrics, the voxels

showing p.0.05 after FDR correction (i.e., non-significant) are

displayed in Figure 5a. The voxels that were not significantly

correlated between the LDH07 and FA metrics were mainly

located in the cerebellar WM, cerebellar peduncle, corticospinal

tract, internal capsule, thalamic radiation, and corpus callosum.

In contrast, only 3.77%, 2.84% and 2.44% of the voxels showed

significant correlations between LDH07, LDH19 and LDH27 and

MD, respectively. The voxels that did not exhibit significant

Figure 2. LDH and FA/MD across the entire brain. (a) Representative LDH and FA/MD images from one subject in the native space. The number
in the bracket (i.e., 7, 19, 27) represents the size of the nearest neighborhood. (b) The average LDH and FA/MD images across the entire sample of 40
subjects. The images were nonlinearly registered into the standard space using the TBSS framework.
doi:10.1371/journal.pone.0066366.g002
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correlation between the LDH07 and MD metrics are illustrated in

Figure 5b. These areas included most of the WM regions. The

spatial patterns revealed by correlations between LDH19/LDH27

and FA/MD are extremely similar to those of LDH07 and are not

shown.

Applying the LDH metric to examine normal aging:
between-group WM differences between young adult
and elderly individuals

Statistical maps showing significant group differences (p,0.05,

FDR corrected) in FA, MD and LDH07 are illustrated in Figure 6.

Specifically, elderly individuals exhibited significantly decreased

FA in multiple regions throughout the brain. FA was mainly

affected in the bilateral uncinate fasciculus, superior longitudinal

fasciculus, internal capsules, external capsules, fornices and corpus

callosum (Fig 6a). The regions with reduced LDH07 in the elderly

individuals were mainly located in the bilateral cerebellar WM,

uncinate fasciculus, cerebral peduncles, internal capsules, fornices,

superior longitudinal fasciculus, and corpus callosum (Fig 6b). In

contrast, MD was significantly increased in the elderly individuals.

The bilateral external capsules, fornices, superior longitudinal

fasciculus, and corpus callosum (Fig 6c) were preferentially

affected.

Though the WM regions showing significant changes in LDH07

and FA/MD overlapped to some degree, the exact location of the

significant changes greatly differed (Fig 6). As summarized in

Table 2, only 34.3%, 35.3% and 35.3% of the voxels with

significant reductions in LDH07, LDH19 and LDH27 also

showed significant FA reductions, respectively. Furthermore, less

than 2% of the voxels showing significant LDH changes

intersected significant MD changes (Table 2). Maps showing the

consistent and inconsistent results between the LDH07 and FA/

MD metrics are illustrated in Figure 7. Specifically, the age-related

WM voxels that differed in LDH07, but not in FA/MD, were

mainly located in the bilateral cerebellar peduncles, internal

capsules, fornices (inferior part), and splenium of the corpus

callosum (Fig. 7b and 7d).

Discussion

Using diffusion MRI, the present study has proposed a novel

inter-voxel metric referred to as local diffusion homogeneity

(LDH). This measure can be applied as an imaging marker for

characterizing the WM microstructural properties of the human

Figure 3. The effect of diffusion-weighted gradient direction number on the reliability of LDH. (a) Ten voxels (red) were randomly
selected to test the reliability of LDH. (b)–(d) Intra-class coefficient (ICC) of LDH07, LDH19 and LDH27 as a function of the number of diffusion-
weighted gradient directions (6,63). The curves represent the mean ICC minus 1std (i.e., mean-1std) of ICC across the samples. This result represents
the lower limit (i.e., the worst case) of ICC across samples (50 in total). Each curve is calculated for one voxel (10 in total). The cutoff value for the
criterion of excellent reliability (i.e., ICC = 0.75) is denoted by the grey dashed line.
doi:10.1371/journal.pone.0066366.g003
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brain in a non-invasive manner. The comparative analysis

between LDH and FA/MD showed that LDH resembles an

index of diffusion anisotropy. However, it revealed unique inter-

subject variability in specific WM regions. When applying these

indices to the detection of age-related WM alterations, the

significant differences depicted by LDH and FA/MD in multiple

WM regions were not consistently detected. This result suggests

that each of these indices is differentially sensitive to specific WM

microstructural properties.

Figure 4. Correlations between the LDH and FA/MD metrics across space. (a)–(f) Representative scatter plot between the LDH and FA/MD
metrics across the WM skeleton of one subject. Each circle represents one voxel on the skeleton. (g)–(i) The Pearson correlation between the LDHs
and FA/MD metrics for all subjects.
doi:10.1371/journal.pone.0066366.g004
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Definition of LDH
To date, few diffusion inter-voxel metrics have been proposed.

