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Pneumocystis jirovecii is one of themost common fungal pathogens in immunocompromised
individuals. Pneumocystis jirovecii pneumonia (PJP) causes a significant host immune
response that is driven greatly by the organism’s cell wall components including b-glucans
and major surface glycoprotein (Msg). These ligands interact with a number of C-type lectin
receptors (CLRs) leading to downstream activation of proinflammatory signaling pathways.
Th is min i rev iew prov ides a br ie f overv iew summar iz ing known CLR/
Pneumocystis interactions.
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INTRODUCTION

Pneumocystis jirovecii is the opportunistic fungal organism responsible for Pneumocystis jirovecii
pneumonia (PJP) that causes severe morbidity and mortality in immunocompromised individuals
and is one of the top 10 severe fungal infections in the world (1). Pneumocystis species are fungi that
belong to the ascomycetes and have a diminutive trophic form and a larger cyst or asci form (2).
Regarding the organism’s cell wall, both forms possess abundant major surface glycoproteins (Msgs)
also termed glycoprotein A (gpA) (the genomes of Pneumocystis spp. encode for an abundance of
Msgs proteins compromising approximately 3-6% of the total genome) (3). This large multicopy
family is thought to be important for host/organism interactions as well as evasion of the host
immune response (3). The cyst form also contains substantial amounts of b-glucans (4), and the
fungus has the required enzymes for the synthesis and degradation of b-1,3- and b-1,6-linkages (4,
5). Furthermore, the Pneumocystis cell wall lacks chitin (3) a component of fungal organisms as well
as a-glucans which are present in a number of pathogenic and nonpathogenic fungal organisms (6–
8). Lastly, Pneumocystis lacks hyper mannose glycosylation on its outer surface unlike other
pathogenic fungi such as Candida albicans (9) and its low complex composition hypothesized as a
way to avoid host immune detection (3).

The major Pneumocystis ligands b-glucans andMsgs, have been shown to interact with a number
of known C-type lectin receptors (CLRs) and are discussed below (Figure 1 and Table 1).
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DC-SIGN

Dendritic Cell-Specific Intercellular adhesion molecule-3-
Grabbing Nonintegrin (DC-SIGN) is a CLR that has high
affinity for fungal N-mannans (9, 35). Although highly
recognized as an important CLR for many funga/host
interactions, little is known about its role in Pneumocystis
binding. Elsegeiny et al. showed that a human DC-SIGN Fc
(fragment crystallizable) fusion could bind both cyst and trophic
forms (15). This same lab shown that in immunodeficient
humanized mice (huNOG-EXL) expressing high levels of DC-
SIGN mRNA, there were significantly lower fungal numbers in
the immunosuppressed state, suggesting the importance of the
CLR in organism burden control (14). We and others have
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shown through Fc fusions of the DC-SIGN CLR that the Msg
on the surface of Pneumocystis serves as a ligand for DC-SIGN
(12, 13). To date, no studies have evaluated mutations of the 7
known distinct genes encoding the human DC-SIGN homolog
using the Pneumocystis pneumonia (PCP) mouse model to
further study the relevance of these mutations in contributing
to Pneumocystis innate immunity (36).
DECTIN-1

CLR Dectin-1 has long been considered the preeminent fungal b-
glucan receptor (37). Its role in Pneumocystis host defense was
FIGURE 1 | Carbohydrate Recognition and C-type Lectin (CLR) Receptors in Pneumocystis (PC). Schematic illustration adapted from Hoving (10) of the most
characterized carbohydrate recognition receptors for the fungal organism and brief description of the host response. Major surface glycoprotein (Msg) is a novel
ligand on the Pneumocystis cell surface. The dotted line represents a possible connection with MCL and Mincle on inflammatory signaling in the presence of
Pneumocystis Msg (11).
TABLE 1 | List of host immune receptors, their Pneumocystis ligands, presence in relevant cell types in PCP, and importance in host/Pneumocystis interactions or
response.

Receptor Ligand Cell Type Importance Reference

DC-SIGN (CD209) Msg/gpA DCs, alveolar macrophages (AMs) ++ (12–15)
Dectin-1 (CLEC7A) B-1,3 glucan macrophages, dendritic cells (DCs), bronchial epithelial cells, pulmonary

epithelium
++ (16–21)

Dectin-2 (CLEC6A) Msg/gpA DCs, macrophages + (12, 22)
Mincle (CLEC4E) Msg/gpA Monocytes, macrophages, neutrophils, DCs ++ (12, 16)
MCL (CLEC4D) Msg/gpA Monocytes, macrophages, neutrophils, DCs ++ (in vitro) (11, 12)
Mannose Binding Lectin (MBL) (COLEC1) Msg/gpA plasma ++ (23, 24)
Mannose Receptor (MR) (CD206) Msg/gpA AMs, DCs, monocytes ++ (in vitro) (25–30)
Surfactant protein A (SP-A), Surfactant protein D
(SP-D)

Msg/gpA Lung lavage fluids ++ (31–33)

Surfactant protein B (SP-B) (Binds
organism?)