One such metric is lattice index (LI), which mainly characterizes

the overall coherence of principle orientations derived from

diffusion tensors (DT) [7]. These indices, however, may errone-

ously estimate coherence when the DT model fails to provide the

real tract direction within the voxel. These errors are especially

pertinent in complex structures such as regions of fiber-crossing. In

contrast, the proposed LDH metric does not require a prior

diffusion model. Instead, the model-related issues are avoided

through the quantification of the raw diffusivity homogeneity

along the sampled gradient directions. In addition, by using the

signals from the entire set of gradient directions, the LDH metric

actually measures the inter-voxel similarity of the full diffusion

profile of water molecules. In contrast, previous metrics like LI

measure the inter-voxel similarity of the principle diffusion

orientations.

Since the full profile of water molecule diffusion is highly related

to underlying WM microstructural properties (fiber direction, fiber

coherence, fiber density, fiber diameter, degree of myelination,

degree of fiber crossing, etc.), the LDH metric is supposed to

reflect specific microstructural properties of the underlying WM

fibers, by capturing the overall coherence of water molecule

diffusion within a neighborhood. For instance, within a specific

WM tract, the fiber orientations around the curving part are

locally incoherent, thus leading to a less LDH value on the curving

part than the straight part. In this case, the LDH metric provides

useful clues about the coherence of local fiber orientations, as well

as local shape of the WM tract. On the other hand, the fiber

meylination, diameter or density differs along each WM tract [32],

it is intuitive to assume that the LDH metric can represent the

local coherence of those microstructural factors within the

neighborhood, another meaningful information for understanding

the microstructure of WM tracts. Notalby, these biological

interpretations for the LDH metric are largely speculative. To

validate these, future studies with histological analyses are

required.

Computationally, the LDH metric uses Kendall’s coefficient

concordance (KCC) to quantify the overall coherence of the

diffusivity series. The KCC is a non-parametric statistic that can

be calculated without assumptions about the nature of the

probability distribution. It is linearly related to the mean value

of the Spearman’s rank correlation coefficients between all pairs of

the rank series within a neighborhood. Thus, the KCC is an ideal

candidate for measuring the coherence of the diffusivities that are

frequently distributed in a non-Gaussian pattern, which is the case

for complex structures. It is worth mentioning that the usage of

KCC in the present study was directly inspired by a previous fMRI

study by Zang et al. [33] in which the KCC was employed to

measure the similarities between fMRI time series in grey matter

(GM). Follow-up studies have further demonstrated that the KCC

of fMRI time series are altered in many neurological diseases,

including Alzheimer’s disease [34], attention deficit hyperactivity

disorder [35] and Parkinson disease [36]. These findings suggest

that there is a region-specific distribution of abnormal neuronal

activity in these diseases.

Furthermore, it should be noted that two factors can affect LDH

results: 1) the choice of the neighborhood and 2) the number of

gradient directions. In the present study, three neighborhoods (i.e.,

7, 19 and 27) were tested in the analyses. Not surprisingly,

differences between the LDH of the three types of neighborhood

were identified. For example, the LDH of the voxels in the

neighborhood of 7 exhibited the highest correlations with FA

across space (Fig 3). The LDH detected in this neighborhood were

also most consistent with the FA-detected WM changes in normal

Figure 5. Correlations between the LDH07 and FA/MD metrics across subjects. To highlight the potential differences between the metrics,
voxels that did not exhibit significant correlations (p.0.05, FDR corrected) between the metrics were color-coded. (a)–(b)The panels depict the spatial
pattern of voxels exhibiting non-significant correlations between LDH07 and FA as well as LDH07 and MD. The statistical analysis was performed on
the WM skeleton derived from TBSS. The results were ‘thickened’ for better visualization (http://www.fmrib.ox.ac.uk/fsl/tbss/index.html#display).
doi:10.1371/journal.pone.0066366.g005

Table 1. The percentage of voxels showing significant
correlations (p,0.05, FDR corrected) between the LDH and
FA/MD metrics on the WM skeleton (123081 voxels in total).

FA MD

LDH07 79.62% 3.77%

LDH19 75.86% 2.84%

LDH27 72.93% 2.44%

doi:10.1371/journal.pone.0066366.t001

Local Diffusion Homogeneity: An Inter-Voxel Metric
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aging (Table 2). Despite these slight differences, the overall

patterns of LDH were quite similar between the three neighbor-

hoods. This result implies that the choice of neighborhood only

has a limited effect on the results.