Lung lavage fluids * (34)
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first demonstrated through its importance in nonopsonized
phagocytosis of the fungal organism by the alveolar
macrophage (AM) in vitro (21). The receptor appears to
colocalize (bind to the b-glucan carbohydrate linkages) with
the fungal cell wall and is important in killing of Pneumocystis
organisms. Furthermore, competitive inhibition studies with
Saccharomyces cerevisiae b-glucan rather than mannan
demonstrated that organism killing by AMs could be
significantly reduced, providing more credence to the
importance of Dectin-1 in the control of organism clearance
by AMs (21). Other have also shown that Dectin-1 colocalizes
with TLR2 and mannose receptor (MR) in AMs (discussed
below) challenged with Pneumocystis organisms (17). In
addition to the importance of Dectin-1 in Pneumocystis and
AM identification and killing, the receptor has also been shown
to be important in dendritic cell (DC) interactions with
Pneumocystis. Studies conducted by Carmona et al. show that
human DCs preincubated with a monoclonal antibody to
Dectin-1, can significantly reduce TNFa when stimulated with
Pneumocystis-specific b-glucans (38).

A number of studies examined the role of Dectin-1 using in
vivo models of PCP. First, Saijo et al. demonstrated that in the
PCP rodent model, Dectin-1-deficient mice displayed
significantly more cysts than wild type mice in both
immunocompetent and immunosuppressed models of PCP,
being the first to link Dectin-1 with importance in controlling
organism burden in PCP (19). Secondly, an eloquent study by
Rapaka et al., demonstrated that when severe combined
immunodeficiency (SCID) mice with PCP were given an
adenoviral expressing a Fc-Dectin-1 fusion, the construct
reduced overall organism burden and lung parameters
associated with organism/host response damage (20).
Furthermore, we and others have shown that in the mouse
PCP model, total RNA samples from infected whole lungs as
well as AMs derived directly from P. jirovecii-infected lungs
express induced levels of Dectin-1 mRNA (16, 18). Taken
together, the data support a critical role for Dectin-1 in innate
immunity during PCP.
DECTIN-2

Dectin-2, another member of the CLR family, recognizes a-
mannan/mannose structures on the cell wall of fungal organisms
(39, 40). Dectin-2 has been shown to form heterodimers with the
CLR Macrophage C-type lectin (MCL) leading to greater
inflammatory responses then receptor alone when binding to
a-mannans (41). We have shown that Dectin-2 can significantly
bind live Pneumocystis organisms using a Dectin-2 Fc fusion
protein and that this binding could be significantly reduced when
the fungi were heat-treated (560C for 1 hour) (12). These data
suggest that Dectin-2 recognizes a-mannan/mannose structure
(s) on the cell surface. Further experiments determined that
Dectin-2 CLR may specifically bind a component(s) of native
isolated Msg from Pneumocystis, as this Pneumocystis surface
component significantly bound the Dectin-2 Fc fusion protein to
Frontiers in Immunology | www.frontiersin.org 3
a greater degree than the Fc control alone. Furthermore, RAW
macrophages overexpressing full-length Dectin-2 demonstrated
significantly greater binding of Pneumocystis organism
compared to RAW cells treated with vector alone.
Additionally, downstream spleen tyrosine kinase (Syk)
activation following Dectin-2/Fcg ligation was severely blunted
in Dectin-2 deficient compared to wild type macrophages (22).
Despite these data supporting strong interactions and activation
of Dectin-2 signaling following interactions of this CLR with
Pneumocystis, it was surprising when we observed that
immunocompetent and immunosuppressed Dectin-2 deficient
mice demonstrated statistically similar organism burdens and
cytokine production compared to wild type mice (22). Therefore,
taken together these data suggest a role for Dectin-2 in
Pneumocystis host response events, but this CLR may play
limited roles in controlling organism burden during PCP.
MINCLE/MCL

Macrophage inducible Ca2+-dependent lectin receptor (Mincle)
was first described in fungal/host interactions with Candida
albicans (42). This CLR is considered more promiscuous in its
ligand binding, with known interactions with Mycobacterium
tuberculous trehalose-6,6’-dimycolate (TDM) (43), human
cholesterol crystals (44), and fungal a-mannose (45). Similar to
Dectin-2, it has been shown that a Mincle Fc-fusion can
significantly bind Pneumocystis Msg and that RAW
macrophages overexpressing Mincle also bind more fungal
organisms then the parent line alone. Furthermore, Mincle
deficiency in macrophages also leads to decreased Syk
phosphorylation, suggesting the importance of Mincle in the
host downstream signaling proinflammatory response to
Pneumocystis (16). However, unlike Dectin-2, in the PCP
immunosuppressed model, Mincle knockout mice had
considerably greater (~3X) Pneumocystis organism burdens
then their wild type counterparts, suggesting the importance of
this CLR in organism clearance during PCP (16).