In contrast, the number of gradient directions measured is

critical in the determination of LDH. This variable can

substantially affect the reliability of LDH. Currently, the number

of gradient directions that is adequate for the reliable detection of

WM properties by diffusion MRI is debated. Many studies have

been dedicated to answering this question and have measured the

reliability and robustness of DTI-derived parameters (e.g., FA,

MD, etc.) [37,38]. In the present study, the sampling results

suggested that 20,30 gradient directions was adequate for

achieving high LDH reliability (Fig 3). A specific cut-off, however,

is difficult to determine and unnecessary. Many current studies

commonly apply 20,30 gradient directions for their diffusion

MRI acquisitions. Thus, the LDH metric is highly applicable to

existing diffusion MRI datasets. Moreover, diffusion spectrum

imaging [39] and Q-ball imaging [40] are promising techniques

for resolving the issues involving complex structures. These

techniques have been increasingly applied in the recent years

and provide diffusion MRI datasets that naturally fit well with the

LDH analysis.

LDH versus FA/MD
In this study, we performed a systematic comparison between

the LDH and FA/MD metrics in a normal sample. The

information that we have gleaned from our experiments can

provide important baseline information about the relationships

between these indices. The results indicate that there exists some

degree of overlap between the LDH and FA metrics. In contrast,

LDH did not correlate with MD. It is worth noting that LDH

should not be viewed as a real ‘anisotropy’ index because it

actually measures the inter-voxel coherence of water molecule

diffusion profiles. In fact, there are appreciable differences

between LDH and FA across space and normal subjects (Fig 4

and Fig 5). Furthermore, the FA and LDH metrics each identified

discrepant WM brain areas as being affected by aging.

The observed between-index differences are consistent with

previous findings. Other studies have reported notable discrepan-

cies between other inter-voxel parameters and the FA/MD

metrics under pathological conditions. For instance, the lattice

Figure 6. The significant age-related WM changes revealed by the LDH, FA and MD metrics. (a) Significant FA reduction (p,0.05, FDR
corrected) in elderly individuals. (b) Significant LDH07 reduction (p,0.05, FDR corrected) in elderly individuals. (c) Significant MD increase (p,0.05,
FDR corrected) in elderly individuals. The statistical analysis shown in this figure was performed only on the WM skeleton derived from TBSS. The
results were ‘thickened’ for better visualization.
doi:10.1371/journal.pone.0066366.g006
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index (LI) revealed a greater difference between tumor models and

between tumor and peritumoral regions than did the FA/MD

measurements. This characteristic of LI can be useful for

differentiating between tumor models and between tumors from

and peritumoral regions [41]. In addition, the inter-voxel metric

measuring the standard deviation of the angle of the first eigenvector projection

within a neighborhood revealed WM abnormalities in the chronic

phases of ischemia. In this study, the FA/MD metrics failed to

uncover any WM differences [20]. Together, these reports and the

current study suggest that the inter-voxel indices (e.g., LDH) may

be applied when no significant results are found by assessing FA/

MD.

Multiple microstructural factors may contribute to various

diffusion metrics in WM. These factors include the fiber density,

fiber diameter, fiber coherence and degree of myelination [10,13].

It is conceivable that the diffusion parameters are each sensitive to

a specific subset of the factors. In other words, each parameter

may preferentially reflect some of the factors over the others.

Speculatively, LDH may be more sensitive to the microstructural

coherence but less sensitive to the degree of myelination than FA.

Given the differential sensitivities of the different metrics, LDH

may reveal WM microstructural changes that FA/MD fails to

detect and vice versa. Therefore, LDH and FA/MD should be

applied as complementary approaches when exploring inter-

subject WM variability.

WM changes during normal aging
To demonstrate the utility of LDH in an experimental setting,

LDH and FA/MD were measured to reveal the WM alterations

present in normal elderly individuals. Interestingly, significant FA

reductions were found in the bilateral uncinate fasciculus, superior

longitudinal fasciculus, external capsules, fornices and corpus

callosum. Our results are highly compatible with previous findings

[42,43]. In contrast, MD also displayed significant changes, but in

fewer WM voxels. This result supports the notion that diffusion

metrics are distinctly sensitive to specific WM properties. Notably,

age-related FA reductions are primarily distributed in the anterior

part of the WM. This result is consistent with the hypothesis of the

aging-related anteroposterior gradient. This hypothesis states that

the anterior regions of brain are more susceptible to aging than the

posterior regions [43]. These FA/MD changes are most likely a

reflection of age-related axonal shrinkage, axonal loss or demy-

elination. These processes may underlie various patterns of

cognitive decline during normal aging.