Macrophage C-type lectin (MCL) is a CLR with considerably
homology to Dectin-2 and Mincle. Like Mincle, it is has been
shown to also bind a-mannose residues (46). Similar to what was
reported for Mincle, MCL also binds Pneumocystis Msg in
similar fashion when tested with the MCL Fc-fusion proteins
as well as using whole organisms (12). One recent exciting
finding was that silencing mRNA expression of both MCL and
Mincle together in the RAW macrophage cell line prior to the
overnight addition of Pneumocystis b-glucans and in the
presence of Msg resulted in substantial reduction of TNFa
secretion. Although individually silencing each CLR alone
reduced TNFa considerably, their levels of inhibition did not
achieve the synergistically reduced levels of the double silenced
cell line (11). These data suggest the possible coregulation of the
host immune response to Pneumocystis through Mincle-MCL
CLR interdependent expression (47). Similar events have been
described with these two receptors and the bacterial ligand
mycobacterial cord factor (48). Future studies of the PCP
December 2021 | Volume 12 | Article 798214
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mouse model in MCL/Mincle double deficient animals would be
interesting to test the validity of this hypothesis.
MANNOSE-BINDING LECTIN

Mannose-binding lectin (MBL) is a soluble CLR shown to be
important in innate immunity against fungi through activation of
complement and participating in phagocytosis. Ligands for MBL
include N-acetylglucosamine linkages and mannose residues (49,
50). Studies to date report that MBL polymorphisms in HIV-
patients confer more susceptibility to PJP (23). More recently it
was determined that in another cohort of HIV-patients in
Northern Thailand, MBL mutations resulting in low MBL
expression had significantly higher incidence of PJP (24).
Currently, potential Pneumocystis ligands for MBL are not
yet known.
MANNOSE RECEPTOR

One of the first CLRs described to function as a myeloid receptor
for Pneumocystis was the mannose receptor (MR) reported in the
early 1990s. Ezekowitz and colleagues have shown that binding
of Pneumocystis to AMs was competitively inhibited with
mannose antagonists and that COS (CV-1 (simian) in Origin,
and carrying the SV40 genetic material) (51) cells expressing
human MR readily bound and engulfed Pneumocystis organisms,
and that this phagocytosis required both transmembrane and
cytoplasmic regions of the MR (29, 30). Later, O’Riordan et al.
identified Msg as a ligand for MR, and utilizing a similar
competitive assay with purified Msg as the soluble competitor,
determined the importance of MR in mediating attachment of
Pneumocystis to AMs (28). These studies led to a novel initial
hypothesis that CLRs maybe used therapeutically in PJP (28). It
was further shown that AMs from HIV positive individuals
exhibited downregulated MR, potentially representing a
contributing factor for impaired organism uptake by AMs that
increases susceptibility to Pneumocystis jirovecii (27). From these
observations, these researchers designed an MR-Fc fusion
protein that, when incubated with Pneumocystis, increased
phagocytic potential by greater than 8-fold, suggesting a
potential clinical tool for treating HIV MR-downregulated
AMs (26).

Further evidence beyond MR roles in phagocytic and
endocytic functions was reported by Zhang et al. and linked
NF-kB activation with MR. Sugar competition assays as well as
targeted siRNA of MR, resulted in significant reductions in NF-
kB nuclear translocation when challenged with Pneumocystis,
linking the proinflammatory response and MR to the organism
(25). Although these in vitro data suggest importance of MR in
PCP, immunocompetent and immunosuppressed mouse models
of PCP reported no significant differences comparing wild type
and MR knockout animals. These authors therefore concluded
that the absence of this receptor may be redundant and that other
receptor(s) may compensate for the receptor absence (52).
Frontiers in Immunology | www.frontiersin.org 4
OTHER NON-SIGNALING LECTIN
BINDING PROTEINS

Surfactant Protein A
Surfactant protein A (SP-A), was the first pulmonary surfactant
proteins associated with binding to Pneumocystis, with purified
SP-A being shown to bind to the mannose rich Msg component
of the organism (53). This lectin was found to be in significantly
greater quantities in all AIDS-related pneumonias including PJP
(33). Later it was determined that SP-A specifically enhanced the
attachment of Pneumocystis organisms to rat AMs (32). Others
have shown that in normal human AMs, the presence of SP-A on
the surface of Pneumocystis correlates with decreased organism
phagocytosis and maybe a contributor to the pathogenesis of PJP
(31). Linke et al. was the first to show that immunosuppressed
SP-A deficient mice exhibited higher organism burden and
higher histological score (percentage of alveolar involvement).
These data led these researchers to suggest that SP-A is indeed
needed for organism burden control and modulated AM
inflammatory responses to the organism (54).