In addition to the FA/MD changes, LDH was also significantly

reduced throughout the brains of the elderly individuals. As

expected, whereas some WM voxels exhibited age-related changes

that were detected by both the LDH and FA/MD metrics, others

were only detected by LDH. The age-related WM alterations

detected only by LDH were mainly located in the bilateral

cerebellar peduncles, cerebral peduncles internal capsules, fornices

(inferior part), and splenium of the corpus callosum. These data

provide new avenues for understanding the aging brain. The

changes in these WM regions during aging are most likely a result

of the disruption of fiber coherence, alteration of the tract shape,

or the reduction of the tract size. They are less likely a result of

axonal shrinkage or demyelination. In fact, several studies have

reported morphological WM changes in these regions. For

example, the volumes of the cerebellar peduncle and splenium

are decreased in the aging brain [44]. Further studies will need to

be performed to fully interpret these findings and assess the

reliability of the current age-related LDH results.

Limitations
Several limitations in the present study should be addressed.

First, while the proposed LDH metric showed a potential for

assessing WM differences across individuals, the biological

interpretations are largely speculative and specific neuronal basis

for this new metric remains unknown. To resolve this, virtual

validation analyses with histological data or phantoms are

necessary, which is however beyond the scope of the present

study. Such validation studies are highly desired in the future.

Second, the current LDH analysis was restricted to the WM

skeleton constructed using the TBSS framework. Thus, the WM

regions off of the skeleton and GM regions are excluded. However,

the TBSS framework was employed because of its high quality

across-subject registration procedure. This process minimizes

alignment issues when comparing between young adults and

elderly individuals. The skeletonizing technique also minimizes

partial volume effects. Third, we only applied the LDH metric to

study age-related WM changes. More datasets, particularly those

from individuals with brain disorders (e.g., schizophrenia, multiple

sclerosis and et al.), are needed to further demonstrate the utility of

LDH. Finally, the subject sample size was relatively small in the

present study. Future studies with larger sample size are required

to test the reproducibility of our current findings.

Table 2. Voxels showing significant age-related effects as measured by both the LDH and FA/MD metrics (FDR corrected p,0.05).

FA MD

(Elderly.young, 6965 voxels) (Elderly,young,180 voxels)

LDH07 (Elderly.young, 4711 voxels) Intersection: 1615 voxels Intersection: 66 voxels

Percentage: 34.3% LDH07 Percentage: 1.4% LDH07

Percentage: 23.2% FA Percentage: 36.7% MD

LDH19 (Elderly.young, 3910 voxels) Intersection: 1379 voxels Intersection: 64 voxels

Percentage: 35.3% LDH19 Percentage: 1.6% LDH19

Percentage: 19.8% FA Percentage: 35.6% MD

LDH27 (Elderly.young, 3697 voxels) Intersection: 1304 voxels Intersection: 62 voxels

Percentage: 35.3% LDH27 Percentage: 1.7% LDH27

Percentage: 18.7% FA Percentage: 34.4% MD

doi:10.1371/journal.pone.0066366.t002
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Conclusion

In the present report, we have proposed a novel diffusion MRI-

derived metric referred to as local diffusion homogeneity (LDH).

This metric is defined to characterize the overall coherence of

water molecule diffusion within a neighborhood, and can be used

to explore inter-subject variability of WM microstructural

properties. In contrast with the more commonly applied metrics,

such as FA and MD, LDH is a model-free inter-voxel index, and

may reveal WM microstructural alterations that FA/MD fails to

detect. Thus, it is complementary to the conventional diffusion-

Figure 7. Maps showing the spatial consistencies and inconsistencies between LDH and FA/MD in the detection of age-related
effects. (a) The voxels showing significant age-related effects that were detected by both FA and LDH07. (b) The voxels showing significant age-
related effects that were detected by either FA or LDH07 alone. The yellow-red represents significant age-related effects that were only detected by
FA but not on LDH07. Bright blue represents significant age-related effects that were only detected by LDH07 but not FA. (c) The voxels showing
significant age-related effects that were detected by both MD and LDH07. (d) The voxels in which an age-related effect was only detected by either
MD or LDH07. The yellow-red represents significant age-related effects that were detected only by MD but not by LDH07. Bright blue represents
significant age-related effects that were only detected by LDH07 but not MD. All of these results were also ‘thickened’ for visualization.
doi:10.1371/journal.pone.0066366.g007
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MRI markers and may provide additional insights when applied to

study inter-subject WM variability.
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