Surfactant Protein B
Studies regarding the role of another lung surfactant lectin,
surfactant protein B (SP-B) are limited. Beers et al. showed that
in the immunosuppressed mouse PCP model, SP-B is
downregulated at both the mRNA and protein level. They
concluded that this may be a pathogenic factor that the organism
uses to prevent AMs from phagocytosing the organism (34).

Surfactant Protein D
Our lab performed a number of studies in the early 1990s
examining the role of surfactant protein D (SP-D) in
Pneumocystis host response. These studies revealed a number
of main findings. As with SP-A, SP-D also accumulates in the
lung during PCP (55) and is important for AM binding (56).
Furthermore, as with SP-A, SP-D was found to bind the Msg
component of the Pneumocystis cell wall (57). SP-D can also
undergo different states of polymerization, with an increase in
these events leading to greater aggregation of SP-D (58).
Analyzing the various states of this collectin, we found that
higher dodecameric forms of the protein bound fungal
organisms significantly greater than the trimeric configuration
of the protein (57). Furthermore, it was demonstrated that SP-D
accumulations are high in animal models of PCP as well as those
individuals with PJP (59, 60). As with SP-A, SP-D was proposed
as a means by which the organism avoids host killing (61).
Interestingly however, in the CD4-depleted PCP mouse model,
SP-D deficient animals surprisingly showed significantly higher
organisms burdens along with higher lung inflammation scores,
and lung weights. The authors suggests that the potential
difference they noted compared to the previous studies where
SP-D accumulates in the lung resulting in fungal aggregates and
reduced organism clearance, might be due to due to various
stages of the host response over the course of infections that
differentially regulates both pro- and anti-inflammatory
responses to the organism over time (62).
December 2021 | Volume 12 | Article 798214
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Concluding Remarks
Innate immune receptors and lectins/collectins are an important
part of the armature of the host defense against fungal pathogenic
infections. Typically, they bind fungal mannoproteins or
carbohydrates embedding and/or lining the fungal cell wall (63).
The prototypic fungal cell wall is composed of chitin, a-glucans
(both absent in Pneumocystis), b-1,3 and b-1,6 glucans, as well as a
variety of low and high complex mannoproteins (64). CLRs and
lectins bind their respective fungal ligands via their carbohydrate
recognition domains (CRD) (65). Innate immune receptors bind
their respective ligands resulting in downstream activation (via
Syk phosphorylation, Protein kinase C alpha (PKCg), Rat sarcoma
virus (Ras)/Rapidly Accelerated Fibrosarcoma (Raf) for example),
whereas collectins via binding the fungal ligand/organism help in
macrophages phagocytosis and killing (66, 67). Currently, it is
thought that there are more pattern recognition receptors (PRRs)
(including CLRs and collectins) for fungi than any other
organisms (68). This review is an attempt at highlighting the
most current literature on carbohydrate recognition receptors
involved in Pneumocystis organism/host cell interactions. Our
understanding of the roles of specific lectins/receptors and the
downstream inflammatory host response to Pneumocystis is still
evolving. Host myeloid cells appear to have a high level of
receptor/lectin redundancy in their identification and response
to Pneumocystis, as individual absence of certain receptors is
regarded as dispensable in regard to murine models of PCP (22,
52). In HIV/Pneumocystis co-infection, the role of these
Frontiers in Immunology | www.frontiersin.org 5
carbohydrate recognizing molecules is largely unknown because
of lack of representative animal models. For example, it has been
published that CLRs can promote protective anti-viral responses
and aid in viral transmission (69). In this scenario of fungal/viral
coinfection, CLR responses could be vastly different in the host
immune signaling and/or organism uptake and killing then the
single organism PCP CD4-depleted infection model. Future
studies utilizing combination of Pneumocystis CLR/lectin ligands
such as Msg/b-glucans and HIV envelope protein gp120 in in vivo
assays with AMs and DCs might yield important early insights
into the role this coinfection may play in the pathogenesis of HIV/
PJP. In closing, this minireview summarizes our understanding of
the current information on the CLRs/lectins linked with
Pneumocystis and myeloid cell interactions.
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